forked from M-Labs/nac3
963 lines
41 KiB
Rust
963 lines
41 KiB
Rust
use std::{collections::{HashMap, HashSet}, sync::Arc, ops::{Deref, DerefMut}, borrow::BorrowMut};
|
|
|
|
use super::typecheck::type_inferencer::PrimitiveStore;
|
|
use super::typecheck::typedef::{FunSignature, FuncArg, SharedUnifier, Type, TypeEnum, Unifier};
|
|
use crate::{
|
|
symbol_resolver::SymbolResolver,
|
|
typecheck::{type_inferencer::CodeLocation, typedef::CallId},
|
|
};
|
|
use itertools::{izip, Itertools};
|
|
use parking_lot::RwLock;
|
|
use rustpython_parser::ast::{self, Stmt};
|
|
|
|
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
|
|
pub struct DefinitionId(pub usize);
|
|
|
|
mod type_annotation;
|
|
use type_annotation::*;
|
|
|
|
pub struct FunInstance {
|
|
pub body: Vec<Stmt<Option<Type>>>,
|
|
pub calls: HashMap<CodeLocation, CallId>,
|
|
pub subst: HashMap<u32, Type>,
|
|
pub unifier_id: usize,
|
|
}
|
|
|
|
pub enum TopLevelDef {
|
|
Class {
|
|
// name for error messages and symbols
|
|
name: String,
|
|
// object ID used for TypeEnum
|
|
object_id: DefinitionId,
|
|
// type variables bounded to the class.
|
|
// the first field in the tuple is the var_id of the
|
|
// original typevar defined in the top level and returned
|
|
// by the symbol resolver
|
|
type_vars: Vec<(u32, Type)>,
|
|
// class fields
|
|
fields: Vec<(String, Type)>,
|
|
// class methods, pointing to the corresponding function definition.
|
|
methods: Vec<(String, Type, DefinitionId)>,
|
|
// ancestor classes, including itself.
|
|
ancestors: Vec<TypeAnnotation>,
|
|
// symbol resolver of the module defined the class, none if it is built-in type
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Function {
|
|
// prefix for symbol, should be unique globally, and not ending with numbers
|
|
name: String,
|
|
// function signature.
|
|
signature: Type,
|
|
// instantiated type variable IDs
|
|
var_id: Vec<u32>,
|
|
/// Function instance to symbol mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class.
|
|
/// Value: function symbol name.
|
|
instance_to_symbol: HashMap<String, String>,
|
|
/// Function instances to annotated AST mapping
|
|
/// Key: string representation of type variable values, sorted by variable ID in ascending
|
|
/// order, including type variables associated with the class. Excluding rigid type
|
|
/// variables.
|
|
/// rigid type variables that would be substituted when the function is instantiated.
|
|
instance_to_stmt: HashMap<String, FunInstance>,
|
|
// symbol resolver of the module defined the class
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
},
|
|
Initializer {
|
|
class_id: DefinitionId,
|
|
},
|
|
}
|
|
|
|
pub struct TopLevelContext {
|
|
pub definitions: Arc<RwLock<Vec<Arc<RwLock<TopLevelDef>>>>>,
|
|
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
|
|
}
|
|
|
|
pub struct TopLevelComposer {
|
|
// list of top level definitions, same as top level context
|
|
pub definition_ast_list: Vec<(Arc<RwLock<TopLevelDef>>, Option<ast::Stmt<()>>)>,
|
|
// start as a primitive unifier, will add more top_level defs inside
|
|
pub unifier: Unifier,
|
|
// primitive store
|
|
pub primitives_ty: PrimitiveStore,
|
|
// keyword list to prevent same custom def class name
|
|
pub keyword_list: Vec<String>,
|
|
}
|
|
|
|
impl Default for TopLevelComposer {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl TopLevelComposer {
|
|
pub fn make_top_level_context(self) -> TopLevelContext {
|
|
TopLevelContext {
|
|
definitions: RwLock::new(
|
|
self.definition_ast_list.into_iter().map(|(x, ..)| x).collect::<Vec<_>>(),
|
|
)
|
|
.into(),
|
|
// FIXME: all the big unifier or?
