Compare commits

..

4 Commits

Author SHA1 Message Date
3bdba96e51 booster: fix yoinked instructions from stabilizer 2025-01-23 11:19:00 +08:00
6a17b997b8 booster: update instructions, add troubleshooting instructions 2025-01-22 16:20:55 +08:00
0227a559cb Update urukul 9912 missing features
Signed-off-by: Egor Savkin <es@m-labs.hk>
2025-01-21 10:53:58 +08:00
60c603264f Add instruction for Thermostat EEM 2025-01-08 12:41:03 +08:00
6 changed files with 263 additions and 28 deletions

View File

@ -20,6 +20,7 @@
- [Sinara 8452 DSP Stabilizer / Sinara 4459 Pounder](./hw/stabilizer_pounder.md) - [Sinara 8452 DSP Stabilizer / Sinara 4459 Pounder](./hw/stabilizer_pounder.md)
- [Sinara 9805 RF Power Amplifier Booster](./hw/booster.md) - [Sinara 9805 RF Power Amplifier Booster](./hw/booster.md)
- [Sinara 8451 Thermostat](./hw/thermostat.md) - [Sinara 8451 Thermostat](./hw/thermostat.md)
- [Sinara 8453 Thermostat EEM](./hw/thermostat_eem.md)
- [Sinara 2245 LVDS DIO](./hw/lvds_dio.md) - [Sinara 2245 LVDS DIO](./hw/lvds_dio.md)
- [Software/Support](./sw_sup/software_support.md) - [Software/Support](./sw_sup/software_support.md)
- [Starting with ARTIQ](./sw_sup/artiq_start.md) - [Starting with ARTIQ](./sw_sup/artiq_start.md)

