1
0
forked from M-Labs/nac3
nac3/nac3core/src/toplevel/builtins.rs

1769 lines
69 KiB
Rust

use std::iter::once;
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
use indexmap::IndexMap;
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType},
values::{BasicMetadataValueEnum, BasicValue, CallSiteValue},
IntPredicate,
};
use itertools::Either;
use strum::IntoEnumIterator;
use crate::{
codegen::{
builtin_fns,
classes::{
ArrayLikeValue, NDArrayValue, ProxyType, ProxyValue, RangeType, RangeValue,
TypedArrayLikeAccessor,
},
expr::destructure_range,
irrt::*,
numpy::*,
stmt::exn_constructor,
},
symbol_resolver::SymbolValue,
toplevel::{helper::PrimDef, numpy::make_ndarray_ty},
typecheck::typedef::{into_var_map, iter_type_vars, TypeVar, VarMap},
};
use super::*;
type BuiltinInfo = Vec<(Arc<RwLock<TopLevelDef>>, Option<Stmt>)>;
pub fn get_exn_constructor(
name: &str,
class_id: usize,
cons_id: usize,
unifier: &mut Unifier,
primitives: &PrimitiveStore,
) -> (TopLevelDef, TopLevelDef, Type, Type) {
let int32 = primitives.int32;
let int64 = primitives.int64;
let string = primitives.str;
let exception_fields = make_exception_fields(int32, int64, string);
let exn_cons_args = vec![
FuncArg {
name: "msg".into(),
ty: string,
default_value: Some(SymbolValue::Str(String::new())),
},
FuncArg { name: "param0".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
FuncArg { name: "param1".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
FuncArg { name: "param2".into(), ty: int64, default_value: Some(SymbolValue::I64(0)) },
];
let exn_type = unifier.add_ty(TypeEnum::TObj {
obj_id: DefinitionId(class_id),
fields: exception_fields
.clone()
.into_iter()
.map(|(name, ty, mutable)| (name, (ty, mutable)))
.collect(),
params: VarMap::default(),
});
let signature = unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: exn_cons_args,
ret: exn_type,
vars: VarMap::default(),
}));
let fun_def = TopLevelDef::Function {
name: format!("{name}.__init__"),
simple_name: "__init__".into(),
signature,
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(exn_constructor)))),
loc: None,
};
let class_def = TopLevelDef::Class {
name: name.into(),
object_id: DefinitionId(class_id),
type_vars: Vec::default(),
fields: exception_fields,
methods: vec![("__init__".into(), signature, DefinitionId(cons_id))],
ancestors: vec![
TypeAnnotation::CustomClass { id: DefinitionId(class_id), params: Vec::default() },
TypeAnnotation::CustomClass { id: PrimDef::Exception.id(), params: Vec::default() },
],
constructor: Some(signature),
resolver: None,
loc: None,
};
(fun_def, class_def, signature, exn_type)
}
/// Creates a NumPy [`TopLevelDef`] function by code generation.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `codegen_callback`: A lambda generating LLVM IR for the implementation of this function.
fn create_fn_by_codegen(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
param_ty: &[(Type, &'static str)],
codegen_callback: Box<GenCallCallback>,
) -> TopLevelDef {
TopLevelDef::Function {
name: name.into(),
simple_name: name.into(),
signature: unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: param_ty
.iter()
.map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None })
.collect(),
ret: ret_ty,
vars: var_map.clone(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(codegen_callback))),
loc: None,
}
}
/// Creates a NumPy [`TopLevelDef`] function using an LLVM intrinsic.
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `intrinsic_fn`: The fully-qualified name of the LLVM intrinsic function.
fn create_fn_by_intrinsic(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
intrinsic_fn: &'static str,
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(intrinsic_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
ctx.module.add_function(intrinsic_fn, fn_type, None)
});
let val = ctx
.builder
.build_call(intrinsic_fn, args_val.as_slice(), name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
/// Creates a unary NumPy [`TopLevelDef`] function using an extern function (e.g. from `libc` or
/// `libm`).
///
/// * `name`: The name of the implemented NumPy function.
/// * `ret_ty`: The return type of this function.
/// * `param_ty`: The parameters accepted by this function, represented by a tuple of the
/// [parameter type][Type] and the parameter symbol name.
/// * `extern_fn`: The fully-qualified name of the extern function used as the implementation.
/// * `attrs`: The list of attributes to apply to this function declaration. Note that `nounwind` is
/// already implied by the C ABI.