|
|
unifiers: Default::default(),
|
|
}
|
|
}
|
|
|
|
pub fn make_primitives() -> (PrimitiveStore, Unifier) {
|
|
let mut unifier = Unifier::new();
|
|
let int32 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(0),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let int64 = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(1),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let float = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(2),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let bool = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(3),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let none = unifier.add_ty(TypeEnum::TObj {
|
|
obj_id: DefinitionId(4),
|
|
fields: HashMap::new().into(),
|
|
params: HashMap::new().into(),
|
|
});
|
|
let primitives = PrimitiveStore { int32, int64, float, bool, none };
|
|
crate::typecheck::magic_methods::set_primitives_magic_methods(&primitives, &mut unifier);
|
|
(primitives, unifier)
|
|
}
|
|
|
|
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
|
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
|
// TODO: add list and tuples?
|
|
pub fn new() -> Self {
|
|
let primitives = Self::make_primitives();
|
|
|
|
let top_level_def_list = vec![
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(0, None, "int32"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(1, None, "int64"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(2, None, "float"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(3, None, "bool"))),
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(4, None, "none"))),
|
|
];
|
|
|
|
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
|
|
|
TopLevelComposer {
|
|
definition_ast_list: izip!(top_level_def_list, ast_list).collect_vec(),
|
|
primitives_ty: primitives.0,
|
|
unifier: primitives.1,
|
|
// class_method_to_def_id: Default::default(),
|
|
// to_be_analyzed_class: Default::default(),
|
|
keyword_list: vec![
|
|
"Generic".into(),
|
|
"virtual".into(),
|
|
"list".into(),
|
|
"tuple".into(),
|
|
"int32".into(),
|
|
"int64".into(),
|
|
"float".into(),
|
|
"bool".into(),
|
|
"none".into(),
|
|
"None".into(),
|
|
],
|
|
}
|
|
}
|
|
|
|
/// already include the definition_id of itself inside the ancestors vector
|
|
/// when first regitering, the type_vars, fields, methods, ancestors are invalid
|
|
pub fn make_top_level_class_def(
|
|
index: usize,
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
name: &str,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Class {
|
|
name: name.to_string(),
|
|
object_id: DefinitionId(index),
|
|
type_vars: Default::default(),
|
|
fields: Default::default(),
|
|
methods: Default::default(),
|
|
ancestors: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
/// when first registering, the type is a invalid value
|
|
pub fn make_top_level_function_def(
|
|
name: String,
|
|
ty: Type,
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> TopLevelDef {
|
|
TopLevelDef::Function {
|
|
name,
|
|
signature: ty,
|
|
var_id: Default::default(),
|
|
instance_to_symbol: Default::default(),
|
|
instance_to_stmt: Default::default(),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
fn make_class_method_name(mut class_name: String, method_name: &str) -> String {
|
|
class_name.push_str(method_name);
|
|
class_name
|
|
}
|
|
|
|
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
|
|
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
|
|
}
|
|
|
|
/// step 0, register, just remeber the names of top level classes/function
|
|
/// and check duplicate class/method/function definition
|
|
pub fn register_top_level(
|
|
&mut self,
|
|
ast: ast::Stmt<()>,
|
|
resolver: Option<Arc<Box<dyn SymbolResolver + Send + Sync>>>,
|
|
) -> Result<(String, DefinitionId), String> {
|
|
let mut defined_class_name: HashSet<String> = HashSet::new();
|
|
let mut defined_class_method_name: HashSet<String> = HashSet::new();
|
|
let mut defined_function_name: HashSet<String> = HashSet::new();
|
|
match &ast.node {
|
|
ast::StmtKind::ClassDef { name, body, .. } => {
|
|
if self.keyword_list.contains(name) {
|
|
return Err("cannot use keyword as a class name".into());
|
|
}
|
|
if !defined_class_name.insert(name.clone()) {
|
|
return Err("duplicate definition of class".into());
|
|
}
|
|
|
|
let class_name = name.to_string();
|
|
let class_def_id = self.definition_ast_list.len();
|
|
|
|
// since later when registering class method, ast will still be used,
|
|
// here push None temporarly, later will move the ast inside
|
|
let mut class_def_ast = (
|
|
Arc::new(RwLock::new(Self::make_top_level_class_def(
|
|
class_def_id,
|
|
resolver.clone(),
|
|
name.as_str(),
|
|
))),
|
|
None,
|
|
);
|
|
|
|
// parse class def body and register class methods into the def list.
