1
0
forked from M-Labs/nac3

[core] codegen/ndarray: Implement np_{shape,strides}

Based on 40c24486: core/ndstrides: implement np_shape() and np_strides()

These functions are not important, but they are handy for debugging.

`np.strides()` is not an actual NumPy function, but `ndarray.strides` is
used.
This commit is contained in:
David Mak 2024-12-18 10:28:56 +08:00
parent 9ffa2d6552
commit 12358c57b1
10 changed files with 193 additions and 13 deletions

View File

@ -1,19 +1,23 @@
use std::iter::repeat_n;
use inkwell::{
types::{AnyType, AnyTypeEnum, BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue, PointerValue},
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use itertools::Itertools;
use super::{
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
ArrayLikeIndexer, ArrayLikeValue, ProxyValue, TupleValue, TypedArrayLikeAccessor,
TypedArrayLikeAdapter, TypedArrayLikeMutator, UntypedArrayLikeAccessor,
UntypedArrayLikeMutator,
};
use crate::codegen::{
irrt,
llvm_intrinsics::{call_int_umin, call_memcpy_generic_array},
stmt::gen_for_callback_incrementing,
type_aligned_alloca,
types::{ndarray::NDArrayType, structure::StructField},
types::{ndarray::NDArrayType, structure::StructField, TupleType},
CodeGenContext, CodeGenerator,
};
pub use contiguous::*;
@ -417,13 +421,85 @@ impl<'ctx> NDArrayValue<'ctx> {
.unwrap();
}
/// Create the shape tuple of this ndarray like
/// [`np.shape(<ndarray>)`](https://numpy.org/doc/stable/reference/generated/numpy.shape.html).
///
/// All elements in the tuple are `i32`.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
assert!(self.ndims.is_some(), "NDArrayValue::make_shape_tuple can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims.unwrap())
.map(|i| {
let dim = unsafe {
self.shape().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims.unwrap() as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Create the strides tuple of this ndarray like
/// [`<ndarray>.strides`](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html).
///
/// All elements in the tuple are `i32`.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleValue<'ctx> {
assert!(self.ndims.is_some(), "NDArrayValue::make_strides_tuple can only be called on an instance with compile-time known ndims (self.ndims = Some(ndims))");
let llvm_i32 = ctx.ctx.i32_type();
let objects = (0..self.ndims.unwrap())
.map(|i| {
let dim = unsafe {
self.strides().get_typed_unchecked(
ctx,
generator,
&self.llvm_usize.const_int(i, false),
None,
)
};
ctx.builder.build_int_truncate_or_bit_cast(dim, llvm_i32, "").unwrap()
})
.map(|obj| obj.as_basic_value_enum())
.collect_vec();
TupleType::new(
generator,
ctx.ctx,
&repeat_n(llvm_i32.into(), self.ndims.unwrap() as usize).collect_vec(),
)
.construct_from_objects(ctx, objects, None)
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> Option<bool> {
self.ndims.map(|ndims| ndims == 0)
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// If this ndarray is unsized, return its sole value as an [`BasicValueEnum`].
/// Otherwise, do nothing and return the ndarray itself.
// TODO: Rename to get_unsized_element
pub fn split_unsized<G: CodeGenerator + ?Sized>(

