2021-11-30 14:17:02 +08:00
\documentclass [10pt] { datasheet}
\usepackage { palatino}
\usepackage { textgreek}
\usepackage { minted}
\usepackage { tcolorbox}
\usepackage { etoolbox}
\BeforeBeginEnvironment { minted} { \begin { tcolorbox} [colback=white]} %
\AfterEndEnvironment { minted} { \end { tcolorbox} } %
\usepackage [justification=centering] { caption}
\usepackage [utf8] { inputenc}
\usepackage [english] { babel}
\usepackage [english] { isodate}
\usepackage { graphicx}
\usepackage { subfigure}
\usepackage { tikz}
\usepackage { pgfplots}
\usepackage { circuitikz}
\usetikzlibrary { calc}
\usetikzlibrary { fit,backgrounds}
\title { 4410 Urukul}
\author { M-Labs Limited}
\date { November 2021}
\revision { Revision 1}
\companylogo { \includegraphics [height=0.73in] { artiq_ sinara.pdf} }
\begin { document}
\maketitle
\section { Features}
\begin { itemize}
\item { 4 channels 1GS/s DDS.}
\item { Output frequency ranges from \textless 1 to \textgreater 400 MHz.}
\item { Sub-Hz frequency resolution.}
\item { Controlled phase steps.}
\item { Accurate output amplitude control.}
\end { itemize}
\section { Applications}
\begin { itemize}
\item { Agile local oscillator (LO) frequency synthesis.}
\item { Programmable clock generators.}
2021-12-01 16:13:44 +08:00
\item { Fast frequency hopping.}
2021-11-30 14:17:02 +08:00
\end { itemize}
\section { General Description}
The 4410 Urukul card is a 4hp EEM module part of the ARTIQ Sinara family.
It adds frequency generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC.
It provides 4 channels of DDS at 1GS/s.
Output frequency from \textless 1 to \textgreater 400 MHz are supported.
The nominal maximum output power of each channel is 10dBm.
Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator.
RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
Urukul comes with either AD9910 or AD9912 chips.
% Switch to next column
\vfill \break
\newcommand * { \MyLabel } [3][2cm]{ \parbox { #1} { \centering #2 \\ #3} }
\newcommand * { \MymyLabel } [3][4cm]{ \parbox { #1} { \centering #2 \\ #3} }
\begin { figure} [h]
\centering
\scalebox { 0.88} {
\begin { circuitikz} [european, scale=0.95, every label/.append style={ align=center} ]
\begin { scope} []
% Node to pin-point the locations of SMA symbols
\draw [color=white, text=black] (-0.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (ext_ clk) { } ;
\draw [color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx) { } ;
\draw [color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf0) { } ;
\draw [color=white, text=black] (-0.1, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf1) { } ;
\draw [color=white, text=black] (-0.1, -3.15) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf2) { } ;
\draw [color=white, text=black] (-0.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf3) { } ;
% Labels for female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\node [label=left:\tiny { EXT CLK} ] at (0.35, 0) { } ;
\node [label=left:\tiny { MMCX} ] at (0.35, -0.35) { } ;
\node [label=left:\tiny { RF 0} ] at (0.35, -1.75) { } ;
\node [label=left:\tiny { RF 1} ] at (0.35, -2.45) { } ;