|
|
// module's symbol resolver would not know the name of the class methods,
|
|
// thus cannot return their definition_id
|
|
let mut class_method_name_def_ids: Vec<(
|
|
// the simple method name without class name
|
|
String,
|
|
// in this top level def, method name is prefixed with the class name
|
|
Arc<RwLock<TopLevelDef>>,
|
|
DefinitionId,
|
|
Type,
|
|
)> = Vec::new();
|
|
// we do not push anything to the def list, so we keep track of the index
|
|
// and then push in the correct order after the for loop
|
|
let mut class_method_index_offset = 0;
|
|
for b in body {
|
|
if let ast::StmtKind::FunctionDef { name: method_name, .. } = &b.node {
|
|
let global_class_method_name =
|
|
Self::make_class_method_name(class_name.clone(), method_name);
|
|
if !defined_class_method_name.insert(global_class_method_name.clone()) {
|
|
return Err("duplicate class method definition".into());
|
|
}
|
|
let method_def_id = self.definition_ast_list.len() + {
|
|
// plus 1 here since we already have the class def
|
|
class_method_index_offset += 1;
|
|
class_method_index_offset
|
|
};
|
|
|
|
// dummy method define here
|
|
let dummy_method_type = self.unifier.get_fresh_var();
|
|
class_method_name_def_ids.push((
|
|
method_name.clone(),
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
global_class_method_name,
|
|
// later unify with parsed type
|
|
dummy_method_type.0,
|
|
resolver.clone(),
|
|
))
|
|
.into(),
|
|
DefinitionId(method_def_id),
|
|
dummy_method_type.0,
|
|
));
|
|
} else {
|
|
// do nothing
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// move the ast to the entry of the class in the ast_list
|
|
class_def_ast.1 = Some(ast);
|
|
// get the methods into the class_def
|
|
for (name, _, id, ty) in &class_method_name_def_ids {
|
|
let mut class_def = class_def_ast.0.write();
|
|
if let TopLevelDef::Class { methods, .. } = class_def.deref_mut() {
|
|
methods.push((name.clone(), *ty, *id))
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
// now class_def_ast and class_method_def_ast_ids are ok, put them into actual def list in correct order
|
|
self.definition_ast_list.push(class_def_ast);
|
|
for (_, def, ..) in class_method_name_def_ids {
|
|
self.definition_ast_list.push((def, None));
|
|
}
|
|
|
|
// put the constructor into the def_list
|
|
self.definition_ast_list.push((
|
|
RwLock::new(TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) })
|
|
.into(),
|
|
None,
|
|
));
|
|
|
|
Ok((class_name, DefinitionId(class_def_id)))
|
|
}
|
|
|
|
ast::StmtKind::FunctionDef { name, .. } => {
|
|
let fun_name = name.to_string();
|
|
if !defined_function_name.insert(name.to_string()) {
|
|
return Err("duplicate top level function define".into());
|
|
}
|
|
|
|
// add to the definition list
|
|
self.definition_ast_list.push((
|
|
RwLock::new(Self::make_top_level_function_def(
|
|
name.into(),
|
|
// unify with correct type later
|
|
self.unifier.get_fresh_var().0,
|
|
resolver,
|
|
))
|
|
.into(),
|
|
Some(ast),
|
|
));
|
|
|
|
// return
|
|
Ok((fun_name, DefinitionId(self.definition_ast_list.len() - 1)))
|
|
}
|
|
|
|
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
|
}
|
|
}
|
|
|
|
/// step 1, analyze the type vars associated with top level class
|
|
/// note that we make a duplicate of the type var returned by symbol resolver