fn create_fn_by_extern(
unifier: &mut Unifier,
var_map: &VarMap,
name: &'static str,
ret_ty: Type,
params: &[(Type, &'static str)],
extern_fn: &'static str,
attrs: &'static [&str],
) -> TopLevelDef {
let param_tys = params.iter().map(|p| p.0).collect_vec();
create_fn_by_codegen(
unifier,
var_map,
name,
ret_ty,
params,
Box::new(move |ctx, _, fun, args, generator| {
let args_ty = fun.0.args.iter().map(|a| a.ty).collect_vec();
assert!(param_tys
.iter()
.zip(&args_ty)
.all(|(expected, actual)| ctx.unifier.unioned(*expected, *actual)));
let args_val = args_ty
.iter()
.zip_eq(args.iter())
.map(|(ty, arg)| arg.1.clone().to_basic_value_enum(ctx, generator, *ty).unwrap())
.map_into::<BasicMetadataValueEnum>()
.collect_vec();
let intrinsic_fn = ctx.module.get_function(extern_fn).unwrap_or_else(|| {
let ret_llvm_ty = ctx.get_llvm_abi_type(generator, ret_ty);
let param_llvm_ty = param_tys
.iter()
.map(|p| ctx.get_llvm_abi_type(generator, *p))
.map_into::<BasicMetadataTypeEnum>()
.collect_vec();
let fn_type = ret_llvm_ty.fn_type(param_llvm_ty.as_slice(), false);
let func = ctx.module.add_function(extern_fn, fn_type, None);
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id("nounwind"), 0),
);
for attr in attrs {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let val = ctx
.builder
.build_call(intrinsic_fn, &args_val, name)
.map(CallSiteValue::try_as_basic_value)
.map(Either::unwrap_left)
.unwrap();
Ok(val.into())
}),
)
}
pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> BuiltinInfo {
let top_level_def_list = BuiltinBuilder::new(unifier, primitives)
.build_all_builtins()
.into_iter()
.map(|tld| Arc::new(RwLock::new(tld)));
let ast_list: Vec<Option<Stmt<()>>> = (0..top_level_def_list.len()).map(|_| None).collect();
izip!(top_level_def_list, ast_list).collect_vec()
}
/// A helper enum used by [`BuiltinBuilder`]
#[derive(Clone, Copy)]
enum SizeVariant {
Bits32,
Bits64,
}
impl SizeVariant {
fn of_int(self, primitives: &PrimitiveStore) -> Type {
match self {
SizeVariant::Bits32 => primitives.int32,
SizeVariant::Bits64 => primitives.int64,
}
}
}
struct BuiltinBuilder<'a> {
unifier: &'a mut Unifier,
primitives: &'a PrimitiveStore,
is_some_ty: (Type, bool),
unwrap_ty: (Type, bool),
option_tvar: TypeVar,
ndarray_dtype_tvar: TypeVar,
ndarray_ndims_tvar: TypeVar,
ndarray_copy_ty: (Type, bool),
ndarray_fill_ty: (Type, bool),
list_int32: Type,
num_ty: TypeVar,
num_var_map: VarMap,
ndarray_float: Type,
ndarray_float_2d: Type,
ndarray_num_ty: Type,
float_or_ndarray_ty: TypeVar,
float_or_ndarray_var_map: VarMap,
num_or_ndarray_ty: TypeVar,
num_or_ndarray_var_map: VarMap,
}
impl<'a> BuiltinBuilder<'a> {
fn new(unifier: &'a mut Unifier, primitives: &'a PrimitiveStore) -> BuiltinBuilder<'a> {
let PrimitiveStore {
int32,
int64,
uint32,
uint64,
float,
bool: boolean,
ndarray,
option,
..
} = *primitives;
// Option-related
let (is_some_ty, unwrap_ty, option_tvar) =
if let TypeEnum::TObj { fields, params, .. } = unifier.get_ty(option).as_ref() {
(
*fields.get(&PrimDef::OptionIsSome.simple_name().into()).unwrap(),
*fields.get(&PrimDef::OptionUnwrap.simple_name().into()).unwrap(),
iter_type_vars(params).next().unwrap(),
)
} else {
unreachable!()
};
let TypeEnum::TObj { fields: ndarray_fields, params: ndarray_params, .. } =
&*unifier.get_ty(ndarray)
else {
unreachable!()
};
let ndarray_dtype_tvar = iter_type_vars(ndarray_params).next().unwrap();
let ndarray_ndims_tvar = iter_type_vars(ndarray_params).nth(1).unwrap();
let ndarray_copy_ty =
*ndarray_fields.get(&PrimDef::NDArrayCopy.simple_name().into()).unwrap();
let ndarray_fill_ty =
*ndarray_fields.get(&PrimDef::NDArrayFill.simple_name().into()).unwrap();
let num_ty = unifier.get_fresh_var_with_range(
&[int32, int64, float, boolean, uint32, uint64],
Some("N".into()),
None,
);
let num_var_map = into_var_map([num_ty]);
let ndarray_float = make_ndarray_ty(unifier, primitives, Some(float), None);
let ndarray_float_2d = {
let value = match primitives.size_t {
64 => SymbolValue::U64(2u64),
32 => SymbolValue::U32(2u32),
_ => unreachable!(),
};
let ndims = unifier.add_ty(TypeEnum::TLiteral { values: vec![value], loc: None });
make_ndarray_ty(unifier, primitives, Some(float), Some(ndims))
};
let ndarray_num_ty = make_ndarray_ty(unifier, primitives, Some(num_ty.ty), None);
let float_or_ndarray_ty =
unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
let float_or_ndarray_var_map = into_var_map([float_or_ndarray_ty]);
let num_or_ndarray_ty =
unifier.get_fresh_var_with_range(&[num_ty.ty, ndarray_num_ty], Some("T".into()), None);
let num_or_ndarray_var_map = into_var_map([num_ty, num_or_ndarray_ty]);
let list_int32 = unifier.add_ty(TypeEnum::TList { ty: int32 });
BuiltinBuilder {
unifier,
primitives,
is_some_ty,
unwrap_ty,
option_tvar,
ndarray_dtype_tvar,
ndarray_ndims_tvar,
ndarray_copy_ty,
ndarray_fill_ty,
list_int32,
num_ty,
num_var_map,
ndarray_float,
ndarray_float_2d,
ndarray_num_ty,
float_or_ndarray_ty,
float_or_ndarray_var_map,
num_or_ndarray_ty,
num_or_ndarray_var_map,
}
}
/// Construct every function from every [`PrimDef`], in the order of [`PrimDef`]'s definition.
fn build_all_builtins(&mut self) -> Vec<TopLevelDef> {
PrimDef::iter().map(|prim| self.build_builtin_of_prim(prim)).collect_vec()
}
/// Build the [`TopLevelDef`] associated of a [`PrimDef`].