\node [label=left:\tiny { RF 2} ] at (0.35, -3.15) { } ;
\node [label=left:\tiny { RF 3} ] at (0.35, -3.85) { } ;
% draw female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\begin { scope} [scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
\begin { scope} [scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
\begin { scope} [scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
\begin { scope} [scale=0.07 , rotate=-90, xshift=35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
\begin { scope} [scale=0.07 , rotate=-90, xshift=45cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
\begin { scope} [scale=0.07 , rotate=-90, xshift=55cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end { scope}
% Draw the internal oscillator
\draw (0.02, -0.8) node[twoportshape, t={ OSC} , circuitikz/bipoles/twoport/width=0.8, scale=0.4] (xo) { } ;
% Draw the clock buffers as selector
% \tikzset{demux/.style={muxdemux, muxdemux def={Lh=6, Rh=6, NL=3, NT=1, NB=0, NR=1, w=2.5}, no input leads, scale=0.4}};
% \draw (1.55, -0.35) node[demux]{\rotatebox[origin=c]{-90}{CLK BUFFERS}};
\draw (1.45, -0.35) node[twoportshape, t={ CLK Buffers} , circuitikz/bipoles/twoport/width=2.2, scale=0.4, rotate=-90] (clk_ buf) { } ;
% Connect CLK_IN to DDS clock buffers
\draw [-latexslim] (ext_ clk.east) -- ++(1,0);
\draw [-latexslim] (mmcx.east) -- ++(1,0);
\draw [-latexslim] (xo.east) -- ++(1,0);
% Connect CPLD clk_sel to DDS clock buffers
\draw [-latexslim] (clk_ buf.east) -- ++(0,-0.42);
% Signal path: From control signals / clock of DDS to output of the RF switches
2021-12-01 13:03:42 +08:00
\draw (1.35, -1.75) node[twoportshape, t={ DDS Signal Path} , circuitikz/bipoles/twoport/width=2, scale=0.4] (sig0) { } ;
\draw (1.35, -2.45) node[twoportshape, t={ DDS Signal Path} , circuitikz/bipoles/twoport/width=2, scale=0.4] (sig1) { } ;
\draw (1.35, -3.15) node[twoportshape, t={ DDS Signal Path} , circuitikz/bipoles/twoport/width=2, scale=0.4] (sig2) { } ;
\draw (1.35, -3.85) node[twoportshape, t={ DDS Signal Path} , circuitikz/bipoles/twoport/width=2, scale=0.4] (sig3) { } ;
2021-11-30 14:17:02 +08:00
% Extra node to expand the dotted area eastward
2021-12-01 13:03:42 +08:00
\draw [color=white, text=black] (2.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (sig3_ east) { } ;
2021-11-30 14:17:02 +08:00
% Connect RF to DDS block
2021-12-01 13:03:42 +08:00
\draw [latexslim-] (rf0.east) -- (sig0.west);
\draw [latexslim-] (rf1.east) -- (sig1.west);
\draw [latexslim-] (rf2.east) -- (sig2.west);
\draw [latexslim-] (rf3.east) -- (sig3.west);
2021-11-30 14:17:02 +08:00
% DDS signal path dotted area
\node [draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rf3)(sig0)(sig3_east.east)] (abs_ dds) { } ;
\node [fill=white, rotate=-90, scale=0.7] at (abs_ dds.west) { DDS Channels} ;
% CPLD
\draw (3.8, -0.35) node[twoportshape, t={ CPLD} , circuitikz/bipoles/twoport/width=1.1, scale=0.8, rotate=-90] (cpld) { } ;
% Synthronization clock buffer for DDS block
2021-12-01 13:03:42 +08:00
\draw (3.5, -2.5) node[twoportshape, t=\MymyLabel { Sync} { Buffer} , circuitikz/bipoles/twoport/width=1.2, scale=0.5] (sync_ buf) { } ;
2021-11-30 14:17:02 +08:00