|
|
/// since one top level type var may be used at multiple places
|
|
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
for (class_def, class_ast) in def_list {
|
|
// only deal with class def here
|
|
let mut class_def = class_def.write();
|
|
let (class_bases_ast, class_def_type_vars, class_resolver) = {
|
|
if let TopLevelDef::Class { type_vars, resolver, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, type_vars, resolver)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
let mut is_generic = false;
|
|
for b in class_bases_ast {
|
|
match &b.node {
|
|
// analyze typevars bounded to the class,
|
|
// only support things like `class A(Generic[T, V])`,
|
|
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
|
|
// i.e. only simple names are allowed in the subscript
|
|
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
|
|
ast::ExprKind::Subscript { value, slice, .. }
|
|
if {
|
|
matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == "Generic"
|
|
)
|
|
} =>
|
|
{
|
|
if !is_generic {
|
|
is_generic = true;
|
|
} else {
|
|
return Err("Only single Generic[...] can be in bases".into());
|
|
}
|
|
|
|
let mut type_var_list: Vec<&ast::Expr<()>> = vec![];
|
|
// if `class A(Generic[T, V, G])`
|
|
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
|
type_var_list.extend(elts.iter());
|
|
// `class A(Generic[T])`
|
|
} else {
|
|
type_var_list.push(slice.deref());
|
|
}
|
|
|
|
// parse the type vars
|
|
let type_vars = type_var_list
|
|
.into_iter()
|
|
.map(|e| {
|
|
class_resolver.parse_type_annotation(
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives_store,
|
|
e,
|
|
)
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?;
|
|
|
|
// check if all are unique type vars
|
|
let all_unique_type_var = {
|
|
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
|
type_vars.iter().all(|x| {
|
|
let ty = unifier.get_ty(*x);
|
|
if let TypeEnum::TVar { id, .. } = ty.as_ref() {
|
|
occured_type_var_id.insert(*id)
|
|
} else {
|
|
false
|
|
}
|
|
})
|
|
};
|
|
if !all_unique_type_var {
|
|
return Err("expect unique type variables".into());
|
|
}
|
|
|
|
// NOTE: create a copy of all type vars for the type vars associated with class
|
|
let type_vars = type_vars
|
|
.into_iter()
|
|
.map(|x| {
|
|
// must be type var here after previous check
|
|
let dup = duplicate_type_var(unifier, x);
|
|
(dup.2, dup.0)
|
|
})
|
|
.collect_vec();
|
|
|
|
// add to TopLevelDef
|
|
class_def_type_vars.extend(type_vars);
|
|
}
|
|
|
|
// if others, do nothing in this function
|
|
_ => continue,
|
|
}
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 2, base classes.
|
|
/// now that the type vars of all classes are done, handle base classes and
|
|
/// put Self class into the ancestors list. We only allow single inheritance
|
|
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
|
let temp_def_list = self.extract_def_list();
|
|
for (class_def, class_ast) in self.definition_ast_list.iter_mut() {
|
|
let mut class_def = class_def.write();
|
|
let (class_bases, class_ancestors, class_resolver, class_id, class_type_vars) = {
|
|
if let TopLevelDef::Class { ancestors, resolver, object_id, type_vars, .. } = class_def.deref_mut() {
|
|
if let Some(ast::Located {
|
|
node: ast::StmtKind::ClassDef { bases, .. }, ..