fn build_builtin_of_prim(&mut self, prim: PrimDef) -> TopLevelDef {
let tld = match prim {
PrimDef::Int32
| PrimDef::Int64
| PrimDef::UInt32
| PrimDef::UInt64
| PrimDef::Float
| PrimDef::Bool
| PrimDef::Str
| PrimDef::Range
| PrimDef::None => Self::build_simple_primitive_class(prim),
PrimDef::Exception => self.build_exception_class_related(prim),
PrimDef::Option
| PrimDef::OptionIsSome
| PrimDef::OptionIsNone
| PrimDef::OptionUnwrap
| PrimDef::FunSome => self.build_option_class_related(prim),
PrimDef::NDArray | PrimDef::NDArrayCopy | PrimDef::NDArrayFill => {
self.build_ndarray_class_related(prim)
}
PrimDef::FunInt32
| PrimDef::FunInt64
| PrimDef::FunUInt32
| PrimDef::FunUInt64
| PrimDef::FunFloat
| PrimDef::FunBool => self.build_cast_function(prim),
PrimDef::FunNpNDArray
| PrimDef::FunNpEmpty
| PrimDef::FunNpZeros
| PrimDef::FunNpOnes => self.build_ndarray_from_shape_factory_function(prim),
PrimDef::FunNpArray
| PrimDef::FunNpFull
| PrimDef::FunNpEye
| PrimDef::FunNpIdentity => self.build_ndarray_other_factory_function(prim),
PrimDef::FunRange => self.build_range_function(),
PrimDef::FunStr => self.build_str_function(),
PrimDef::FunFloor | PrimDef::FunFloor64 | PrimDef::FunCeil | PrimDef::FunCeil64 => {
self.build_ceil_floor_function(prim)
}
PrimDef::FunAbs => self.build_abs_function(),
PrimDef::FunRound | PrimDef::FunRound64 => self.build_round_function(prim),
PrimDef::FunNpFloor | PrimDef::FunNpCeil => self.build_np_ceil_floor_function(prim),
PrimDef::FunNpRound => self.build_np_round_function(),
PrimDef::FunLen => self.build_len_function(),
PrimDef::FunMin | PrimDef::FunMax => self.build_min_max_function(prim),
PrimDef::FunNpMin | PrimDef::FunNpMax => self.build_np_min_max_function(prim),
PrimDef::FunNpMinimum | PrimDef::FunNpMaximum => {
self.build_np_minimum_maximum_function(prim)
}
PrimDef::FunNpIsNan | PrimDef::FunNpIsInf => self.build_np_float_to_bool_function(prim),
PrimDef::FunNpSin
| PrimDef::FunNpCos
| PrimDef::FunNpTan
| PrimDef::FunNpArcsin
| PrimDef::FunNpArccos
| PrimDef::FunNpArctan
| PrimDef::FunNpSinh
| PrimDef::FunNpCosh
| PrimDef::FunNpTanh
| PrimDef::FunNpArcsinh
| PrimDef::FunNpArccosh
| PrimDef::FunNpArctanh
| PrimDef::FunNpExp
| PrimDef::FunNpExp2
| PrimDef::FunNpExpm1
| PrimDef::FunNpLog
| PrimDef::FunNpLog2
| PrimDef::FunNpLog10
| PrimDef::FunNpSqrt
| PrimDef::FunNpCbrt
| PrimDef::FunNpFabs
| PrimDef::FunNpRint
| PrimDef::FunSpSpecErf
| PrimDef::FunSpSpecErfc
| PrimDef::FunSpSpecGamma
| PrimDef::FunSpSpecGammaln
| PrimDef::FunSpSpecJ0
| PrimDef::FunSpSpecJ1 => self.build_np_sp_float_or_ndarray_1ary_function(prim),
PrimDef::FunNpArctan2
| PrimDef::FunNpCopysign
| PrimDef::FunNpFmax
| PrimDef::FunNpFmin
| PrimDef::FunNpLdExp
| PrimDef::FunNpHypot
| PrimDef::FunNpNextAfter => self.build_np_2ary_function(prim),
};
if cfg!(debug_assertions) {
// Sanity checks on the constructed [`TopLevelDef`]
match (&tld, prim.details()) {
(
TopLevelDef::Class { name, object_id, .. },
PrimDefDetails::PrimClass { name: exp_name },
) => {
let exp_object_id = prim.id();
assert_eq!(name, &exp_name.into());
assert_eq!(object_id, &exp_object_id);
}
(
TopLevelDef::Function { name, simple_name, .. },
PrimDefDetails::PrimFunction { name: exp_name, simple_name: exp_simple_name },
) => {
assert_eq!(name, exp_name);
assert_eq!(simple_name, &exp_simple_name.into());
}
_ => {
panic!("Class/function variant of the constructed TopLevelDef of PrimDef {prim:?} is different than what is defined by {prim:?}")
}
}
}
tld
}
/// Build "simple" primitive classes.
fn build_simple_primitive_class(prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[
PrimDef::Int32,
PrimDef::Int64,
PrimDef::UInt32,
PrimDef::UInt64,
PrimDef::Float,
PrimDef::Bool,
PrimDef::Str,
PrimDef::Range,
PrimDef::None,
],
);
TopLevelComposer::make_top_level_class_def(prim.id(), None, prim.name().into(), None, None)
}
/// Build the class `Exception` and its associated methods.
fn build_exception_class_related(&self, prim: PrimDef) -> TopLevelDef {
// NOTE: currently only contains the class `Exception`
debug_assert_prim_is_allowed(prim, &[PrimDef::Exception]);
let PrimitiveStore { int32, int64, str, .. } = *self.primitives;
match prim {
PrimDef::Exception => TopLevelDef::Class {
name: prim.name().into(),
object_id: prim.id(),
type_vars: Vec::default(),
fields: make_exception_fields(int32, int64, str),
methods: Vec::default(),
ancestors: vec![],
constructor: None,
resolver: None,
loc: None,
},
_ => unreachable!(),
}
}
/// Build the class `Option`, its associated methods and the function `Some()`.
