cxp downconn gw: add gtx up to 12.5Gbps

testing: add txusrclk mmcm & loopback mode
testing: add debug output
testing: send comma in the middle of long packet to maintain lock
downconn: don't put IDLE into fifo
downconn: add GTX and QPLL support
downconn: add DRP for GTX and QPLL to support all CXP linerates
GTX: add gtx with mmcm for TXUSRCLK freq requirement
GTX: add loopback mode parameter for testing
GTX: add gtx with 40bits internal width
GTX: use built-in comma aligner
GTX: add comma checker to ensure comma is aligner on highest linerate
GTX: set QPLL as CLK source for GTX
GTX: add multilane rx support with the same rx reseter
This commit is contained in:
morgan 2024-06-05 13:01:17 +08:00
parent 70e994ce3b
commit 2ea2b5e922

View File

@ -0,0 +1,644 @@
from migen import *
from migen.genlib.cdc import MultiReg
from migen.genlib.resetsync import AsyncResetSynchronizer
from misoc.cores.code_8b10b import Encoder, Decoder
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from artiq.gateware.drtio.transceiver.gtx_7series_init import *
from cxp_pipeline import word_layout
from functools import reduce
from operator import add
class CXP_DownConn_PHYS(Module, AutoCSR):
def __init__(self, refclk, pads, sys_clk_freq, debug_sma, pmod_pads, master=0):
self.qpll_reset = CSR()
self.qpll_locked = CSRStatus()
self.gtx_start_init = CSRStorage()
self.gtx_restart = CSR()
self.rx_phys = []
# # #
# For speed higher than 6.6Gbps, QPLL need to be used instead of CPLL
self.submodules.qpll = qpll = QPLL(refclk, sys_clk_freq)
self.sync += [
qpll.reset.eq(self.qpll_reset.re),
self.qpll_locked.status.eq(qpll.lock),
]
self.submodules.rx_resetter = rx_resetter = RX_Resetter()
for i, pad in enumerate(pads):
if len(pads) == 1:
rx_mode = "single"
else:
rx_mode = "master" if i == master else "slave"
rx = Receiver(qpll, pad, sys_clk_freq, "single", rx_mode, debug_sma, pmod_pads)
self.rx_phys.append(rx)
setattr(self.submodules, "rx"+str(i), rx)
for i, phy in enumerate(self.rx_phys):
if i == master:
self.comb += rx_resetter.rx_ready.eq(phy.gtx.rx_ready)
self.comb += [
phy.gtx.rx_manual_restart.eq(self.gtx_restart.re | rx_resetter.rx_reset),
phy.gtx.rx_init.clk_path_ready.eq(self.gtx_start_init.storage),
]
# master rx_init will lock up when slaves_phaligndone signal is not connected
self.submodules.rx_phase_alignment = GTXInitPhaseAlignment([rx_phy.gtx.rx_init for rx_phy in self.rx_phys])
class Receiver(Module):
def __init__(self, qpll, pad, sys_clk_freq, tx_mode, rx_mode, debug_sma, pmod_pads):
self.submodules.gtx = gtx = GTX(qpll, pad, sys_clk_freq, tx_mode, rx_mode)
self.source = stream.Endpoint(word_layout)
data_valid = Signal()