|
|
}) = class_ast
|
|
{
|
|
(bases, ancestors, resolver, *object_id, type_vars)
|
|
} else {
|
|
unreachable!("must be both class")
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver.deref();
|
|
|
|
// only allow single inheritance
|
|
let mut has_base = false;
|
|
for b in class_bases {
|
|
// type vars have already been handled, so skip on `Generic[...]`
|
|
if matches!(
|
|
&b.node,
|
|
ast::ExprKind::Subscript { value, .. }
|
|
if matches!(
|
|
&value.node,
|
|
ast::ExprKind::Name { id, .. } if id == "Generic"
|
|
)
|
|
) {
|
|
continue;
|
|
}
|
|
|
|
if has_base {
|
|
return Err("a class def can only have at most one base class \
|
|
declaration and one generic declaration"
|
|
.into());
|
|
}
|
|
has_base = true;
|
|
|
|
let base_ty = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
&temp_def_list,
|
|
self.unifier.borrow_mut(),
|
|
&self.primitives_ty,
|
|
b,
|
|
)?;
|
|
|
|
if let TypeAnnotation::CustomClassKind { id, .. } = &base_ty {
|
|
// check to prevent cyclic base class
|
|
let all_base = Self::get_all_base(*id, &temp_def_list);
|
|
if all_base.contains(&class_id) {
|
|
return Err("cyclic base detected".into());
|
|
}
|
|
|
|
// find the intersection between type vars occured in the base class type parameter
|
|
// and the type vars occured in the class generic declaration
|
|
let type_var_occured_in_base = get_type_var_contained_in_type_annotation(&base_ty);
|
|
for type_ann in type_var_occured_in_base {
|
|
if let TypeAnnotation::TypeVarKind(id, ty) = type_ann {
|
|
for (ty_id, class_typvar_ty) in class_type_vars.iter() {
|
|
if id == *ty_id {
|
|
// if they refer to the same top level defined type var, we unify them together
|
|
self.unifier.unify(ty, *class_typvar_ty)?;
|
|
}
|
|
}
|
|
} else {
|
|
unreachable!("must be type var annotation")
|
|
}
|
|
}
|
|
|
|
class_ancestors.push(base_ty);
|
|
} else {
|
|
return Err(
|
|
"class base declaration can only be custom class".into()
|
|
);
|
|
}
|
|
}
|
|
|
|
// push self to the ancestors
|
|
class_ancestors.push(
|
|
make_self_type_annotation(&temp_def_list, class_id, self.unifier.borrow_mut())?
|
|
)
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 3, class fields and methods
|
|
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives = &self.primitives_ty;
|
|
let def_ast_list = &self.definition_ast_list;
|
|
|
|
let mut type_var_to_concrete_def: HashMap<Type, TypeAnnotation> = HashMap::new();
|
|
for (class_def, class_ast) in def_ast_list {
|
|
Self::analyze_single_class(
|
|
class_def.clone(),
|
|
&class_ast.as_ref().unwrap().node,
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
&mut type_var_to_concrete_def,
|
|
)?
|
|
}
|
|
|
|
// base class methods add and check
|
|
// TODO:
|
|
|
|
// unification of previously assigned typevar
|
|
for (ty, def) in type_var_to_concrete_def {
|
|
let target_ty =
|
|
get_type_from_type_annotation_kinds(&temp_def_list, unifier, primitives, &def)?;
|
|
unifier.unify(ty, target_ty)?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// step 4, after class methods are done
|
|
fn analyze_top_level_function(&mut self) -> Result<(), String> {
|
|
let def_list = &self.definition_ast_list;
|
|
let temp_def_list = self.extract_def_list();
|
|
let unifier = self.unifier.borrow_mut();
|
|
let primitives_store = &self.primitives_ty;
|
|
|
|
for (function_def, function_ast) in def_list {
|
|
let function_def = function_def.read();
|
|
let function_def = function_def.deref();
|
|
let function_ast = if let Some(function_ast) = function_ast {
|
|
function_ast
|
|
} else {
|
|
continue;
|
|
};
|
|
if let TopLevelDef::Function { signature: dummy_ty, resolver, .. } = function_def {
|
|
if let ast::StmtKind::FunctionDef { args, returns, .. } = &function_ast.node {
|
|
let resolver = resolver.as_ref();
|
|
let resolver = resolver.unwrap();
|
|
let resolver = resolver.deref();
|
|
let function_resolver = resolver.deref();
|
|
|
|
// occured type vars should not be handled separately
|
|
// TODO: type vars occured as applications of generic classes is not handled
|
|
let mut occured_type_var: HashMap<u32, Type> = HashMap::new();
|
|
let mut function_var_map: HashMap<u32, Type> = HashMap::new();
|
|
let arg_types = {
|
|
// make sure no duplicate parameter
|
|
let mut defined_paramter_name: HashSet<String> = HashSet::new();
|
|
let have_unique_fuction_parameter_name = args
|
|
.args
|
|
.iter()
|
|
.all(|x| defined_paramter_name.insert(x.node.arg.clone()));
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("top level function have duplicate parameter name".into());
|
|
}
|
|
|
|
args.args
|
|
.iter()
|
|
.map(|x| -> Result<FuncArg, String> {
|
|
let annotation = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| {
|
|
"function parameter type annotation needed".to_string()
|
|
})?