View File

@ -14,6 +14,7 @@ use crate::{
builtin_fns,
numpy::*,
stmt::exn_constructor,
types::ndarray::NDArrayType,
values::{ProxyValue, RangeValue},
},
symbol_resolver::SymbolValue,
@ -368,6 +369,10 @@ impl<'a> BuiltinBuilder<'a> {
| PrimDef::FunNpEye
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
self.build_ndarray_property_getter_function(prim)
}
PrimDef::FunStr => self.build_str_function(),
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
@ -1242,6 +1247,54 @@ impl<'a> BuiltinBuilder<'a> {
}
}
fn build_ndarray_property_getter_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpShape, PrimDef::FunNpStrides]);
let in_ndarray_ty = self.unifier.get_fresh_var_with_range(
&[self.primitives.ndarray],
Some("T".into()),
None,
);
match prim {
PrimDef::FunNpShape | PrimDef::FunNpStrides => {
// The function signatures of `np_shape` an `np_size` are the same.
// Mixed together for convenience.
// The return type is a tuple of variable length depending on the ndims of the input ndarray.
let ret_ty = self.unifier.get_dummy_var().ty; // Handled by special folding
create_fn_by_codegen(
self.unifier,
&into_var_map([in_ndarray_ty]),
prim.name(),
ret_ty,
&[(in_ndarray_ty.ty, "a")],
Box::new(move |ctx, obj, fun, args, generator| {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let ndarray_ty = fun.0.args[0].ty;
let ndarray =
args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
let ndarray = NDArrayType::from_unifier_type(generator, ctx, ndarray_ty)
.map_value(ndarray.into_pointer_value(), None);
let result_tuple = match prim {
PrimDef::FunNpShape => ndarray.make_shape_tuple(generator, ctx),
PrimDef::FunNpStrides => ndarray.make_strides_tuple(generator, ctx),
_ => unreachable!(),
};
Ok(Some(result_tuple.as_base_value().into()))
}),
)
}
_ => unreachable!(),
}
}
/// Build the `str()` function.
fn build_str_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunStr;

View File

@ -54,6 +54,10 @@ pub enum PrimDef {
FunNpEye,
FunNpIdentity,
// NumPy ndarray property getters
FunNpShape,
FunNpStrides,
// Miscellaneous NumPy & SciPy functions
FunNpRound,
FunNpFloor,
@ -240,6 +244,10 @@ impl PrimDef {
PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None),
// NumPy NDArray property getters,
PrimDef::FunNpShape => fun("np_shape", None),
PrimDef::FunNpStrides => fun("np_strides", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunNpFloor => fun("np_floor", None),

View File

@ -8,5 +8,5 @@ expression: res_vec
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(245)]\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(249)]\n}\n",
]

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar229]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar229\"]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar233]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar233\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(242)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(247)]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(246)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(251)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec
---
[
"Class {\nname: \"A\",\nancestors: [\"A[typevar228, typevar229]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar228\", \"typevar229\"]\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[typevar232, typevar233]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar232\", \"typevar233\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(248)]\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(252)]\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(256)]\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(260)]\n}\n",
]

View File

@ -3,7 +3,7 @@ use std::{
cmp::max,
collections::{HashMap, HashSet},
convert::{From, TryInto},
iter::once,
iter::{once, repeat_n},
sync::Arc,
};
@ -1234,6 +1234,45 @@ impl<'a> Inferencer<'a> {
}));
}
if ["np_shape".into(), "np_strides".into()].contains(id) && args.len() == 1 {
let ndarray = self.fold_expr(args.remove(0))?;
let ndims = arraylike_get_ndims(self.unifier, ndarray.custom.unwrap());
// Make a tuple of size `ndims` full of int32 (TODO: Make it usize)
let ret_ty = TypeEnum::TTuple {
ty: repeat_n(self.primitives.int32, ndims as usize).collect_vec(),
is_vararg_ctx: false,
};
let ret_ty = self.unifier.add_ty(ret_ty);
let func_ty = TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "a".into(),
default_value: None,
ty: ndarray.custom.unwrap(),
is_vararg: false,
}],
ret: ret_ty,
vars: VarMap::new(),
});
let func_ty = self.unifier.add_ty(func_ty);
return Ok(Some(Located {
location,
custom: Some(ret_ty),
node: ExprKind::Call {
func: Box::new(Located {
custom: Some(func_ty),
location: func.location,
node: ExprKind::Name { id: *id, ctx: *ctx },
}),
args: vec![ndarray],
keywords: vec![],
},
}));
}
if id == &"np_dot".into() {
let arg0 = self.fold_expr(args.remove(0))?;
let arg1 = self.fold_expr(args.remove(0))?;

View File

@ -179,6 +179,10 @@ def patch(module):
module.np_identity = np.identity
module.np_array = np.array
# NumPy NDArray property getters
module.np_shape = np.shape
module.np_strides = lambda ndarray: ndarray.strides
# NumPy Math functions
module.np_isnan = np.isnan
module.np_isinf = np.isinf