forked from M-Labs/nac3
Compare commits
9 Commits
to-models-
...
ndarray-st
Author | SHA1 | Date |
---|---|---|
lyken | 87d2a4ed59 | |
lyken | 9aae290727 | |
lyken | d18c769cdc | |
lyken | f41f06aec7 | |
lyken | 1303265785 | |
lyken | e9cf6ce1e5 | |
lyken | bc91ab9b13 | |
lyken | 1e06a3d199 | |
lyken | 87511ac749 |
|
@ -1,3 +0,0 @@
|
|||
BasedOnStyle: Microsoft
|
||||
IndentWidth: 4
|
||||
ReflowComments: false
|
|
@ -1,4 +1,3 @@
|
|||
__pycache__
|
||||
/target
|
||||
/nac3standalone/demo/linalg/target
|
||||
nix/windows/msys2
|
||||
|
|
|
@ -26,9 +26,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "anstream"
|
||||
version = "0.6.15"
|
||||
version = "0.6.14"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "64e15c1ab1f89faffbf04a634d5e1962e9074f2741eef6d97f3c4e322426d526"
|
||||
checksum = "418c75fa768af9c03be99d17643f93f79bbba589895012a80e3452a19ddda15b"
|
||||
dependencies = [
|
||||
"anstyle",
|
||||
"anstyle-parse",
|
||||
|
@ -41,36 +41,36 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "anstyle"
|
||||
version = "1.0.8"
|
||||
version = "1.0.7"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1bec1de6f59aedf83baf9ff929c98f2ad654b97c9510f4e70cf6f661d49fd5b1"
|
||||
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b"
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-parse"
|
||||
version = "0.2.5"
|
||||
version = "0.2.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "eb47de1e80c2b463c735db5b217a0ddc39d612e7ac9e2e96a5aed1f57616c1cb"
|
||||
checksum = "c03a11a9034d92058ceb6ee011ce58af4a9bf61491aa7e1e59ecd24bd40d22d4"
|
||||
dependencies = [
|
||||
"utf8parse",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-query"
|
||||
version = "1.1.1"
|
||||
version = "1.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6d36fc52c7f6c869915e99412912f22093507da8d9e942ceaf66fe4b7c14422a"
|
||||
checksum = "ad186efb764318d35165f1758e7dcef3b10628e26d41a44bc5550652e6804391"
|
||||
dependencies = [
|
||||
"windows-sys 0.52.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-wincon"
|
||||
version = "3.0.4"
|
||||
version = "3.0.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5bf74e1b6e971609db8ca7a9ce79fd5768ab6ae46441c572e46cf596f59e57f8"
|
||||
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19"
|
||||
dependencies = [
|
||||
"anstyle",
|
||||
"windows-sys 0.52.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -117,12 +117,9 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
|
|||
|
||||
[[package]]
|
||||
name = "cc"
|
||||
version = "1.1.13"
|
||||
version = "1.1.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "72db2f7947ecee9b03b510377e8bb9077afa27176fdbff55c51027e976fdcc48"
|
||||
dependencies = [
|
||||
"shlex",
|
||||
]
|
||||
checksum = "eaff6f8ce506b9773fa786672d63fc7a191ffea1be33f72bbd4aeacefca9ffc8"
|
||||
|
||||
[[package]]
|
||||
name = "cfg-if"
|
||||
|
@ -132,9 +129,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
|
|||
|
||||
[[package]]
|
||||
name = "clap"
|
||||
version = "4.5.16"
|
||||
version = "4.5.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019"
|
||||
checksum = "64acc1846d54c1fe936a78dc189c34e28d3f5afc348403f28ecf53660b9b8462"
|
||||
dependencies = [
|
||||
"clap_builder",
|
||||
"clap_derive",
|
||||
|
@ -142,9 +139,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "clap_builder"
|
||||
version = "4.5.15"
|
||||
version = "4.5.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6"
|
||||
checksum = "6fb8393d67ba2e7bfaf28a23458e4e2b543cc73a99595511eb207fdb8aede942"
|
||||
dependencies = [
|
||||
"anstream",
|
||||
"anstyle",
|
||||
|
@ -154,27 +151,27 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "clap_derive"
|
||||
version = "4.5.13"
|
||||
version = "4.5.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0"
|
||||
checksum = "2bac35c6dafb060fd4d275d9a4ffae97917c13a6327903a8be2153cd964f7085"
|
||||
dependencies = [
|
||||
"heck 0.5.0",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "clap_lex"
|
||||
version = "0.7.2"
|
||||
version = "0.7.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1462739cb27611015575c0c11df5df7601141071f07518d56fcc1be504cbec97"
|
||||
checksum = "4b82cf0babdbd58558212896d1a4272303a57bdb245c2bf1147185fb45640e70"
|
||||
|
||||
[[package]]
|
||||
name = "colorchoice"
|
||||
version = "1.0.2"
|
||||
version = "1.0.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0"
|
||||
checksum = "0b6a852b24ab71dffc585bcb46eaf7959d175cb865a7152e35b348d1b2960422"
|
||||
|
||||
[[package]]
|
||||
name = "console"
|
||||
|
@ -185,7 +182,7 @@ dependencies = [
|
|||
"encode_unicode",
|
||||
"lazy_static",
|
||||
"libc",
|
||||
"windows-sys 0.52.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -305,7 +302,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||
checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba"
|
||||
dependencies = [
|
||||
"libc",
|
||||
"windows-sys 0.52.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -388,9 +385,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "indexmap"
|
||||