|
|
.as_ref();
|
|
|
|
let mut ty = function_resolver.parse_type_annotation(
|
|
temp_def_list.as_slice(),
|
|
unifier,
|
|
primitives_store,
|
|
annotation,
|
|
)?;
|
|
if let TypeEnum::TVar { id, .. } =
|
|
unifier.get_ty(ty).as_ref()
|
|
{
|
|
if let Some(occured_ty) = occured_type_var.get(id) {
|
|
// if already occured
|
|
ty = *occured_ty;
|
|
} else {
|
|
// if not, create a duplicate
|
|
let ty_copy = duplicate_type_var(unifier, ty);
|
|
ty = ty_copy.0;
|
|
occured_type_var.insert(*id, ty);
|
|
function_var_map.insert(ty_copy.1, ty_copy.0);
|
|
}
|
|
}
|
|
|
|
Ok(FuncArg {
|
|
name: x.node.arg.clone(),
|
|
ty,
|
|
default_value: Default::default(),
|
|
})
|
|
})
|
|
.collect::<Result<Vec<_>, _>>()?
|
|
};
|
|
|
|
let return_ty = {
|
|
let return_annotation = returns
|
|
.as_ref()
|
|
.ok_or_else(|| "function return type needed".to_string())?
|
|
.as_ref();
|
|
function_resolver.parse_type_annotation(
|
|
temp_def_list.as_slice(),
|
|
unifier,
|
|
primitives_store,
|
|
return_annotation,
|
|
)?
|
|
};
|
|
|
|
let function_ty = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_types, ret: return_ty, vars: function_var_map }
|
|
.into(),
|
|
));
|
|
unifier.unify(*dummy_ty, function_ty)?;
|
|
} else {
|
|
unreachable!("must be both function");
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// step 5, field instantiation?
|
|
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
|
|
// TODO:
|
|
unimplemented!()
|
|
}
|
|
|
|
fn analyze_single_class(
|
|
class_def: Arc<RwLock<TopLevelDef>>,
|
|
class_ast: &ast::StmtKind<()>,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>],
|
|
unifier: &mut Unifier,
|
|
primitives: &PrimitiveStore,
|
|
type_var_to_concrete_def: &mut HashMap<Type, TypeAnnotation>,
|
|
) -> Result<(), String> {
|
|
let mut class_def = class_def.write();
|
|
let (
|
|
class_id,
|
|
_class_name,
|
|
_class_bases_ast,
|
|
class_body_ast,
|
|
_class_ancestor_def,
|
|
class_fields_def,
|
|
class_methods_def,
|
|
class_type_vars_def,
|
|
class_resolver,
|
|
) = if let TopLevelDef::Class {
|
|
object_id,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
resolver,
|
|
type_vars,
|
|
..