self.sync.cxp_gtx_rx += [
data_valid.eq(gtx.comma_aligner.rxfsm.ongoing("READY")),
self.source.stb.eq(0),
If(data_valid & self.source.ack & ~((gtx.decoders[0].d == 0xBC) & (gtx.decoders[0].k == 1)),
self.source.stb.eq(1),
self.source.data.eq(Cat(gtx.decoders[i].d for i in range(4))),
self.source.k.eq(Cat(gtx.decoders[i].k for i in range(4))),
)
]
class QPLL(Module, AutoCSR):
def __init__(self, refclk, sys_clk_freq):
self.clk = Signal()
self.refclk = Signal()
self.lock = Signal()
self.reset = Signal()
self.daddr = CSRStorage(8)
self.dread = CSR()
self.din_stb = CSR()
self.din = CSRStorage(16)
self.dout = CSRStatus(16)
self.dready = CSR()
# # #
# VCO @ 10GHz, linerate = 1.25Gbps
# feedback divider = 80
qpll_fbdiv = 0b0100100000
qpll_fbdiv_ratio = 1
refclk_div = 1
self.Xxout_div = 8
# used for txuserclk pll
fbdiv_real = 80
self.tx_usrclk_freq = (sys_clk_freq*fbdiv_real/self.Xxout_div)/40
dready = Signal()
self.specials += [
Instance("GTXE2_COMMON",
i_QPLLREFCLKSEL=0b001,
i_GTREFCLK0=refclk,
i_QPLLPD=0,
i_QPLLRESET=self.reset,
i_QPLLLOCKEN=1,
o_QPLLLOCK=self.lock,
o_QPLLOUTCLK=self.clk,
o_QPLLOUTREFCLK=self.refclk,
# See UG476 (v1.12.1) Table 2-16
p_QPLL_FBDIV=qpll_fbdiv,
p_QPLL_FBDIV_RATIO=qpll_fbdiv_ratio,
p_QPLL_REFCLK_DIV=refclk_div,
# From 7 Series FPGAs Transceivers Wizard
p_BIAS_CFG=0x0000040000001000,
p_COMMON_CFG=0x00000000,
p_QPLL_CFG=0x0680181,
p_QPLL_CLKOUT_CFG=0b0000,
p_QPLL_COARSE_FREQ_OVRD=0b010000,
p_QPLL_COARSE_FREQ_OVRD_EN=0b0,
p_QPLL_CP=0b0000011111,
p_QPLL_CP_MONITOR_EN=0b0,
p_QPLL_DMONITOR_SEL=0b0,
p_QPLL_FBDIV_MONITOR_EN= 0b0,
p_QPLL_INIT_CFG=0x000006,
p_QPLL_LOCK_CFG=0x21E8,
p_QPLL_LPF=0b1111,
# Reserved, values cannot be modified
i_BGBYPASSB=0b1,
i_BGMONITORENB=0b1,
i_BGPDB=0b1,
i_BGRCALOVRD=0b11111,
i_RCALENB=0b1,
i_QPLLRSVD1=0b0,
i_QPLLRSVD2=0b11111,
# Dynamic Reconfiguration Ports
i_DRPADDR=self.daddr.storage,
i_DRPCLK=ClockSignal("sys"),
i_DRPEN=(self.dread.re | self.din_stb.re),
i_DRPWE=self.din_stb.re,
i_DRPDI=self.din.storage,
o_DRPDO=self.dout.status,
o_DRPRDY=dready,
)
]
self.sync += [
If(dready,
self.dready.w.eq(1),
),
If(self.dready.re,
self.dready.w.eq(0),
),
]
class RX_Resetter(Module):
def __init__(self, reset_period=10_000_000):
self.rx_ready = Signal()
self.rx_reset = Signal()
# # #
# periodically reset rx until rx is connected and receiving valid data
# as after connecting RXP/RXN, the whole RX need to be reset
reset_counter = Signal(reset=reset_period-1, max=reset_period)
self.sync += [
self.rx_reset.eq(0),
If(~self.rx_ready,
If(reset_counter == 0,
reset_counter.eq(reset_counter.reset),
self.rx_reset.eq(1),
).Else(
reset_counter.eq(reset_counter - 1),
)
)
]