% Connect CPLD to:
% DDS clock buffer
\draw [latexslim-] (clk_ buf.north) -- (cpld.south);
% DDS signal path
\draw [latexslim-latexslim] (3.4, -0.7) -- ++ (-1.5, 0) -- ++ (0,-0.72);
% Draw to intersection point, then complete the connection to sync buffer
\draw [-] (4.2, -0.7) -- (4.55, -0.7) -- (4.55, -2.5);
\draw [-latexslim] (4.55, -2.5) -- (sync_ buf.east);
% Connect sync buffer to DDS block
2021-12-01 13:03:42 +08:00
\draw [-latexslim] (sig0.east) -- (3.35, -1.75) -- ++ (0, -0.5);
\draw [-latexslim] (sync_ buf.south) -- ++ (0, -0.3) -- ++ (-1.05, 0);
2021-11-30 14:17:02 +08:00
% LVDS Transceivers
\draw (6, 0) node[twoportshape, t=\MymyLabel { LVDS} { Transceiever} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds0) { } ;
\draw (6, -0.7) node[twoportshape, t=\MymyLabel { LVDS} { Transceiever} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds1) { } ;
\draw (6, -2.5) node[twoportshape, t=\MymyLabel { LVDS} { Transceiever} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds2) { } ;
\draw (6, -3.2) node[twoportshape, t=\MymyLabel { LVDS} { Transceiever} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds3) { } ;
% Connect CPLD to transceivers
\draw [latexslim-latexslim] (lvds0.west) -- ++ (-1.13, 0);
\draw [latexslim-latexslim] (lvds1.west) -- ++ (-0.35, 0) -- ++ (0, 0.6) -- ++ (-0.78, 0);
\draw [latexslim-latexslim] (lvds2.west) -- ++ (-0.45, 0) -- ++ (0, 2.3) -- ++ (-0.68, 0);
\draw [latexslim-latexslim] (lvds3.west) -- ++ (-0.55, 0) -- ++ (0, 2.9) -- ++ (-0.58, 0);
% EEPROMs
\draw (6, -1.4) node[twoportshape, t={ EEPROM} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom0) { } ;
\draw (6, -3.9) node[twoportshape, t={ EEPROM} , circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom1) { } ;
% Repeaters for DDS0 sync clock & DDS sync output from sync buffer
2021-12-01 13:03:42 +08:00
\draw (3.5, -3.85) node[twoportshape, t={ Repeaters} , circuitikz/bipoles/twoport/width=1.2, scale=0.5] (rep) { } ;
2021-11-30 14:17:02 +08:00
% Connect DDS0 to repeaters
2021-12-01 13:03:42 +08:00
\draw [-latexslim] (sig0.east) -- ++ (0.3, 0) -- ++ (0, -1.55) -- (3.35, -3.3) -- ++ (0, -0.3);
2021-11-30 14:17:02 +08:00
% Connect sync_buf to repeaters
\draw [-latexslim] (sync_ buf.south) -- ++ (0, -0.3) -- ++ (0.15, 0) -- ++ (0, -0.55);
% EEMs
\draw (8, -0.9) node[twoportshape, t={ EEM Port 0} , circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem0) { } ;
\draw (8, -3.4) node[twoportshape, t={ EEM Port 1} , circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem1) { } ;
% Connect LVDS and EEM
\draw [latexslim-latexslim] (lvds0.east) -- (7.75, 0);
\draw [latexslim-latexslim] (lvds1.east) -- (7.75, -0.7);
\draw [latexslim-latexslim] (lvds2.east) -- (7.75, -2.5);
\draw [latexslim-latexslim] (lvds3.east) -- (7.75, -3.2);
% Connect EEPROM to EEM
\draw [latexslim-latexslim] (eeprom0.east) -- (7.75, -1.4);
\draw [latexslim-latexslim] (eeprom1.east) -- (7.75, -3.9);
% Connect EEM0 to sync_buf
2021-12-01 13:03:42 +08:00
\draw [latexslim-] (3.65, -2.25) -- (3.65, -1.85) -- (7.75, -1.85);
2021-11-30 14:17:02 +08:00
% Connect repeaters output to EEM1
2021-12-01 13:03:42 +08:00
