1
0
Fork 0

cxp pipeline: packet handling pipeline

tx pipeline: add CRC32 inserter
tx pipeline: add start & end of packet code inserter
tx pipeline: add packet wrapper for start & stop packet indication
tx pipeline: add code source for trigger & trigger ack packet
tx pipeline: add packet for trigger & trigger ack
tx pipeline: add test packet generator
tx pipeline: add tx_command_packet for firmware
tx command packet: add fifo to store control packet
rx pipeline: add reciever path
rx pipeline: add trig ack checker
rx pipeline: add packet decoder
decoder: add test packet checker
This commit is contained in:
morgan 2024-08-29 17:39:07 +08:00
parent 6ae29ba6b4
commit 2ce9aeb45e
1 changed files with 508 additions and 0 deletions

View File

@ -0,0 +1,508 @@
from migen import *
from misoc.interconnect.csr import *
from misoc.interconnect import stream
from misoc.cores.liteeth_mini.mac.crc import LiteEthMACCRCEngine, LiteEthMACCRCChecker
import struct
upconn_dw = 8
upconn_layout = [("data", upconn_dw), ("k", upconn_dw//8)]
downconn_dw = 32
downconn_layout = [("data", downconn_dw), ("k", downconn_dw//8)]
def K(x, y):
return ((y << 5) | x)
KCode = {
"pak_start" : K(27, 7),
"io_ack" : K(28, 6),
"trig_indic_28_2" : K(28, 2),
"trig_indic_28_4" : K(28, 4),
"pak_end" : K(29, 7),
}
def _bytes2word(bytes, big_endian=True):
if big_endian:
return struct.unpack(">I", struct.pack(">4B", *bytes))[0]
else:
return struct.unpack("<I", struct.pack(">4B", *bytes))[0]
class Code_Source(Module):
def __init__(self, layout, data, k):
self.source = stream.Endpoint(layout)
self.stb = Signal()
# # #
assert len(data) == len(k) > 0
counts = len(data)
cnt = Signal() if counts == 1 else Signal(max=counts)
clr_cnt = Signal()
inc_cnt = Signal()
self.sync += [
If(clr_cnt,
cnt.eq(cnt.reset),
).Elif(inc_cnt,
cnt.eq(cnt + 1),
)
]
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
clr_cnt.eq(1),
If(self.stb,
NextState("WRITE")
)
)
fsm.act("WRITE",
self.source.stb.eq(1),
self.source.data.eq(Array(data)[cnt]),
self.source.k.eq(Array(k)[cnt]),
If(cnt == counts - 1,
self.source.eop.eq(1),
If(self.source.ack, NextState("IDLE"))
).Else(
inc_cnt.eq(self.source.ack)
)
)
class Code_Inserter(Module):
def __init__(self, layout, data, k, insert_infront=True):
self.sink = stream.Endpoint(layout)
self.source = stream.Endpoint(layout)
self.data = Signal.like(self.sink.data)
self.k = Signal.like(self.sink.k)
# # #
assert len(data) == len(k) > 0
counts = len(data)
cnt = Signal() if counts == 1 else Signal(max=counts)
clr_cnt = Signal()
inc_cnt = Signal()
self.sync += [
If(clr_cnt,
cnt.eq(cnt.reset),
).Elif(inc_cnt,
cnt.eq(cnt + 1),
)
]
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
remove_sink_oep = 0 if insert_infront else 1
# add code in front: IDLE -> INSERT -> COPY
# add code at end: IDLE -> COPY -> INSERT
fsm.act("IDLE",
self.sink.ack.eq(1),
clr_cnt.eq(1),
If(self.sink.stb,
self.sink.ack.eq(0),
NextState("INSERT" if insert_infront else "COPY"),
)
)
fsm.act("INSERT",
self.sink.ack.eq(0),
self.source.stb.eq(1),
self.source.data.eq(Array(data)[cnt]),
self.source.k.eq(Array(k)[cnt]),
If(cnt == counts - 1,