# Warning: Xilinx transceivers are LSB first, and comma needs to be flipped
# compared to the usual 8b10b binary representation.
class Comma_Aligner(Module):
def __init__(self, comma, reset_period=10_000_000):
self.data = Signal(20)
self.comma_aligned = Signal()
self.comma_realigned = Signal()
self.comma_det = Signal()
self.aligner_en = Signal()
self.ready_sys = Signal()
# # #
# Data and comma checker
# From UG476 (v1.12.1) p.228
# The built-in RXBYTEISALIGNED can be falsely asserted at linerate higher than 5Gbps
# The validity of data and comma needed to be checked externally
comma_n = ~comma & 0b1111111111
comma_seen = Signal()
error_seen = Signal()
one_counts = Signal(max=11)
# From CXP-001-2021 section 9.2.5.1
# For high speed connection an IDLE word shall be transmitted at least once every 100 words
counter_period = 200
counter = Signal(reset=counter_period-1, max=counter_period)
check_reset = Signal()
check = Signal()
self.sync.cxp_gtx_rx += [
If(check_reset,
counter.eq(counter.reset),
check.eq(0),
).Elif(counter == 0,
check.eq(1),
).Else(
counter.eq(counter - 1),
),
If(check_reset,
comma_seen.eq(0),
).Elif((self.data[:10] == comma) | (self.data[:10] == comma_n),
comma_seen.eq(1)
),
one_counts.eq(reduce(add, [self.data[i] for i in range(10)])),
If(check_reset,
error_seen.eq(0),
).Elif((one_counts != 4) & (one_counts != 5) & (one_counts != 6),
error_seen.eq(1),
),
]
self.submodules.rxfsm = rxfsm = ClockDomainsRenamer("cxp_gtx_rx")(FSM(reset_state="WAIT_COMMA"))
rxfsm.act("WAIT_COMMA",
If(self.comma_det,
NextState("ALIGNING"),
)
)
rxfsm.act("ALIGNING",
If(self.comma_aligned & (~self.comma_realigned),
NextState("WAIT_ALIGNED_DATA"),
).Else(
self.aligner_en.eq(1),
)
)
# wait for the aligned data to arrive at the FPGA RX interface
# as there is a delay before the data is avaiable after RXBYTEISALIGNED is asserted
self.submodules.timer = timer = ClockDomainsRenamer("cxp_gtx_rx")(WaitTimer(10_000))
rxfsm.act("WAIT_ALIGNED_DATA",
timer.wait.eq(1),
If(timer.done,
check_reset.eq(1),
NextState("CHECKING"),
)
)
rxfsm.act("CHECKING",
If(check,
check_reset.eq(1),
If(comma_seen & (~error_seen),
NextState("READY"),
).Else(
NextState("WAIT_COMMA")
)
)
)
ready = Signal()
self.specials += MultiReg(ready, self.ready_sys)
rxfsm.act("READY",
ready.eq(1),
If(check,
check_reset.eq(1),
If(~(comma_seen & (~error_seen)),
NextState("WAIT_COMMA"),
)
)
)
class GTX(Module):
def __init__(self, qpll, pads, sys_clk_freq, tx_mode="single", rx_mode="single"):