fn build_option_class_related(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[
PrimDef::Option,
PrimDef::OptionIsSome,
PrimDef::OptionIsNone,
PrimDef::OptionUnwrap,
PrimDef::FunSome,
],
);
match prim {
PrimDef::Option => TopLevelDef::Class {
name: prim.name().into(),
object_id: prim.id(),
type_vars: vec![self.option_tvar.ty],
fields: vec![],
methods: vec![
Self::create_method(PrimDef::OptionIsSome, self.is_some_ty.0),
Self::create_method(PrimDef::OptionIsNone, self.is_some_ty.0),
Self::create_method(PrimDef::OptionUnwrap, self.unwrap_ty.0),
],
ancestors: vec![TypeAnnotation::CustomClass {
id: prim.id(),
params: Vec::default(),
}],
constructor: None,
resolver: None,
loc: None,
},
PrimDef::OptionUnwrap => TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unwrap_ty.0,
var_id: vec![self.option_tvar.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::create_dummy(String::from(
"handled in gen_expr",
)))),
loc: None,
},
PrimDef::OptionIsNone | PrimDef::OptionIsSome => TopLevelDef::Function {
name: prim.name().to_string(),
simple_name: prim.simple_name().into(),
signature: self.is_some_ty.0,
var_id: vec![self.option_tvar.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, obj, _, _, generator| {
let expect_ty = obj.clone().unwrap().0;
let obj_val = obj
.unwrap()
.1
.clone()
.to_basic_value_enum(ctx, generator, expect_ty)?;
let BasicValueEnum::PointerValue(ptr) = obj_val else {
unreachable!("option must be ptr")
};
let returned_int = match prim {
PrimDef::OptionIsNone => {
ctx.builder.build_is_null(ptr, prim.simple_name())
}
PrimDef::OptionIsSome => {
ctx.builder.build_is_not_null(ptr, prim.simple_name())
}
_ => unreachable!(),
};
Ok(Some(returned_int.map(Into::into).unwrap()))
},
)))),
loc: None,
},
PrimDef::FunSome => TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "n".into(),
ty: self.option_tvar.ty,
default_value: None,
}],
ret: self.primitives.option,
vars: into_var_map([self.option_tvar]),
})),
var_id: vec![self.option_tvar.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val =
args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let alloca = generator
.gen_var_alloc(ctx, arg_val.get_type(), Some("alloca_some"))
.unwrap();
ctx.builder.build_store(alloca, arg_val).unwrap();
Ok(Some(alloca.into()))
},
)))),
loc: None,
},
_ => {
unreachable!()
}
}
}
/// Build the class `ndarray` and its associated methods.
fn build_ndarray_class_related(&self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::NDArray, PrimDef::NDArrayCopy, PrimDef::NDArrayFill],
);
match prim {
PrimDef::NDArray => TopLevelDef::Class {
name: prim.name().into(),
object_id: prim.id(),
type_vars: vec![self.ndarray_dtype_tvar.ty, self.ndarray_ndims_tvar.ty],
fields: Vec::default(),
methods: vec![
Self::create_method(PrimDef::NDArrayCopy, self.ndarray_copy_ty.0),
Self::create_method(PrimDef::NDArrayFill, self.ndarray_fill_ty.0),
],
ancestors: Vec::default(),
constructor: None,
resolver: None,
loc: None,
},
PrimDef::NDArrayCopy => TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.ndarray_copy_ty.0,
var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, fun, args, generator| {
gen_ndarray_copy(ctx, &obj, fun, &args, generator)
.map(|val| Some(val.as_basic_value_enum()))
},
)))),
loc: None,
},
PrimDef::NDArrayFill => TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.ndarray_fill_ty.0,
var_id: vec![self.ndarray_dtype_tvar.id, self.ndarray_ndims_tvar.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, fun, args, generator| {
gen_ndarray_fill(ctx, &obj, fun, &args, generator)?;
Ok(None)
},
)))),
loc: None,
},
_ => unreachable!(),
}
}
/// Build functions that cast a numeric primitive to another numeric primitive, including booleans.
fn build_cast_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[
PrimDef::FunInt32,
PrimDef::FunInt64,
PrimDef::FunUInt32,
PrimDef::FunUInt64,
PrimDef::FunFloat,
PrimDef::FunBool,
],
);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "n".into(),
ty: self.num_or_ndarray_ty.ty,
default_value: None,
}],
ret: self.num_or_ndarray_ty.ty,
vars: self.num_or_ndarray_var_map.clone(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let func = match prim {
PrimDef::FunInt32 => builtin_fns::call_int32,
PrimDef::FunInt64 => builtin_fns::call_int64,
PrimDef::FunUInt32 => builtin_fns::call_uint32,
PrimDef::FunUInt64 => builtin_fns::call_uint64,
PrimDef::FunFloat => builtin_fns::call_float,
PrimDef::FunBool => builtin_fns::call_bool,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (arg_ty, arg))?))
},
)))),
loc: None,
}
}
/// Build the functions `round()` and `round64()`.
fn build_round_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunRound, PrimDef::FunRound64]);
let float = self.primitives.float;
let size_variant = match prim {
PrimDef::FunRound => SizeVariant::Bits32,
PrimDef::FunRound64 => SizeVariant::Bits64,
_ => unreachable!(),
};
let common_ndim = self.unifier.get_fresh_const_generic_var(
self.primitives.usize(),
Some("N".into()),
None,
);
// The size variant of the function determines the size of the returned int.
let int_sized = size_variant.of_int(self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
let ndarray_float =
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
let p0_ty =
self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
let ret_ty = self.unifier.get_fresh_var_with_range(
&[int_sized, ndarray_int_sized],
Some("R".into()),
None,
);
create_fn_by_codegen(
self.unifier,
&into_var_map([common_ndim, p0_ty, ret_ty]),
prim.name(),
ret_ty.ty,
&[(p0_ty.ty, "n")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
}),
)
}
/// Build the functions `ceil()` and `floor()` and their 64 bit variants.