View File

@ -8,33 +8,42 @@
### Flashing ### Flashing
#### Easier way Download the latest [booster firmware](https://github.com/quartiq/booster/releases/latest/download/booster-release.bin).
Download and unpack the [booster firmware](../extra/booster/booster0.5.0.tar.xz), and then: Switch the booster into DFU mode by either inputting ``platform dfu`` in the serial console, or by turning it on while pressing the DFU button with a thin rod of some sort.
Then you can use ``dfu-util``:
```shell ```shell
nix-shell -p dfu-util nix-shell -p dfu-util
dfu-util -a 0 -s 0x08000000:leave --download booster0.5.0.bin dfu-util -a 0 -s 0x08000000:leave --download booster-release.bin
``` ```
#### Build from source on Fedora 38 #### Building from source (optional)
Creating proper Nix shell for updated Rust is quite troublesome, so the faster way is actually to use any There is no Nix Flake support to make things easier, so you need to set up rust and cargo manually.
classic Linux distribution: Start with cloning the booster repository and opening a new shell with dfu-util (for flashing) and rustup
(for building).
```shell
nix-shell -p dfu-util rustup
```
Set up the toolchain, this should be done only once:
```shell ```shell
git clone https://github.com/quartiq/booster.git # download sources
sudo dnf install clang dfu-util
cd booster/
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh # install Rust, we need rustup
rustup target add thumbv7em-none-eabihf rustup target add thumbv7em-none-eabihf
cargo install cargo-binutils cargo install cargo-binutils
rustup component add llvm-tools-preview rustup component add llvm-tools-preview
rustup update
rustup default stable
```
Building:
```shell
cargo build --release cargo build --release
cargo objcopy --release -- -O binary booster.bin cargo objcopy --release -- -O binary booster-release.bin
# enter dfu mode by either serial terminal or
# press `DFU Bootloader` button while rebooting
dfu-util -a 0 -s 0x08000000:leave --download booster.bin
``` ```
#### For version before September 2023 on NixOS #### For version before September 2023 on NixOS
@ -54,14 +63,27 @@ cargo objcopy --release -- -O binary booster.bin
dfu-util -a 0 -s 0x08000000:leave --download booster.bin dfu-util -a 0 -s 0x08000000:leave --download booster.bin
``` ```
### Clearing settings
In case someone sets some setting wrongly, or updates the firmware and suddenly there's an incompatibility, you may find (firmware, not yourself) in a state of panic, where it will not allow you to change the settings back.
1. Get into DFU mode (described above), probably with jumper method.
2. Use dfu-util to clear the flash completely:
```shell
dfu-util -a 0 -s 0x08000000:mass-erase:force:leave
```
3. Reflash the target firmware.
### Basic setup via USB ### Basic setup via USB
1. `nix-shell -p cutecom mosquitto appimage-run` 1. `nix-shell -p cutecom mosquitto appimage-run`
2. Create mosquitto config `mosquitto.conf` with your bound address: 2. Create mosquitto config `mosquitto.conf`, or use the one from Stabilizer repo:
```text ```text
bind_address 192.168.1.123 %allow_anonymous true
allow_anonymous true listener 1883
``` ```
3. `mosquitto -c mosquitto.conf -d` 3. `mosquitto -c mosquitto.conf -d`
@ -69,7 +91,24 @@ dfu-util -a 0 -s 0x08000000:leave --download booster.bin
5. Connect to the Booster via `/dev/ttyACMX` port, baud 9600, switch from LF to CR on newer version 5. Connect to the Booster via `/dev/ttyACMX` port, baud 9600, switch from LF to CR on newer version
6. Send `help` command to check if it works 6. Send `help` command to check if it works
7. Enter commands (change details if necessary): 7. Enter commands (change details if necessary):
```shell
set /broker "192.168.1.123"
set /ip "192.168.1.79/24"
store /broker
store /ip
# apply changes and wait until it fully rebooted
platform reboot
```
Older version:
```shell
write broker "192.168.1.123"
write ip "192.168.1.75"
# apply changes and wait until it fully rebooted
reset
```
Oldest version:
```shell ```shell
write broker-address 192.168.1.123 write broker-address 192.168.1.123
# only if you need static IP address # only if you need static IP address
@ -80,17 +119,8 @@ dfu-util -a 0 -s 0x08000000:leave --download booster.bin
reset reset
``` ```
Newer version: 8. Check if the Booster connects to your broker.
9. If you don't have it yet, download [MQTT Explorer](https://github.com/thomasnordquist/MQTT-Explorer/releases)
```shell
write broker "192.168.1.123"
write ip "192.168.1.75"
# apply changes and wait until it fully rebooted
reset
```
8. Check the Booster connects to your broker.
9. Download AppImage from [MQTT Explorer](https://mqtt-explorer.com/)
10. Run it with `appimage-run /path/to/MQTT-Explorer-XXX.AppImage` 10. Run it with `appimage-run /path/to/MQTT-Explorer-XXX.AppImage`
11. Connect to your MQTT broker 11. Connect to your MQTT broker
12. Restart booster to receive settings 12. Restart booster to receive settings
@ -151,3 +181,25 @@ extrapolate them for all channels._
13. Do steps 1-10 for every channel 13. Do steps 1-10 for every channel
_Note: default setting values are usually the same across channels, so you can extrapolate them for all channels._ _Note: default setting values are usually the same across channels, so you can extrapolate them for all channels._
## Troubleshooting
### Fans running constantly
If firmware is not running, the fans will be running at all times. There will also be no LED lights. It may be also the firmware doesn't have the chance to switch the fans off before a panic, so clearing settings may also help.
### Fans running high, slowing and high again in a loop
Possibly the firmware is panicking and rebooting. Try clearing the settings.
### No USB console available
There was a bug that causes [USB not to work on Windows](https://github.com/quartiq/booster/pull/166) in older firmware. Updating the firmware should be fine.