assert tx_mode in ["single", "master", "slave"]
assert rx_mode in ["single", "master", "slave"]
# linerate = USRCLK * datawidth
pll_fbout_mult = 8
txusr_pll_div = pll_fbout_mult*sys_clk_freq/qpll.tx_usrclk_freq
self.tx_restart = Signal()
self.rx_manual_restart = Signal()
self.loopback_mode = Signal(3)
self.txenable = Signal()
self.rx_ready = Signal()
# Dynamic Reconfiguration Ports
self.daddr = Signal(9)
self.dclk = Signal()
self.den = Signal()
self.dwen = Signal()
self.din = Signal(16)
self.dout = Signal(16)
self.dready = Signal()
self.submodules.encoder = ClockDomainsRenamer("cxp_gtx_tx")(Encoder(4, True))
self.submodules.decoders = [ClockDomainsRenamer("cxp_gtx_rx")(
(Decoder(True))) for _ in range(4)]
# transceiver direct clock outputs
# useful to specify clock constraints in a way palatable to Vivado
self.txoutclk = Signal()
self.rxoutclk = Signal()
# # #
# TX generates cxp_tx clock, init must be in system domain
self.submodules.tx_init = tx_init = GTXInit(sys_clk_freq, False, mode=tx_mode)
self.submodules.rx_init = rx_init = GTXInit(sys_clk_freq, True, mode=rx_mode)
self.comb += [
tx_init.cplllock.eq(qpll.lock),
rx_init.cplllock.eq(qpll.lock)
]
txdata = Signal(40)
rxdata = Signal(40)
comma_aligned = Signal()
comma_realigned = Signal()
comma_det = Signal()
comma_aligner_en = Signal()
# Note: the following parameters were set after consulting AR45360
self.specials += \
Instance("GTXE2_CHANNEL",
# PMA Attributes
p_PMA_RSV=0x001E7080,
p_PMA_RSV2=0x2050, # PMA_RSV2[5] = 0: Eye scan feature disabled
p_PMA_RSV3=0,
p_PMA_RSV4=1, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
p_RX_BIAS_CFG=0b000000000100,
p_RX_OS_CFG=0b0000010000000,
p_RX_CLK25_DIV=5,
p_TX_CLK25_DIV=5,
# Power-Down Attributes
p_PD_TRANS_TIME_FROM_P2=0x3c,
p_PD_TRANS_TIME_NONE_P2=0x3c,
p_PD_TRANS_TIME_TO_P2=0x64,
i_CPLLPD=1,
# QPLL
i_QPLLCLK=qpll.clk,
i_QPLLREFCLK=qpll.refclk,
p_RXOUT_DIV=qpll.Xxout_div,
p_TXOUT_DIV=qpll.Xxout_div,
i_RXSYSCLKSEL=0b11, # use QPLL & QPLL's REFCLK
i_TXSYSCLKSEL=0b11, # use QPLL & CPLL's REFCLK
# TX clock
p_TXBUF_EN="FALSE",
p_TX_XCLK_SEL="TXUSR",
o_TXOUTCLK=self.txoutclk,
# i_TXSYSCLKSEL=0b00,
i_TXOUTCLKSEL=0b11,
# TX Startup/Reset
i_TXPHDLYRESET=0,
i_TXDLYBYPASS=0,
i_TXPHALIGNEN=1 if tx_mode != "single" else 0,
i_GTTXRESET=tx_init.gtXxreset,
o_TXRESETDONE=tx_init.Xxresetdone,
i_TXDLYSRESET=tx_init.Xxdlysreset,
o_TXDLYSRESETDONE=tx_init.Xxdlysresetdone,
i_TXPHINIT=tx_init.txphinit if tx_mode != "single" else 0,
o_TXPHINITDONE=tx_init.txphinitdone if tx_mode != "single" else Signal(),