fn build_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef {
#[derive(Clone, Copy)]
enum Kind {
Floor,
Ceil,
}
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunFloor, PrimDef::FunFloor64, PrimDef::FunCeil, PrimDef::FunCeil64],
);
let (size_variant, kind) = {
match prim {
PrimDef::FunFloor => (SizeVariant::Bits32, Kind::Floor),
PrimDef::FunFloor64 => (SizeVariant::Bits64, Kind::Floor),
PrimDef::FunCeil => (SizeVariant::Bits32, Kind::Ceil),
PrimDef::FunCeil64 => (SizeVariant::Bits64, Kind::Ceil),
_ => unreachable!(),
}
};
let float = self.primitives.float;
let common_ndim = self.unifier.get_fresh_const_generic_var(
self.primitives.usize(),
Some("N".into()),
None,
);
let ndarray_float =
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
// The size variant of the function determines the type of int returned
let int_sized = size_variant.of_int(self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
let p0_ty =
self.unifier.get_fresh_var_with_range(&[float, ndarray_float], Some("T".into()), None);
let ret_ty = self.unifier.get_fresh_var_with_range(
&[int_sized, ndarray_int_sized],
Some("R".into()),
None,
);
create_fn_by_codegen(
self.unifier,
&into_var_map([common_ndim, p0_ty, ret_ty]),
prim.name(),
ret_ty.ty,
&[(p0_ty.ty, "n")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
let func = match kind {
Kind::Ceil => builtin_fns::call_ceil,
Kind::Floor => builtin_fns::call_floor,
};
Ok(Some(func(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
}),
)
}
/// Build ndarray factory functions that only take in an argument `shape` of type `list[int32]` and return an ndarray.
fn build_ndarray_from_shape_factory_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpNDArray, PrimDef::FunNpEmpty, PrimDef::FunNpZeros, PrimDef::FunNpOnes],
);
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_float,
// We are using List[int32] here, as I don't know a way to specify an n-tuple bound on a
// type variable
&[(self.list_int32, "shape")],
Box::new(move |ctx, obj, fun, args, generator| {
let func = match prim {
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
PrimDef::FunNpZeros => gen_ndarray_zeros,
PrimDef::FunNpOnes => gen_ndarray_ones,
_ => unreachable!(),
};
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
}),
)
}
/// Build ndarray factory functions that do not fit in any other `build_ndarray_*_factory_function` categories in [`BuiltinBuilder`].
///
/// See also [`BuiltinBuilder::build_ndarray_from_shape_factory_function`].
fn build_ndarray_other_factory_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[PrimDef::FunNpArray, PrimDef::FunNpFull, PrimDef::FunNpEye, PrimDef::FunNpIdentity],
);
let PrimitiveStore { int32, bool, ndarray, .. } = *self.primitives;
match prim {
PrimDef::FunNpArray => {
let tv = self.unifier.get_fresh_var(Some("T".into()), None);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "object".into(), ty: tv.ty, default_value: None },
FuncArg {
name: "copy".into(),
ty: bool,
default_value: Some(SymbolValue::Bool(true)),
},
FuncArg {
name: "ndmin".into(),
ty: int32,
default_value: Some(SymbolValue::U32(0)),
},
],
ret: ndarray,
vars: into_var_map([tv]),
})),
var_id: vec![tv.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, fun, args, generator| {
gen_ndarray_array(ctx, &obj, fun, &args, generator)
.map(|val| Some(val.as_basic_value_enum()))
},
)))),
loc: None,
}
}
PrimDef::FunNpFull => {
let tv = self.unifier.get_fresh_var(Some("T".into()), None);
create_fn_by_codegen(
self.unifier,
&into_var_map([tv]),
prim.name(),
self.primitives.ndarray,
// We are using List[int32] here, as I don't know a way to specify an n-tuple bound on a
// type variable
&[(self.list_int32, "shape"), (tv.ty, "fill_value")],
Box::new(move |ctx, obj, fun, args, generator| {
gen_ndarray_full(ctx, &obj, fun, &args, generator)
.map(|val| Some(val.as_basic_value_enum()))
}),
)
}
PrimDef::FunNpEye => {
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "N".into(), ty: int32, default_value: None },
// TODO(Derppening): Default values current do not work?
FuncArg {
name: "M".into(),
ty: int32,
default_value: Some(SymbolValue::OptionNone),
},
FuncArg {
name: "k".into(),
ty: int32,
default_value: Some(SymbolValue::I32(0)),
},
],
ret: self.ndarray_float_2d,
vars: VarMap::default(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, obj, fun, args, generator| {
gen_ndarray_eye(ctx, &obj, fun, &args, generator)
.map(|val| Some(val.as_basic_value_enum()))
},
)))),
loc: None,
}
}
PrimDef::FunNpIdentity => create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
self.ndarray_float_2d,
&[(int32, "n")],
Box::new(|ctx, obj, fun, args, generator| {
gen_ndarray_identity(ctx, &obj, fun, &args, generator)
.map(|val| Some(val.as_basic_value_enum()))
}),
),
_ => unreachable!(),
}
}
/// Build the `range()` function.
fn build_range_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunRange;
let PrimitiveStore { int32, range, .. } = *self.primitives;
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "start".into(), ty: int32, default_value: None },
FuncArg {
name: "stop".into(),
ty: int32,
// placeholder
default_value: Some(SymbolValue::I32(0)),
},
FuncArg {
name: "step".into(),
ty: int32,
default_value: Some(SymbolValue::I32(1)),
},
],
ret: range,
vars: VarMap::default(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, _, args, generator| {
let mut start = None;
let mut stop = None;
let mut step = None;
let int32 = ctx.ctx.i32_type();
let ty_i32 = ctx.primitives.int32;
for (i, arg) in args.iter().enumerate() {
if arg.0 == Some("start".into()) {
start = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
} else if arg.0 == Some("stop".into()) {
stop = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
} else if arg.0 == Some("step".into()) {
step = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
} else if i == 0 {
start = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
} else if i == 1 {
stop = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
} else if i == 2 {
step = Some(
arg.1
.clone()
.to_basic_value_enum(ctx, generator, ty_i32)?