\draw [-latexslim] (rep.south) -- (3.5, -4.35) -- (7.75, -4.35);
% Synchronization ICs encased in another dotted area
\node [draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rep.south west)(sync_buf.north east)] (sync_ path) { } ;
\node [fill=white, rotate=-90, scale=0.5] at (sync_ path.east) { AD9910 Only} ;
2021-11-30 14:17:02 +08:00
\end { scope}
\end { circuitikz}
}
\caption { Simplified Block Diagram}
\end { figure}
\begin { figure} [h]
\centering
\scalebox { 0.88} {
\begin { circuitikz} [european, scale=0.95, every label/.append style={ align=center} ]
\begin { scope} []
% RF switches {0, 1, 2, 3} for SMA {0, 1, 2, 3}
\draw (1.4, 0) node[twoportshape, t={ RF Switch} , circuitikz/bipoles/twoport/width=1.5, scale=0.6] (sw) { } ;
% Amplifiers {0, 1, 2, 3} for RF switches {0, 1, 2, 3}
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) { } ;
% Attenuators {0, 1, 2, 3} for amplifiers {0, 1, 2, 3}
\draw (4.6, 0) node[twoportshape, t=\MymyLabel { Digital} { Attenuator} , circuitikz/bipoles/twoport/width=2, scale=0.6, rotate=-90] (att) { } ;
% DDS {0, 1, 2, 3} for attenuators {0, 1, 2, 3}
\draw (6.6, 0) node[twoportshape, t={ DDS} , circuitikz/bipoles/twoport/width=1.2, scale=0.7] (dds) { } ;
% Connect main signal path
\draw [-latexslim] (dds.west) -- (att.north);
\draw [-latexslim] (att.south) -- (amp.west);
\draw [-latexslim] (amp.east) -- (sw.east);
% Connect abstract DDS clock input
\node [label=above:\tiny { CLK Buffers} ] at (8, -0.2) { } ;
\draw [latexslim-] (dds.east) -- (8, 0);
% Insert CPLD signal to relevant components
\node [label=above:\tiny { CPLD} ] at (8, 1.1) { } ;
\draw [-] (1.4, 1.3) -- (8, 1.3);
\draw [-latexslim] (1.4, 1.3) -- (sw.north);
\draw [-latexslim] (4.6, 1.3) -- (att.west);
\draw [-latexslim] (6.6, 1.3) -- (dds.north);
% Connect sync_buf signal to DDS
\draw [latexslim-] (6.9, -1.35) -- (6.9, -0.35);
\draw [-latexslim] (6.3, -1.35) -- (6.3, -0.35);
\node [label=below:\tiny { Sync Buffer /} ] at (6.6, -1.15) { } ;
\node [label=below:\tiny { Repeaters} ] at (6.6, -1.4) { } ;
\node [label={ [rotate=-90]above:\tiny { DDS 0} } ] at (6.8, -0.9) { } ;
\node [label={ [rotate=-90]above:\tiny { Only} } ] at (6.55, -0.9) { } ;
\end { scope}
\end { circuitikz}
}
\caption { Simplified DDS Signal Path}
\end { figure}
\begin { figure} [h]
\centering
\includegraphics [width=1.8in] { photo4410.jpg}
\caption { Urukul Card photo}
\end { figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
\section { Electrical Specifications}
2021-12-01 12:05:20 +08:00
\begin { table} [h]
\begin { threeparttable}
2021-12-01 16:13:44 +08:00
\caption { Recommended Operating Conditions}
2021-12-01 12:05:20 +08:00
\begin { tabularx} { \textwidth } { l | c | c c c | c | X}
\thickhline
\textbf { Parameter} & \textbf { Symbol} & \textbf { Min.} & \textbf { Typ.} & \textbf { Max.} &
\textbf { Unit} & \textbf { Conditions} \\
\hline
2021-12-01 16:13:44 +08:00
Clock input & & & & & & \\
\hspace { 3mm} Input frequency & & 10 & & 1000 & MHz & PLL disabled \\
& & 3.2 & & 60 & MHz & AD9910, PLL enabled, no clock division \\
& & 12.8 & & 240 & MHz & AD9910, PLL enabled, 4x clock division \\
& & 11 & & 200 & MHz & AD9912, PLL enabled, no clock division \\