|
|
} = class_def.deref_mut()
|
|
{
|
|
if let ast::StmtKind::ClassDef { name, bases, body, .. } = &class_ast {
|
|
(
|
|
object_id,
|
|
name.clone(),
|
|
bases,
|
|
body,
|
|
ancestors,
|
|
fields,
|
|
methods,
|
|
type_vars,
|
|
resolver,
|
|
)
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
}
|
|
} else {
|
|
unreachable!("here must be class def ast");
|
|
};
|
|
let class_resolver = class_resolver.as_ref().unwrap();
|
|
let class_resolver = class_resolver;
|
|
|
|
for b in class_body_ast {
|
|
if let ast::StmtKind::FunctionDef { args, returns, name, body, .. } = &b.node {
|
|
let (method_dummy_ty, ..) =
|
|
Self::get_class_method_def_info(class_methods_def, name)?;
|
|
|
|
// handle var map, to create a new copy of type var
|
|
// while tracking the type var associated with class
|
|
// TODO: type vars occured as applications of generic classes is not handled
|
|
let mut method_var_map: HashMap<u32, Type> = HashMap::new();
|
|
let arg_type: Vec<FuncArg> = {
|
|
// check method parameters cannot have same name
|
|
let mut defined_paramter_name: HashSet<String> = HashSet::new();
|
|
let have_unique_fuction_parameter_name =
|
|
args.args.iter().all(|x| defined_paramter_name.insert(x.node.arg.clone()));
|
|
if !have_unique_fuction_parameter_name {
|
|
return Err("class method have duplicate parameter name".into());
|
|
}
|
|
|
|
let mut result = Vec::new();
|
|
for x in &args.args {
|
|
let name = x.node.arg.clone();
|
|
if name != "self" {
|
|
let type_ann = {
|
|
let annotation_expr = x
|
|
.node
|
|
.annotation
|
|
.as_ref()
|
|
.ok_or_else(|| "type annotation needed".to_string())?
|
|
.as_ref();
|
|
parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation_expr,
|
|
)?
|
|
};
|
|
// handle to differentiate type vars that are
|
|
// asscosiated with the class and that are not
|
|
// TODO: type vars occured as applications of generic classes is not handled
|
|
if let TypeAnnotation::TypeVarKind(id, ty) = &type_ann {
|
|
let associated = class_type_vars_def
|
|
.iter()
|
|
.filter(|(class_type_var_id, _)| *class_type_var_id == *id)
|
|
.collect_vec();
|
|
match associated.len() {
|
|
// 0, do nothing, this is not a type var
|
|
// associated with the method's class
|
|
// TODO: but this type var can occur multiple times in this
|
|
// method's param list, still need to keep track of type vars
|
|
// associated with this function
|
|
0 => {}
|
|
// is type var associated with class, do the unification here
|
|
1 => {
|
|
unifier.unify(*ty, associated[0].1)?;
|
|
}
|
|
_ => {
|
|
unreachable!("there should not be duplicate type var");
|
|
}
|
|
}
|
|
|
|
// just insert the id and ty of self
|
|
// since the function is not instantiated yet
|
|
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
|
method_var_map.insert(*id, *ty);
|
|
} else {
|
|
unreachable!("must be type var")
|
|
}
|
|
}
|
|
let dummy_func_arg = FuncArg {
|
|
name,
|
|
ty: unifier.get_fresh_var().0,
|
|
// TODO: symbol default value?
|
|
default_value: None,
|
|
};
|
|
// push the dummy type and the type annotation
|
|
// into the list for later unification
|
|
type_var_to_concrete_def.insert(dummy_func_arg.ty, type_ann.clone());
|
|
result.push(dummy_func_arg)
|
|
} else {
|
|
// if the parameter name is self
|
|
// python does not seem to enforce the name
|
|
// representing the self class object to be
|
|
// `self`, but we do it here
|
|
|
|
let dummy_func_arg = FuncArg {
|
|
name: "self".into(),
|
|
ty: unifier.get_fresh_var().0,
|
|
default_value: None,
|
|
};
|
|
type_var_to_concrete_def
|
|
.insert(
|
|
dummy_func_arg.ty,
|
|
make_self_type_annotation(temp_def_list, *class_id, unifier)?