If(remove_sink_oep, self.source.eop.eq(1)),
If(self.source.ack, NextState("COPY" if insert_infront else "IDLE"))
).Else(
inc_cnt.eq(self.source.ack)
)
)
fsm.act("COPY",
self.sink.connect(self.source),
If(remove_sink_oep, self.source.eop.eq(0)),
If(self.sink.stb & self.sink.eop & self.source.ack,
NextState("IDLE" if insert_infront else "INSERT"),
)
)
class Packet_Wrapper(Module):
def __init__(self, layout):
self.submodules.pak_start = pak_start = Code_Inserter(layout, [KCode["pak_start"]]*4, [1]*4)
self.submodules.pak_end = pak_end = Code_Inserter(layout, [KCode["pak_end"]]*4, [1]*4, insert_infront=False)
self.comb += pak_start.source.connect(pak_end.sink),
self.sink = pak_start.sink
self.source = pak_end.source
@ResetInserter()
@CEInserter()
class CXPCRC32(Module):
# Section 9.2.2.2 (CXP-001-2021)
width = 32
polynom = 0x04C11DB7
seed = 2**width-1
check = 0x00000000
def __init__(self, data_width):
self.data = Signal(data_width)
self.value = Signal(self.width)
self.error = Signal()
# # #
self.submodules.engine = LiteEthMACCRCEngine(data_width, self.width, self.polynom)
reg = Signal(self.width, reset=self.seed)
self.sync += reg.eq(self.engine.next)
self.comb += [
self.engine.data.eq(self.data),
self.engine.last.eq(reg),
self.value.eq(reg[::-1]),
self.error.eq(self.engine.next != self.check)
]
class CXPCRC32Checker(LiteEthMACCRCChecker):
def __init__(self, layout):
LiteEthMACCRCChecker.__init__(self, CXPCRC32, layout)
class TX_Trigger(Module, AutoCSR):
def __init__(self):
self.trig_stb = Signal()
self.delay = Signal(upconn_dw)
self.linktrig_mode = Signal(max=4)
# # #
# Table 15 & 16 (CXP-001-2021)
# Send [K28.2, K28.4, K28.4] or [K28.4, K28.2, K28.2] and 3x delay as trigger packet
self.submodules.code_src = code_src = Code_Source(upconn_layout, [self.delay]*3, [0]*3)
self.comb += code_src.stb.eq(self.trig_stb),
header = [Signal(8) for _ in range(3)]
self.comb += \
If((self.linktrig_mode == 0) | (self.linktrig_mode == 2),
header[0].eq(KCode["trig_indic_28_2"]),
header[1].eq(KCode["trig_indic_28_4"]),
header[2].eq(KCode["trig_indic_28_4"]),
).Else(
header[0].eq(KCode["trig_indic_28_4"]),
header[1].eq(KCode["trig_indic_28_2"]),
header[2].eq(KCode["trig_indic_28_2"]),
)
self.submodules.inserter = inserter = Code_Inserter(upconn_layout, header, [1]*3)
self.comb += code_src.source.connect(inserter.sink)
self.source = inserter.source
class Trigger_ACK(Module):
def __init__(self):
self.ack = Signal()
# # #
# Section 9.3.2 (CXP-001-2021)
# Send 4x K28.6 and 4x 0x01 as trigger packet ack
self.submodules.code_src = code_src = Code_Source(upconn_layout, [0x01]*4, [0]*4)
self.submodules.inserter = inserter = Code_Inserter(upconn_layout, [KCode["io_ack"]]*4, [1]*4)
self.comb += [
code_src.stb.eq(self.ack),
code_src.source.connect(inserter.sink)
]
self.source = inserter.source
class TX_Command_Packet(Module, AutoCSR):
# Section 12.1.2 (CXP-001-2021)
# Max control packet size is 128 bytes
def __init__(self, fifo_depth=128):
self.len = CSRStorage(log2_int(fifo_depth))
self.data = CSR(upconn_dw)
self.writeable = CSRStatus()
# # #
self.submodules.fifo = fifo = stream.SyncFIFO(upconn_layout, fifo_depth)