i_TXPHALIGN=tx_init.Xxphalign if tx_mode != "single" else 0,
i_TXDLYEN=tx_init.Xxdlyen if tx_mode != "single" else 0,
o_TXPHALIGNDONE=tx_init.Xxphaligndone,
i_TXUSERRDY=tx_init.Xxuserrdy,
p_TXPMARESET_TIME=1,
p_TXPCSRESET_TIME=1,
i_TXINHIBIT=~self.txenable,
# TX data
p_TX_DATA_WIDTH=40,
p_TX_INT_DATAWIDTH=1, # 1 if a line rate is greater than 6.6 Gbps
i_TXCHARDISPMODE=Cat(txdata[9], txdata[19], txdata[29], txdata[39]),
i_TXCHARDISPVAL=Cat(txdata[8], txdata[18], txdata[28], txdata[38]),
i_TXDATA=Cat(txdata[:8], txdata[10:18], txdata[20:28], txdata[30:38]),
i_TXUSRCLK=ClockSignal("cxp_gtx_tx"),
i_TXUSRCLK2=ClockSignal("cxp_gtx_tx"),
# TX electrical
i_TXBUFDIFFCTRL=0b100,
i_TXDIFFCTRL=0b1000,
# RX Startup/Reset
i_RXPHDLYRESET=0,
i_RXDLYBYPASS=0,
i_RXPHALIGNEN=1 if rx_mode != "single" else 0,
i_GTRXRESET=rx_init.gtXxreset,
o_RXRESETDONE=rx_init.Xxresetdone,
i_RXDLYSRESET=rx_init.Xxdlysreset,
o_RXDLYSRESETDONE=rx_init.Xxdlysresetdone,
i_RXPHALIGN=rx_init.Xxphalign if rx_mode != "single" else 0,
i_RXDLYEN=rx_init.Xxdlyen if rx_mode != "single" else 0,
o_RXPHALIGNDONE=rx_init.Xxphaligndone,
i_RXUSERRDY=rx_init.Xxuserrdy,
p_RXPMARESET_TIME=1,
p_RXPCSRESET_TIME=1,
# RX AFE
p_RX_DFE_XYD_CFG=0,
p_RX_CM_SEL=0b11, # RX_CM_SEL = 0b11: Common mode is programmable
p_RX_CM_TRIM=0b010, # PMA_RSV[4],RX_CM_TRIM[2:0] = 0b1010: Common mode 800mV
i_RXDFEXYDEN=1,
i_RXDFEXYDHOLD=0,
i_RXDFEXYDOVRDEN=0,
i_RXLPMEN=1, # RXLPMEN = 1: LPM mode is enable for non scramble 8b10b data
p_RXLPM_HF_CFG=0b00000011110000,
p_RXLPM_LF_CFG=0b00000011110000,
p_RX_DFE_GAIN_CFG=0x0207EA,
p_RX_DFE_VP_CFG=0b00011111100000011,
p_RX_DFE_UT_CFG=0b10001000000000000,
p_RX_DFE_KL_CFG=0b0000011111110,
p_RX_DFE_KL_CFG2=0x3788140A,
p_RX_DFE_H2_CFG=0b000110000000,
p_RX_DFE_H3_CFG=0b000110000000,
p_RX_DFE_H4_CFG=0b00011100000,
p_RX_DFE_H5_CFG=0b00011100000,
p_RX_DFE_LPM_CFG=0x0904, # RX_DFE_LPM_CFG = 0x0904: linerate <= 6.6Gb/s
# = 0x0104: linerate > 6.6Gb/s
# RX clock
i_RXDDIEN=1,
# i_RXSYSCLKSEL=0b00,
i_RXOUTCLKSEL=0b010,
o_RXOUTCLK=self.rxoutclk,
i_RXUSRCLK=ClockSignal("cxp_gtx_rx"),
i_RXUSRCLK2=ClockSignal("cxp_gtx_rx"),
# RX Clock Correction Attributes
p_CLK_CORRECT_USE="FALSE",
p_CLK_COR_SEQ_1_1=0b0100000000,
p_CLK_COR_SEQ_2_1=0b0100000000,
p_CLK_COR_SEQ_1_ENABLE=0b1111,
p_CLK_COR_SEQ_2_ENABLE=0b1111,
# RX data
p_RX_DATA_WIDTH=40,
p_RX_INT_DATAWIDTH=1, # 1 if a line rate is greater than 6.6 Gbps
o_RXDISPERR=Cat(rxdata[9], rxdata[19], rxdata[29], rxdata[39]),