|
|
);
|
|
result.push(dummy_func_arg);
|
|
}
|
|
}
|
|
result
|
|
};
|
|
let ret_type = {
|
|
if name != "__init__" {
|
|
let result = returns
|
|
.as_ref()
|
|
.ok_or_else(|| "method return type annotation needed".to_string())?
|
|
.as_ref();
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
result,
|
|
)?;
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def.insert(dummy_return_type, annotation.clone());
|
|
dummy_return_type
|
|
} else {
|
|
// if is the "__init__" function, the return type is self
|
|
let dummy_return_type = unifier.get_fresh_var().0;
|
|
type_var_to_concrete_def
|
|
.insert(
|
|
dummy_return_type,
|
|
make_self_type_annotation(temp_def_list, *class_id, unifier)?
|
|
);
|
|
dummy_return_type
|
|
}
|
|
};
|
|
|
|
let method_type = unifier.add_ty(TypeEnum::TFunc(
|
|
FunSignature { args: arg_type, ret: ret_type, vars: method_var_map }.into(),
|
|
));
|
|
// unify now since function type is not in type annotation define
|
|
// which is fine since type within method_type will be subst later
|
|
unifier.unify(method_dummy_ty, method_type)?;
|
|
|
|
// class fields
|
|
if name == "__init__" {
|
|
for b in body {
|
|
let mut defined_fields: HashSet<String> = HashSet::new();
|
|
// TODO: check the type of value, field instantiation check?
|
|
if let ast::StmtKind::AnnAssign { annotation, target, value: _, .. } =
|
|
&b.node
|
|
{
|
|
if let ast::ExprKind::Attribute { value, attr, .. } = &target.node {
|
|
if matches!(&value.node, ast::ExprKind::Name { id, .. } if id == "self")
|
|
{
|
|
if defined_fields.insert(attr.to_string()) {
|
|
let dummy_field_type = unifier.get_fresh_var().0;
|
|
class_fields_def.push((attr.to_string(), dummy_field_type));
|
|
let annotation = parse_ast_to_type_annotation_kinds(
|
|
class_resolver,
|
|
&temp_def_list,
|
|
unifier,
|
|
primitives,
|
|
annotation.as_ref(),
|
|
)?;
|
|
type_var_to_concrete_def
|
|
.insert(dummy_field_type, annotation);
|
|
} else {
|
|
return Err("same class fields defined twice".into());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn get_class_method_def_info(
|
|
class_methods_def: &[(String, Type, DefinitionId)],
|
|
method_name: &str,
|
|
) -> Result<(Type, DefinitionId), String> {
|
|
for (name, ty, def_id) in class_methods_def {
|
|
if name == method_name {
|
|
return Ok((*ty, *def_id));
|
|
}
|
|
}
|
|
Err(format!("no method {} in the current class", method_name))
|
|
}
|
|
|
|
/// get all base class def id of a class, including it self
|
|
fn get_all_base(
|
|
child: DefinitionId,
|
|
temp_def_list: &[Arc<RwLock<TopLevelDef>>]
|
|
) -> Vec<DefinitionId> {
|
|
let mut result: Vec<DefinitionId> = Vec::new();
|
|
let child_def = temp_def_list.get(child.0).unwrap();
|
|
let child_def = child_def.read();
|
|
let child_def = child_def.deref();
|
|
|
|
if let TopLevelDef::Class { ancestors, .. } = child_def {
|
|
for a in ancestors {
|
|
if let TypeAnnotation::CustomClassKind { id, .. } = a {
|
|
if *id != child {
|
|
result.extend(Self::get_all_base(*id, temp_def_list));
|
|
}
|
|
} else {
|
|
unreachable!("must be class type annotation type")
|
|
}
|
|
}
|
|
} else {
|
|
unreachable!("this function should only be called with class def id as parameter")
|
|
}
|
|
|
|
result.push(child);
|
|
result
|
|
}
|
|
}
|