### Booster will not connect to MQTT
You may need to supply the IP address, if the device cannot get one from DHCP.
### Overload light is on even after interlock reset
Make sure you set the output interlock threshold high enough for your intended load, but also keep in mind that it cannot be not more than 47dBm. Similarly, reflected power threshold is at 30dBm, so if the input is high enough and output is not connected, it will also trip the lock.

181
src/hw/thermostat_eem.md Normal file
View File

@ -0,0 +1,181 @@
# Sinara 8453 Thermostat EEM
* [Wiki](https://github.com/sinara-hw/Thermostat_EEM/wiki)
* [Firmware](https://github.com/quartiq/thermostat-eem/tree/main)
EEM is used for power only, and it can be alternatively powered by 12V barrel jack or PoE.
## JSON
Not present in the JSON.
### Building
There is no Nix Flake support to make things easier, so you need to set up rust and cargo manually.
Start with cloning the thermostat-eem repository and opening a new shell with dfu-util (for flashing) and rustup
(for building).
```shell
nix-shell -p dfu-util rustup
```
Set up the toolchain, this should be done only once:
```shell
rustup target add thumbv7em-none-eabihf
cargo install cargo-binutils
rustup component add llvm-tools-preview
rustup update
rustup default stable
```
Building:
```shell
cargo build --release
cargo objcopy --release --bin thermostat-eem -- -O thermostat-eem.bin
```
## Flashing
Once you have the binary, you can now flash it.
1. Without firmware on the device or with older firmware (without USB serial console),
you need to use the jumper method:
1. Have the Thermostat EEM disconnected from power.
2. Use a jumper of some sort to short BOOT pins on the board.
3. Turn on the power.
4. You can remove the jumper after few seconds.
2. With newer firmware with USB serial console:
1. Connect the Thermostat EEM to power.
2. Connect USB cable to the Thermostat EEM.
3. Ensure you have `pyserial` module either with `nix-shell -p python312Packages.pyserial` for NixOS users
or using `pip install pyserial` if you are using venv.
4. Run `python -m serial /dev/ttyACM0` to connect the serial port using `pyserial`.
5. Input `platform dfu` in the console.
3. Once the device is now in DFU mode, flash the device with the following command (needs `nix-shell -p dfu-util`):
```shell
dfu-util -a 0 -s 0x08000000:leave -R -D thermostat-eem.bin
```
4. Look for "File downloaded successfully".
### Clearing settings
In case someone sets some setting wrongly, or updates the firmware and suddenly there's an incompatibility,
you may find (firmware, not yourself) in a state of panic, where it will not allow you to change the settings back.
1. Get into DFU mode (described above), probably with jumper method.
2. Use dfu-util to clear the flash completely:
```shell
dfu-util -a 0 -s 0x08000000:mass-erase:force:leave
```
3. Reflash the target firmware.
## Testing
### Setting up MQTT
MQTT is the only way to access the SENS and TEC pins telemetry for testing .
On PC side:
1. Get IP address of your machine, e.g. with ``ip a``. Make note of it, that's the broker address.
2. Get mosquitto, e.g. with ``nix-shell -p mosquitto``.
3. Create a mosquitto config files by running ``echo -e "allow_anonymous true\nlistener 1883" > mosquitto.conf``
3. Run mosquitto with the config ``mosquitto -c mosquitto.conf``
4. If you don't have it yet, download [MQTT Explorer](https://github.com/thomasnordquist/MQTT-Explorer/releases).
5. Call ``nix-shell -p appimage-run``, then ``appimage-run MQTT-Explorer-0.4.0-beta6.AppImage``.
6. Connect to the MQTT broker under your own IP address.
Configure Thermostat EEM:
1. Ensure that the [firmware](#Building) has been flashed onto the Thermostat EEM
2. Connect the Thermostat EEM to power.
3. Connect USB cable to the Thermostat EEM.
4. Run ``cutecom`` or your favorite terminal emulator, connect to ``/dev/ttyACM0``.
5. Change the broker setting with: ``set /net/broker "<ip of your machine>"``.
6. Store the setting with ``store /net/broker``.
7. (Optional) Set the IP address of the Thermostat EEM by following steps 4 and 5, but with ``/net/ip`` setting instead.
8. Reboot with ``platform reboot``.
Now, disconnect the USB and connect the Ethernet cable to the Thermostat EEM, as both won't fit at the same time.
Thermostat EEM should connect to moquitto automatically, and you should see the MQTT settings pop up in the MQTT Explorer.
If the IP address is not set, Thermostat EEM will try to use DHCP to get an address.
### SENS pins testing
1. Power off the Thermostat EEM
2. Connect the breakout board to Thermostat EEM
3. Connect two 10k Ohm resistor to SENS0 & SENS1
![resistor for sens pin](../img/thermostat_eem_resistor.jpg)
4. Power the Thermostat EEM and access the `telemetry/statistics` on MQTT Explorer
5. Check the mean temperature is around 25C for SENS0 & SENS1
```json
{
...
"statistics": [
// SENS0 & SENS1
[
{
"mean": 25.180674,
"ptp": 0.00029182434,
"std": 0.000053144646
},
{
"mean": 25.042572,
"ptp": 0.00029182434,
"std": 0.00005036032
},
null,
null
],
// SENS2 & SENS3
[
{
"mean": -273.15,
"ptp": 0,
"std": 0
},
{
"mean": -273.15,
"ptp": 0,
"std": 0
},
null,
null
],
...
],
...
}
```
6. Repeat 3-5 for other SENS pins
### TEC pins testing
1. Power off the Thermostat EEM
2. Connect the breakout board to Thermostat EEM
3. Power the Thermostat EEM and set `output/0/state` parameter to `On` using MQTT explorer
![mqtt setup](../img/thermostat_eem_mqtt.png)
4. Check that TEC0 pins have voltages as described in `telemetry/monitor/output_voltage`
```json
{
"monitor": {
...
"output_voltage": [
-1.1107178, // TEC0
-1.638794, // TEC1
-1.762146, // TEC2
-1.1976318 // TEC3
],
...
},
...
}
```
5. Repeat 3-4 for other TEC pins

View File

@ -50,6 +50,7 @@ Urukul 4412 has higher frequency resolution (47 bit against 32 at Urukul 4410),
* SU-Servo * SU-Servo
* Synchronization * Synchronization
* RAM
## Testing ## Testing

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 678 KiB