o_RXCHARISK=Cat(rxdata[8], rxdata[18], rxdata[28], rxdata[38]),
o_RXDATA=Cat(rxdata[:8], rxdata[10:18], rxdata[20:28], rxdata[30:38]),
# RX Byte and Word Alignment Attributes
p_ALIGN_COMMA_DOUBLE="FALSE",
p_ALIGN_COMMA_ENABLE=0b1111111111,
p_ALIGN_COMMA_WORD=4, # align comma to rxdata[:10] only
p_ALIGN_MCOMMA_DET="TRUE",
p_ALIGN_MCOMMA_VALUE=0b1010000011,
p_ALIGN_PCOMMA_DET="TRUE",
p_ALIGN_PCOMMA_VALUE=0b0101111100,
p_SHOW_REALIGN_COMMA="FALSE",
p_RXSLIDE_AUTO_WAIT=7,
p_RXSLIDE_MODE="OFF",
p_RX_SIG_VALID_DLY=10,
i_RXPCOMMAALIGNEN=comma_aligner_en,
i_RXMCOMMAALIGNEN=comma_aligner_en,
i_RXCOMMADETEN=1,
i_RXSLIDE=0,
o_RXBYTEISALIGNED=comma_aligned,
o_RXBYTEREALIGN=comma_realigned,
o_RXCOMMADET=comma_det,
# RX 8B/10B Decoder Attributes
p_RX_DISPERR_SEQ_MATCH="FALSE",
p_DEC_MCOMMA_DETECT="TRUE",
p_DEC_PCOMMA_DETECT="TRUE",
p_DEC_VALID_COMMA_ONLY="FALSE",
# RX Buffer Attributes
p_RXBUF_ADDR_MODE="FAST",
p_RXBUF_EIDLE_HI_CNT=0b1000,
p_RXBUF_EIDLE_LO_CNT=0b0000,
p_RXBUF_EN="FALSE",
p_RX_BUFFER_CFG=0b000000,
p_RXBUF_RESET_ON_CB_CHANGE="TRUE",
p_RXBUF_RESET_ON_COMMAALIGN="FALSE",
p_RXBUF_RESET_ON_EIDLE="FALSE", # RXBUF_RESET_ON_EIDLE = FALSE: OOB is disabled
p_RXBUF_RESET_ON_RATE_CHANGE="TRUE",
p_RXBUFRESET_TIME=0b00001,
p_RXBUF_THRESH_OVFLW=61,
p_RXBUF_THRESH_OVRD="FALSE",
p_RXBUF_THRESH_UNDFLW=4,
p_RXDLY_CFG=0x001F,
p_RXDLY_LCFG=0x030,
p_RXDLY_TAP_CFG=0x0000,
p_RXPH_CFG=0xC00002,
p_RXPHDLY_CFG=0x084020,
p_RXPH_MONITOR_SEL=0b00000,
p_RX_XCLK_SEL="RXUSR",
p_RX_DDI_SEL=0b000000,
p_RX_DEFER_RESET_BUF_EN="TRUE",
# CDR Attributes
p_RXCDR_CFG=0x03_0000_23FF_1008_0020, # LPM @ 0.5G-1.5625G , 8B/10B encoded data, CDR setting < +/- 200ppm
# (See UG476 (v1.12.1), p.206)
p_RXCDR_FR_RESET_ON_EIDLE=0b0,
p_RXCDR_HOLD_DURING_EIDLE=0b0,
p_RXCDR_PH_RESET_ON_EIDLE=0b0,
p_RXCDR_LOCK_CFG=0b010101,
# Pads
i_GTXRXP=pads.rxp,
i_GTXRXN=pads.rxn,
o_GTXTXP=pads.txp,
o_GTXTXN=pads.txn,
# Dynamic Reconfiguration Ports
p_IS_DRPCLK_INVERTED=0b0,
i_DRPADDR=self.daddr,
i_DRPCLK=self.dclk,
i_DRPEN=self.den,
i_DRPWE=self.dwen,
i_DRPDI=self.din,
o_DRPDO=self.dout,
o_DRPRDY=self.dready,
# ! loopback for debugging
i_LOOPBACK = self.loopback_mode,
p_TX_LOOPBACK_DRIVE_HIZ = "FALSE",
p_RXPRBS_ERR_LOOPBACK = 0b0,
# Other parameters
p_PCS_RSVD_ATTR=(
(tx_mode != "single") << 1 | # PCS_RSVD_ATTR[1] = 0: TX Single Lane Auto Mode
# = 1: TX Manual Mode
(rx_mode != "single") << 2 | # [2] = 0: RX Single Lane Auto Mode
# = 1: RX Manual Mode
0 << 8 # [8] = 0: OOB is disabled
),
i_RXELECIDLEMODE=0b11, # RXELECIDLEMODE = 0b11: OOB is disabled