self.submodules.pak_wrp = pak_wrp = Packet_Wrapper(upconn_layout)
self.source = pak_wrp.source
self.comb += fifo.source.connect(pak_wrp.sink)
cnt = Signal(log2_int(fifo_depth), reset=1)
self.sync += [
self.writeable.status.eq(fifo.sink.ack),
If(fifo.sink.ack, fifo.sink.stb.eq(0)),
If(self.data.re,
fifo.sink.stb.eq(1),
fifo.sink.data.eq(self.data.r),
fifo.sink.k.eq(0),
If(cnt == self.len.storage,
fifo.sink.eop.eq(1),
cnt.eq(cnt.reset),
).Else(
fifo.sink.eop.eq(0),
cnt.eq(cnt + 1),
),
)
]
class TX_Test_Packet(Module, AutoCSR):
def __init__(self):
self.stb = CSR()
self.busy = CSRStatus()
# # #
self.submodules.test_pattern_src = test_pattern_src = Code_Source(upconn_layout, [*range(0x100)]*16, [0]*0x100*16)
self.submodules.pak_type_inserter = pak_type_inserter = Code_Inserter(upconn_layout, [0x04]*4, [0]*4)
self.submodules.pak_wrp = pak_wrp = Packet_Wrapper(upconn_layout)
self.comb += [
test_pattern_src.source.connect(pak_type_inserter.sink),
pak_type_inserter.source.connect(pak_wrp.sink),
]
self.source = pak_wrp.source
self.sync += [
test_pattern_src.stb.eq(self.stb.re),
If(self.stb.re,
self.busy.status.eq(1),
).Elif(self.source.eop & self.source.ack,
self.busy.status.eq(0)
)
]
class RX_Debug_Buffer(Module,AutoCSR):
def __init__(self):
self.submodules.buf_out = buf_out = stream.SyncFIFO(downconn_layout, 128)
self.sink = buf_out.sink
self.inc = CSR()
self.dout_pak = CSRStatus(downconn_dw)
self.kout_pak = CSRStatus(downconn_dw//8)
self.dout_valid = CSRStatus()
self.sync += [
# output
buf_out.source.ack.eq(self.inc.re),
self.dout_pak.status.eq(buf_out.source.data),
self.kout_pak.status.eq(buf_out.source.k),
self.dout_valid.status.eq(buf_out.source.stb),
]
class Receiver_Path(Module, AutoCSR):
def __init__(self):
self.trig_ack = Signal()
self.trig_clr = Signal()
self.packet_type = Signal(8)
self.decoder_err = Signal()
self.decoder_err_clr = Signal()
self.test_err = Signal()
self.test_err_clr = Signal()
# # #
self.submodules.trig_ack_checker = trig_ack_checker = CXP_Trig_Ack_Checker()
self.submodules.packet_decoder = packet_decoder = CXP_Data_Packet_Decode()
# Error are latched
self.sync += [
If(trig_ack_checker.ack,
self.trig_ack.eq(1),
).Elif(self.trig_clr,
self.trig_ack.eq(0),
),
If(packet_decoder.decode_err,
self.decoder_err.eq(1),
).Elif(self.decoder_err_clr,
self.decoder_err.eq(0),
),
If(packet_decoder.test_err,
self.test_err.eq(1),
).Elif(self.test_err_clr,
self.test_err.eq(0),
)
]
self.comb += [
self.packet_type.eq(packet_decoder.packet_type),
]
pipeline = [ trig_ack_checker, packet_decoder ]
for s, d in zip(pipeline, pipeline[1:]):
self.comb += s.source.connect(d.sink)
self.sink = pipeline[0].sink
self.source = pipeline[-1].source
class CXP_Data_Packet_Decode(Module):
def __init__(self):
self.sink = stream.Endpoint(downconn_layout)
# This is where data stream comes out
self.source = stream.Endpoint(downconn_layout)
self.packet_type = Signal(8)
self.decode_err = Signal()
self.buffer = Signal(40*downconn_dw)
self.test_err = Signal()
# # #
# decoder -> priorities mux(normal packet vs trigger ack) -> data packet mux (control ack, data stream, heartbeat, testmode, (optional Genlcam event))