& & 44 & & 800 & MHz & AD9912, PLL enabled, 4x clock division \\
\hspace { 3mm} Nominal input power & & & 10 & & dBm & \\
\hline
Air flow & & 50 & & & cm/s & \\
\thickhline
\end { tabularx}
\end { threeparttable}
\end { table}
\begin { table} [h]
\begin { threeparttable}
\caption { RF Output Specifications}
\begin { tabularx} { \textwidth } { l | c | c c c | c | X}
\thickhline
\textbf { Parameter} & \textbf { Symbol} & \textbf { Min.} & \textbf { Typ.} & \textbf { Max.} &
\textbf { Unit} & \textbf { Conditions} \\
\hline
Nominal power & & & & 10 & dBm & 13 dBm P1dB\\
\hline
Frequency & & 1 & & 400 & MHz & \\
2021-12-01 12:05:20 +08:00
\hline
2021-12-01 16:13:44 +08:00
Attenuation & & -31.5 & & 0 & dB & \\
2021-12-01 12:05:20 +08:00
\hline
2021-12-01 16:13:44 +08:00
Resolution & & & & & & \\
\hspace { 3mm} Frequency & & & 0.25 & & Hz & AD9910 \\
& & & 8 & & $ \mu $ Hz & AD9912 \\
\hspace { 3mm} Phase offset & & & 16 & & bits & AD9910 \\
& & & 14 & & bits & AD9912 \\
\hspace { 3mm} Digital amplitude & & & 14 & & bits & AD9910 \\
\hspace { 3mm} DAC full scale current & & & 8 & & bits & AD9910 \\
& & & 10 & & bits & AD9912 \\
\hspace { 3mm} Temporal (I/O Update) & & & 4 & & ns & \\
\hspace { 3mm} Attenuation & & & 0.5 & & dB & \\
\thickhline
\end { tabularx}
\end { threeparttable}
\end { table}
All performance data are produced using 1 GHz PLL unless otherwise noted.
\begin { table} [h]
\begin { threeparttable}
\caption { Electrical Characteristics}
\begin { tabularx} { \textwidth } { l | c | c c c | c | X}
\thickhline
\textbf { Parameter} & \textbf { Symbol} & \textbf { Min.} & \textbf { Typ.} & \textbf { Max.} &
\textbf { Unit} & \textbf { Conditions} \\
\hline
Attenuator glitch duration & & & 100 & & ns & \\
2021-12-01 12:05:20 +08:00
\hline
RF switch & & & & & & \\
\hspace { 3mm} Rise to 90\% & $ t _ { on } $ & & 100 & & ns & \\
\hspace { 3mm} Isolation & & & 70 & & dB & \\
\hspace { 3mm} Turn-on chirp & $ \gamma $ & & & 0.1 & deg/s & Excluding the first $ \mu $ s\\
\hline
Crosstalk & & & -84 & & dB & victim RF switch opened \\
& & & -110 & & dB & victim RF switch closed \\
\hline
Cross-channel-intermodulation & & & -90 & & dB & \\
\hline
2021-12-01 16:13:44 +08:00
Phase noise & $ \mathcal { L } ( f ) $ & & & & & 100 MHz ref in, 81 MHz output\\
2021-12-01 12:05:20 +08:00
& & & -85 & & dBc/Hz & 0.1 Hz \\
& & & -95 & & dBc/Hz & 1 Hz \\
& & & -107 & & dBc/Hz & 10 Hz \\
& & & -116 & & dBc/Hz & 100 Hz \\
& & & -126 & & dBc/Hz & 1 kHz \\
& & & -133 & & dBc/Hz & 10 kHz \\
& & & -135 & & dBc/Hz & 100 kHz \\
& & & -128 & & dBc/Hz & 1 MHz \\
& & & -149 & & dBc/Hz & 10 MHz \\
\hline
2021-12-01 16:13:44 +08:00
Power consumption (AD9910) & & & 7 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9912) & & & 6.5 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
2021-12-01 12:05:20 +08:00
\thickhline
\end { tabularx}
\end { threeparttable}
\end { table}
2021-11-30 14:17:02 +08:00
2021-12-01 16:13:44 +08:00
\newpage
2021-11-30 14:17:02 +08:00
\section { Example ARTIQ code}
The sections below demonstrate simple usage scenarios of the 4410 Urukul card with the ARTIQ control system.