p_RX_DFE_LPM_HOLD_DURING_EIDLE=0b0,
p_ES_EYE_SCAN_EN="TRUE", # Must be TRUE for GTX
)
# TX clocking
# A PLL is used to generate the correct frequency for TXUSRCLK (UG476 Equation 3-1)
self.clock_domains.cd_cxp_gtx_tx = ClockDomain()
txpll_fb_clk = Signal()
txoutclk_buf = Signal()
txpll_clkout = Signal()
self.txpll_reset = Signal()
self.pll_daddr = Signal(7)
self.pll_dclk = Signal()
self.pll_den = Signal()
self.pll_din = Signal(16)
self.pll_dwen = Signal()
self.txpll_locked = Signal()
self.pll_dout = Signal(16)
self.pll_dready = Signal()
self.specials += [
Instance("PLLE2_ADV",
p_BANDWIDTH="HIGH",
o_LOCKED=self.txpll_locked,
i_RST=self.txpll_reset,
p_CLKIN1_PERIOD=1e9/sys_clk_freq, # ns
i_CLKIN1=txoutclk_buf,
# VCO @ 1.25GHz
p_CLKFBOUT_MULT=pll_fbout_mult, p_DIVCLK_DIVIDE=1,
i_CLKFBIN=txpll_fb_clk, o_CLKFBOUT=txpll_fb_clk,
# frequency = linerate/40
p_CLKOUT0_DIVIDE=txusr_pll_div, p_CLKOUT0_PHASE=0.0, o_CLKOUT0=txpll_clkout,
# Dynamic Reconfiguration Ports
i_DADDR = self.pll_daddr,
i_DCLK = self.pll_dclk,
i_DEN = self.pll_den,
i_DI = self.pll_din,
i_DWE = self.pll_dwen,
o_DO = self.pll_dout,
o_DRDY = self.pll_dready,
),
Instance("BUFG", i_I=self.txoutclk, o_O=txoutclk_buf),
Instance("BUFG", i_I=txpll_clkout, o_O=self.cd_cxp_gtx_tx.clk),
AsyncResetSynchronizer(self.cd_cxp_gtx_tx, ~self.txpll_locked & ~tx_init.done)
]
self.comb += tx_init.restart.eq(self.tx_restart)
# RX clocking
# the CDR matches the required frequency for RXUSRCLK, no need for PLL
# Slave Rx will use cxp_gtx_rx from master
if rx_mode == "single" or rx_mode == "master":
self.clock_domains.cd_cxp_gtx_rx = ClockDomain()
self.specials += [
Instance("BUFG", i_I=self.rxoutclk, o_O=self.cd_cxp_gtx_rx.clk),
AsyncResetSynchronizer(self.cd_cxp_gtx_rx, ~rx_init.done)
]
self.comb += rx_init.restart.eq(self.rx_manual_restart)
# 8b10b Encoder/Decoder
self.comb += [
txdata.eq(Cat(self.encoder.output[0], self.encoder.output[1], self.encoder.output[2], self.encoder.output[3])),
self.decoders[0].input.eq(rxdata[:10]),
self.decoders[1].input.eq(rxdata[10:20]),
self.decoders[2].input.eq(rxdata[20:30]),
self.decoders[3].input.eq(rxdata[30:]),
]
self.submodules.comma_aligner = comma_aligner = Comma_Aligner(0b0101111100)
self.comb += [
comma_aligner.data.eq(rxdata),
comma_aligner.comma_aligned.eq(comma_aligned),
comma_aligner.comma_realigned.eq(comma_realigned),
comma_aligner.comma_det.eq(comma_det),
comma_aligner_en.eq(comma_aligner.aligner_en),
self.rx_ready.eq(comma_aligner.ready_sys),
]