.into_int_value(),
);
}
}
let step = match step {
Some(step) => {
// assert step != 0, throw exception if not
let not_zero = ctx
.builder
.build_int_compare(
IntPredicate::NE,
step,
step.get_type().const_zero(),
"range_step_ne",
)
.unwrap();
ctx.make_assert(
generator,
not_zero,
"0:ValueError",
"range() step must not be zero",
[None, None, None],
ctx.current_loc,
);
step
}
None => int32.const_int(1, false),
};
let stop = stop.unwrap_or_else(|| {
let v = start.unwrap();
start = None;
v
});
let start = start.unwrap_or_else(|| int32.const_zero());
let ptr = RangeType::new(ctx.ctx).new_value(generator, ctx, Some("range"));
ptr.store_start(ctx, start);
ptr.store_end(ctx, stop);
ptr.store_step(ctx, step);
Ok(Some(ptr.as_base_value().into()))
},
)))),
loc: None,
}
}
/// Build the `str()` function.
fn build_str_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunStr;
let str = self.primitives.str;
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "s".into(), ty: str, default_value: None }],
ret: str,
vars: VarMap::default(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
Ok(Some(args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?))
},
)))),
loc: None,
}
}
/// Build functions `np_ceil()` and `np_floor()`.
fn build_np_ceil_floor_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpCeil, PrimDef::FunNpFloor]);
create_fn_by_codegen(
self.unifier,
&self.float_or_ndarray_var_map,
prim.name(),
self.float_or_ndarray_ty.ty,
&[(self.float_or_ndarray_ty.ty, "n")],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let func = match prim {
PrimDef::FunNpCeil => builtin_fns::call_ceil,
PrimDef::FunNpFloor => builtin_fns::call_floor,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (arg_ty, arg), ctx.primitives.float)?))
}),
)
}
/// Build the `np_round()` function.
fn build_np_round_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunNpRound;
create_fn_by_codegen(
self.unifier,
&self.float_or_ndarray_var_map,
prim.name(),
self.float_or_ndarray_ty.ty,
&[(self.float_or_ndarray_ty.ty, "n")],
Box::new(|ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(Some(builtin_fns::call_numpy_round(generator, ctx, (arg_ty, arg))?))
}),
)
}
/// Build the `len()` function.
fn build_len_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunLen;
let PrimitiveStore { uint64, int32, .. } = *self.primitives;
let tvar = self.unifier.get_fresh_var(Some("L".into()), None);
let list = self.unifier.add_ty(TypeEnum::TList { ty: tvar.ty });
let ndims = self.unifier.get_fresh_const_generic_var(uint64, Some("N".into()), None);
let ndarray = make_ndarray_ty(self.unifier, self.primitives, Some(tvar.ty), Some(ndims.ty));
let arg_ty = self.unifier.get_fresh_var_with_range(
&[list, ndarray, self.primitives.range],
Some("I".into()),
None,
);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg { name: "ls".into(), ty: arg_ty.ty, default_value: None }],
ret: int32,
vars: into_var_map([tvar, arg_ty]),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, _, fun, args, generator| {
let range_ty = ctx.primitives.range;
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
Ok(if ctx.unifier.unioned(arg_ty, range_ty) {
let arg = RangeValue::from_ptr_val(arg.into_pointer_value(), Some("range"));
let (start, end, step) = destructure_range(ctx, arg);
Some(calculate_len_for_slice_range(generator, ctx, start, end, step).into())
} else {
match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TList { .. } => {
let int32 = ctx.ctx.i32_type();
let zero = int32.const_zero();
let len = ctx
.build_gep_and_load(
arg.into_pointer_value(),
&[zero, int32.const_int(1, false)],
None,
)
.into_int_value();
if len.get_type().get_bit_width() == 32 {
Some(len.into())
} else {
Some(
ctx.builder
.build_int_truncate(len, int32, "len2i32")
.map(Into::into)
.unwrap(),
)
}
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let arg = NDArrayValue::from_ptr_val(
arg.into_pointer_value(),
llvm_usize,
None,
);
let ndims = arg.dim_sizes().size(ctx, generator);
ctx.make_assert(
generator,
ctx.builder
.build_int_compare(
IntPredicate::NE,
ndims,
llvm_usize.const_zero(),
"",
)
.unwrap(),
"0:TypeError",
&format!("{name}() of unsized object", name = prim.name()),
[None, None, None],
ctx.current_loc,
);
let len = unsafe {
arg.dim_sizes().get_typed_unchecked(
ctx,
generator,
&llvm_usize.const_zero(),
None,
)
};
if len.get_type().get_bit_width() == 32 {
Some(len.into())
} else {
Some(
ctx.builder
.build_int_truncate(len, llvm_i32, "len")
.map(Into::into)
.unwrap(),
)
}
}
_ => unreachable!(),
}
})
},
)))),
loc: None,
}
}
/// Build the functions `min()` and `max()`.