type = {
"data_stream": 0x01,
"control_ack_no_tag": 0x03,
"test_packet": 0x04,
"control_ack_with_tag": 0x06,
"event_ack": 0x08,
"heartbeat": 0x09,
"debug" : 0x02,
}
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
self.sink.ack.eq(1),
# TODO: add error correction?
If((self.sink.stb & (self.sink.data == _bytes2word([KCode["pak_start"]]*4)) & (self.sink.k == 0b1111)),
NextState("DECODE"),
)
)
# TODO: decode all packet type here
cnt = Signal(max=0x100)
fsm.act("DECODE",
self.sink.ack.eq(1),
If(self.sink.stb,
NextValue(self.packet_type, self.sink.data[:8]),
Case(self.sink.data[:8],{
type["data_stream"]: NextState("STREAMING"),
type["debug"]: NextState("STREAMING"),
type["test_packet"]: [
NextValue(cnt, 0),
NextState("VERIFY_TEST_PATTERN"),
],
"default": [
self.decode_err.eq(1),
# wait till next valid packet
NextState("IDLE"),
],
}),
)
)
# Section 9.9.1 (CXP-001-2021)
# the received test data packet (0x00, 0x01 ... 0xFF)
# need to be compared against the local test sequence generator
fsm.act("VERIFY_TEST_PATTERN",
self.sink.ack.eq(1),
If(self.sink.stb,
If(((self.sink.data == _bytes2word([KCode["pak_end"]]*4)) & (self.sink.k == 0b1111)),
NextState("IDLE"),
).Else(
If(((self.sink.data != Cat(cnt, cnt+1, cnt+2, cnt+3))),
self.test_err.eq(1),
),
If(cnt == 0xFC,
NextValue(cnt, cnt.reset),
).Else(
NextValue(cnt, cnt + 4)
)
)
)
)
fsm.act("STREAMING",
If((self.sink.stb & (self.sink.data == _bytes2word([KCode["pak_end"]]*4)) & (self.sink.k == 0b1111)),
# discard K29,7
self.sink.ack.eq(1),
NextState("IDLE")
).Else(
self.sink.connect(self.source),
)
)
# # input pipeline stage - determine packet length based on type
# self.sync += [
# packet_start.eq((self.sink.data[0] == K(27, 7)) & (self.sink.k[0] == 1)),
# packet_end.eq((self.sink.data[0] == K(29, 7)) & (self.sink.k[0] == 1)),
# If((self.sink.data[0] == K(27, 7)) & (self.sink.k[0] == 1),
# packet_buffer_load.eq(1),
# ),
# trig_ack.eq((self.sink.data[0] == K(28, 6)) & (self.sink.k[0] == 1)),
# If(trig_ack,
# self.trig_ack.eq(self.sink.data[0]),
# trig_ack.eq(0),
# ).Elif(packet_buffer_load,
# # TODO: add test packet counting
# Case(buffer_count,
# {i: buffer[i*downconn_dw:(i+1)*downconn_dw].eq(self.sink.data)
# for i in range(40)}),
# buffer_count.eq(buffer_count + 1),
class CXP_Trig_Ack_Checker(Module, AutoCSR):
def __init__(self):
self.sink = stream.Endpoint(downconn_layout)
self.source = stream.Endpoint(downconn_layout)
self.ack = Signal()
# # #
self.submodules.fsm = fsm = FSM(reset_state="IDLE")
fsm.act("IDLE",
self.sink.ack.eq(1),
If(self.sink.stb,
self.sink.ack.eq(0),
NextState("COPY"),
)
)
fsm.act("COPY",
If((self.sink.stb & (self.sink.data == _bytes2word([KCode["io_ack"]]*4)) & (self.sink.k == 0b1111)),
# discard K28,6
self.sink.ack.eq(1),
NextState("CHECK_ACK")
).Else(
self.sink.connect(self.source),
)
)
fsm.act("CHECK_ACK",
If(self.sink.stb,
NextState("IDLE"),
# discard the word after K28,6
self.sink.ack.eq(1),
If(self.sink.data == _bytes2word([0x01]*4),
self.ack.eq(1),
)
)
)