They do not exhaustively demonstrate all the features of the ARTIQ system.
The full documentation for the ARTIQ software and gateware is available at \url { https://m-labs.hk} .
% Timing accuracy in the examples below is well under 1 nanosecond thanks to the ARTIQ RTIO system.
\subsection { 10 MHz Sinusoidal Wave}
2021-12-01 12:04:38 +08:00
Generate a 10MHz sinusoid from RF0 with full scale amplitude and 0.25 turns phase, attenuated by 6 dB.
2021-11-30 14:17:02 +08:00
Both the CPLD and the DDS channels should be initialized.
\begin { minted} { python}
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_ sw(True)
self.dds0.set_ att(6.)
2021-12-01 12:04:38 +08:00
self.dds0.set(10*MHz, amplitude=1.0, phase=0.25)
2021-11-30 14:17:02 +08:00
\end { minted}
If the synchronization feature of AD9910 was enabled, RF signal across different channels of the same Urukul can be synchronized.
For example, synchronized RF signal can be produced on both channel 0 and channel 1 after configuring an appropriate phase mode.
\begin { minted} { python}
@kernel
def run(self):
self.core.reset()
self.cpld.init()
self.dds0.init()
self.dds0.cfg_ sw(True)
self.dds0.set_ phase_ mode(PHASE_ MODE_ TRACKING)
self.dds0.set_ att(6.)
self.dds1.init()
self.dds1.cfg_ sw(True)
self.dds1.set_ phase_ mode(PHASE_ MODE_ TRACKING)
self.dds1.set_ att(6.)
self.dds0.set(10*MHz)
self.dds1.set(10*MHz)
\end { minted}
\newpage
\subsection { DDS RAM Modulation}
Only available to AD9910 variants. Set field \texttt { dds} as an Urukul channel, \texttt { cpld} as the corresponding Urukul CPLD.
\begin { minted} { python}
from artiq.coredevice.ad9910 import RAM_ MODE_ CONT_ RAMPUP
@kernel
def run(self):
self.core.reset()
self.core.break_ realtime()
self.cpld.init()
self.dds.init()
self.core.break_ realtime()
self.profile0_ set()
self.dds.set_ att(6.)
self.dds.sw.on()
self.cpld.set_ profile(0)
@kernel
def profile0_ set(self):
self.dds.set_ cfr1(ram_ enable = 0)
self.cpld.set_ profile(0)
amp_ ram = [0.0, 0.0, 0.0, 0.7, 0.0, 0.7, 0.7] # Reversed Order
asf_ ram = [0] * len(amp_ ram)
self.dds.set_ profile_ ram(start=0, end=len(amp_ ram)-1,
step=250, profile=0, mode=RAM_ MODE_ CONT_ RAMPUP)
self.cpld.io_ update.pulse_ mu(8)
self.dds.amplitude_ to_ ram(amp_ ram, asf_ ram)
self.dds.write_ ram(asf_ ram)
self.dds.set_ cfr1(ram_ enable=1, ram_ destination=RAM_ DEST_ ASF)
self.dds.set_ frequency(10*MHz)
self.cpld.io_ update.pulse_ mu(8)
\end { minted}
\section { Ordering Information}
To order, please visit \url { https://m-labs.hk} and select the 4410 Urukul in the ARTIQ Sinara crate configuration tool. The card may also be ordered separately by writing to \url { mailto:sales@m-labs.hk} .
\section * { }
\vspace * { \fill }
\begin { footnotesize}
Information furnished by M-Labs Limited is believed to be accurate and reliable. However, no responsibility is assumed by M-Labs Limited for its use, nor for any infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice.
\end { footnotesize}
\end { document}