fn build_min_max_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunMin, PrimDef::FunMax]);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![
FuncArg { name: "m".into(), ty: self.num_ty.ty, default_value: None },
FuncArg { name: "n".into(), ty: self.num_ty.ty, default_value: None },
],
ret: self.num_ty.ty,
vars: self.num_var_map.clone(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, _, fun, args, generator| {
let m_ty = fun.0.args[0].ty;
let n_ty = fun.0.args[1].ty;
let m_val = args[0].1.clone().to_basic_value_enum(ctx, generator, m_ty)?;
let n_val = args[1].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
let func = match prim {
PrimDef::FunMin => builtin_fns::call_min,
PrimDef::FunMax => builtin_fns::call_max,
_ => unreachable!(),
};
Ok(Some(func(ctx, (m_ty, m_val), (n_ty, n_val))))
},
)))),
loc: None,
}
}
/// Build the functions `np_min()` and `np_max()`.
fn build_np_min_max_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpMin, PrimDef::FunNpMax]);
let ret_ty = self.unifier.get_fresh_var(Some("R".into()), None);
let var_map = self
.num_or_ndarray_var_map
.clone()
.into_iter()
.chain(once((ret_ty.id, ret_ty.ty)))
.collect::<IndexMap<_, _>>();
create_fn_by_codegen(
self.unifier,
&var_map,
prim.name(),
ret_ty.ty,
&[(self.float_or_ndarray_ty.ty, "a")],
Box::new(move |ctx, _, fun, args, generator| {
let a_ty = fun.0.args[0].ty;
let a = args[0].1.clone().to_basic_value_enum(ctx, generator, a_ty)?;
let func = match prim {
PrimDef::FunNpMin => builtin_fns::call_numpy_min,
PrimDef::FunNpMax => builtin_fns::call_numpy_max,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (a_ty, a))?))
}),
)
}
/// Build the functions `np_minimum()` and `np_maximum()`.
fn build_np_minimum_maximum_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpMinimum, PrimDef::FunNpMaximum]);
let x1_ty = self.new_type_or_ndarray_ty(self.num_ty.ty);
let x2_ty = self.new_type_or_ndarray_ty(self.num_ty.ty);
let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")];
let ret_ty = self.unifier.get_fresh_var(None, None);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: param_ty
.iter()
.map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None })
.collect(),
ret: ret_ty.ty,
vars: into_var_map([x1_ty, x2_ty, ret_ty]),
})),
var_id: vec![x1_ty.id, x2_ty.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x2_ty = fun.0.args[1].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
let func = match prim {
PrimDef::FunNpMinimum => builtin_fns::call_numpy_minimum,
PrimDef::FunNpMaximum => builtin_fns::call_numpy_maximum,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
},
)))),
loc: None,
}
}
/// Build the `abs()` function.
fn build_abs_function(&mut self) -> TopLevelDef {
let prim = PrimDef::FunAbs;
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: vec![FuncArg {
name: "n".into(),
ty: self.num_or_ndarray_ty.ty,
default_value: None,
}],
ret: self.num_or_ndarray_ty.ty,
vars: self.num_or_ndarray_var_map.clone(),
})),
var_id: Vec::default(),
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|ctx, _, fun, args, generator| {
let n_ty = fun.0.args[0].ty;
let n_val = args[0].1.clone().to_basic_value_enum(ctx, generator, n_ty)?;
Ok(Some(builtin_fns::call_abs(generator, ctx, (n_ty, n_val))?))
},
)))),
loc: None,
}
}
/// Build numpy functions that take in a float and return a boolean.
fn build_np_float_to_bool_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(prim, &[PrimDef::FunNpIsInf, PrimDef::FunNpIsNan]);
let PrimitiveStore { bool, float, .. } = *self.primitives;
create_fn_by_codegen(
self.unifier,
&VarMap::new(),
prim.name(),
bool,
&[(float, "x")],
Box::new(move |ctx, _, fun, args, generator| {
let x_ty = fun.0.args[0].ty;
let x_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x_ty)?;
let func = match prim {
PrimDef::FunNpIsInf => builtin_fns::call_numpy_isinf,
PrimDef::FunNpIsNan => builtin_fns::call_numpy_isnan,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (x_ty, x_val))?))
}),
)
}
/// Build 1-ary numpy/scipy functions that take in a float or an ndarray and return a value of the same type as the input.
fn build_np_sp_float_or_ndarray_1ary_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[
PrimDef::FunNpSin,
PrimDef::FunNpCos,
PrimDef::FunNpTan,
PrimDef::FunNpArcsin,
PrimDef::FunNpArccos,
PrimDef::FunNpArctan,
PrimDef::FunNpSinh,
PrimDef::FunNpCosh,
PrimDef::FunNpTanh,
PrimDef::FunNpArcsinh,
PrimDef::FunNpArccosh,
PrimDef::FunNpArctanh,
PrimDef::FunNpExp,
PrimDef::FunNpExp2,
PrimDef::FunNpExpm1,
PrimDef::FunNpLog,
PrimDef::FunNpLog2,
PrimDef::FunNpLog10,
PrimDef::FunNpSqrt,
PrimDef::FunNpCbrt,
PrimDef::FunNpFabs,
PrimDef::FunNpRint,
PrimDef::FunSpSpecErf,
PrimDef::FunSpSpecErfc,
PrimDef::FunSpSpecGamma,
PrimDef::FunSpSpecGammaln,
PrimDef::FunSpSpecJ0,
PrimDef::FunSpSpecJ1,
],
);
// The parameter name of the sole input of this function.
// Usually this is just "x", but some functions have a different parameter name.
let arg_name = match prim {
PrimDef::FunSpSpecErf => "z",
_ => "x",
};
create_fn_by_codegen(
self.unifier,
&self.float_or_ndarray_var_map,
prim.name(),
self.float_or_ndarray_ty.ty,
&[(self.float_or_ndarray_ty.ty, arg_name)],
Box::new(move |ctx, _, fun, args, generator| {
let arg_ty = fun.0.args[0].ty;
let arg_val = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let func = match prim {
PrimDef::FunNpSin => builtin_fns::call_numpy_sin,
PrimDef::FunNpCos => builtin_fns::call_numpy_cos,
PrimDef::FunNpTan => builtin_fns::call_numpy_tan,
PrimDef::FunNpArcsin => builtin_fns::call_numpy_arcsin,
PrimDef::FunNpArccos => builtin_fns::call_numpy_arccos,
PrimDef::FunNpArctan => builtin_fns::call_numpy_arctan,
PrimDef::FunNpSinh => builtin_fns::call_numpy_sinh,
PrimDef::FunNpCosh => builtin_fns::call_numpy_cosh,
PrimDef::FunNpTanh => builtin_fns::call_numpy_tanh,
PrimDef::FunNpArcsinh => builtin_fns::call_numpy_arcsinh,
PrimDef::FunNpArccosh => builtin_fns::call_numpy_arccosh,
PrimDef::FunNpArctanh => builtin_fns::call_numpy_arctanh,
PrimDef::FunNpExp => builtin_fns::call_numpy_exp,
PrimDef::FunNpExp2 => builtin_fns::call_numpy_exp2,
PrimDef::FunNpExpm1 => builtin_fns::call_numpy_expm1,
PrimDef::FunNpLog => builtin_fns::call_numpy_log,
PrimDef::FunNpLog2 => builtin_fns::call_numpy_log2,
PrimDef::FunNpLog10 => builtin_fns::call_numpy_log10,
PrimDef::FunNpSqrt => builtin_fns::call_numpy_sqrt,
PrimDef::FunNpCbrt => builtin_fns::call_numpy_cbrt,
PrimDef::FunNpFabs => builtin_fns::call_numpy_fabs,
PrimDef::FunNpRint => builtin_fns::call_numpy_rint,
PrimDef::FunSpSpecErf => builtin_fns::call_scipy_special_erf,
PrimDef::FunSpSpecErfc => builtin_fns::call_scipy_special_erfc,
PrimDef::FunSpSpecGamma => builtin_fns::call_scipy_special_gamma,
PrimDef::FunSpSpecGammaln => builtin_fns::call_scipy_special_gammaln,
PrimDef::FunSpSpecJ0 => builtin_fns::call_scipy_special_j0,
PrimDef::FunSpSpecJ1 => builtin_fns::call_scipy_special_j1,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (arg_ty, arg_val))?))
}),
)
}
/// Build 2-ary numpy functions. The exact argument types of the two input arguments can be controlled.
fn build_np_2ary_function(&mut self, prim: PrimDef) -> TopLevelDef {
debug_assert_prim_is_allowed(
prim,
&[
PrimDef::FunNpArctan2,
PrimDef::FunNpCopysign,
PrimDef::FunNpFmax,
PrimDef::FunNpFmin,
PrimDef::FunNpLdExp,
PrimDef::FunNpHypot,
PrimDef::FunNpNextAfter,
],
);
let PrimitiveStore { float, int32, .. } = *self.primitives;
// The argument types of the two input arguments are controlled here.
let (x1_ty, x2_ty) = match prim {
PrimDef::FunNpArctan2
| PrimDef::FunNpCopysign
| PrimDef::FunNpFmax
| PrimDef::FunNpFmin
| PrimDef::FunNpHypot
| PrimDef::FunNpNextAfter => (float, float),
PrimDef::FunNpLdExp => (float, int32),
_ => unreachable!(),
};
let x1_ty = self.new_type_or_ndarray_ty(x1_ty);
let x2_ty = self.new_type_or_ndarray_ty(x2_ty);
let param_ty = &[(x1_ty.ty, "x1"), (x2_ty.ty, "x2")];
let ret_ty = self.unifier.get_fresh_var(None, None);
TopLevelDef::Function {
name: prim.name().into(),
simple_name: prim.simple_name().into(),
signature: self.unifier.add_ty(TypeEnum::TFunc(FunSignature {
args: param_ty
.iter()
.map(|p| FuncArg { name: p.1.into(), ty: p.0, default_value: None })
.collect(),
ret: ret_ty.ty,
vars: into_var_map([x1_ty, x2_ty, ret_ty]),
})),
var_id: vec![ret_ty.id],
instance_to_symbol: HashMap::default(),
instance_to_stmt: HashMap::default(),
resolver: None,
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
move |ctx, _, fun, args, generator| {
let x1_ty = fun.0.args[0].ty;
let x1_val = args[0].1.clone().to_basic_value_enum(ctx, generator, x1_ty)?;
let x2_ty = fun.0.args[1].ty;
let x2_val = args[1].1.clone().to_basic_value_enum(ctx, generator, x2_ty)?;
let func = match prim {
PrimDef::FunNpArctan2 => builtin_fns::call_numpy_arctan2,
PrimDef::FunNpCopysign => builtin_fns::call_numpy_copysign,
PrimDef::FunNpFmax => builtin_fns::call_numpy_fmax,
PrimDef::FunNpFmin => builtin_fns::call_numpy_fmin,
PrimDef::FunNpLdExp => builtin_fns::call_numpy_ldexp,
PrimDef::FunNpHypot => builtin_fns::call_numpy_hypot,
PrimDef::FunNpNextAfter => builtin_fns::call_numpy_nextafter,
_ => unreachable!(),
};
Ok(Some(func(generator, ctx, (x1_ty, x1_val), (x2_ty, x2_val))?))
},
)))),
loc: None,
}
}
fn create_method(prim: PrimDef, method_ty: Type) -> (StrRef, Type, DefinitionId) {
(prim.simple_name().into(), method_ty, prim.id())
}
fn new_type_or_ndarray_ty(&mut self, scalar_ty: Type) -> TypeVar {
let ndarray = make_ndarray_ty(self.unifier, self.primitives, Some(scalar_ty), None);
self.unifier.get_fresh_var_with_range(&[scalar_ty, ndarray], Some("T".into()), None)
}
}