version = "2.4.0"
|
||||
version = "2.2.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c"
|
||||
checksum = "168fb715dda47215e360912c096649d23d58bf392ac62f73919e831745e40f26"
|
||||
dependencies = [
|
||||
"equivalent",
|
||||
"hashbrown 0.14.5",
|
||||
|
@ -424,7 +421,7 @@ checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -443,9 +440,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "is_terminal_polyfill"
|
||||
version = "1.70.1"
|
||||
version = "1.70.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
|
||||
checksum = "f8478577c03552c21db0e2724ffb8986a5ce7af88107e6be5d2ee6e158c12800"
|
||||
|
||||
[[package]]
|
||||
name = "itertools"
|
||||
|
@ -510,15 +507,15 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
|
|||
|
||||
[[package]]
|
||||
name = "libc"
|
||||
version = "0.2.157"
|
||||
version = "0.2.155"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "374af5f94e54fa97cf75e945cce8a6b201e88a1a07e688b47dfd2a59c66dbd86"
|
||||
checksum = "97b3888a4aecf77e811145cadf6eef5901f4782c53886191b2f693f24761847c"
|
||||
|
||||
[[package]]
|
||||
name = "libloading"
|
||||
version = "0.8.5"
|
||||
version = "0.8.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "4979f22fdb869068da03c9f7528f8297c6fd2606bc3a4affe42e6a823fdb8da4"
|
||||
checksum = "e310b3a6b5907f99202fcdb4960ff45b93735d7c7d96b760fcff8db2dc0e103d"
|
||||
dependencies = [
|
||||
"cfg-if",
|
||||
"windows-targets",
|
||||
|
@ -619,7 +616,7 @@ name = "nac3core"
|
|||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"crossbeam",
|
||||
"indexmap 2.4.0",
|
||||
"indexmap 2.2.6",
|
||||
"indoc",
|
||||
"inkwell",
|
||||
"insta",
|
||||
|
@ -709,7 +706,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
|
||||
dependencies = [
|
||||
"fixedbitset",
|
||||
"indexmap 2.4.0",
|
||||
"indexmap 2.2.6",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -752,7 +749,7 @@ dependencies = [
|
|||
"phf_shared 0.11.2",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -781,18 +778,15 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
|
|||
|
||||
[[package]]
|
||||
name = "portable-atomic"
|
||||
version = "1.7.0"
|
||||
version = "1.6.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265"
|
||||
checksum = "7170ef9988bc169ba16dd36a7fa041e5c4cbeb6a35b76d4c03daded371eae7c0"
|
||||
|
||||
[[package]]
|
||||
name = "ppv-lite86"
|
||||
version = "0.2.20"
|
||||
version = "0.2.17"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "77957b295656769bb8ad2b6a6b09d897d94f05c41b069aede1fcdaa675eaea04"
|
||||
dependencies = [
|
||||
"zerocopy",
|
||||
]
|
||||
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"
|
||||
|
||||
[[package]]
|
||||
name = "precomputed-hash"
|
||||
|
@ -856,7 +850,7 @@ dependencies = [
|
|||
"proc-macro2",
|
||||
"pyo3-macros-backend",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -869,7 +863,7 @@ dependencies = [
|
|||
"proc-macro2",
|
||||
"pyo3-build-config",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -933,9 +927,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "redox_syscall"
|
||||
version = "0.5.3"
|
||||
version = "0.5.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4"
|
||||
checksum = "c82cf8cff14456045f55ec4241383baeff27af886adb72ffb2162f99911de0fd"
|
||||
dependencies = [
|
||||
"bitflags",
|
||||
]
|
||||
|
@ -953,9 +947,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "regex"
|
||||
version = "1.10.6"
|
||||
version = "1.10.5"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619"
|
||||
checksum = "b91213439dad192326a0d7c6ee3955910425f441d7038e0d6933b0aec5c4517f"
|
||||
dependencies = [
|
||||
"aho-corasick",
|
||||
"memchr",
|
||||
|
@ -997,7 +991,7 @@ dependencies = [
|
|||
"errno",
|
||||
"libc",
|
||||
"linux-raw-sys",
|
||||
"windows-sys 0.52.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1035,32 +1029,31 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
|
|||
|
||||
[[package]]
|
||||
name = "serde"
|
||||
version = "1.0.208"
|
||||
version = "1.0.204"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "cff085d2cb684faa248efb494c39b68e522822ac0de72ccf08109abde717cfb2"
|
||||
checksum = "bc76f558e0cbb2a839d37354c575f1dc3fdc6546b5be373ba43d95f231bf7c12"
|
||||
dependencies = [
|
||||
"serde_derive",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde_derive"
|
||||
version = "1.0.208"
|
||||
version = "1.0.204"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "24008e81ff7613ed8e5ba0cfaf24e2c2f1e5b8a0495711e44fcd4882fca62bcf"
|
||||
checksum = "e0cd7e117be63d3c3678776753929474f3b04a43a080c744d6b0ae2a8c28e222"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde_json"
|
||||
version = "1.0.125"
|
||||
version = "1.0.120"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "83c8e735a073ccf5be70aa8066aa984eaf2fa000db6c8d0100ae605b366d31ed"
|
||||
checksum = "4e0d21c9a8cae1235ad58a00c11cb40d4b1e5c784f1ef2c537876ed6ffd8b7c5"
|
||||
dependencies = [
|
||||
"itoa",
|
||||
"memchr",
|
||||
"ryu",
|
||||
"serde",
|
||||
]
|
||||
|
@ -1077,17 +1070,11 @@ dependencies = [
|
|||
"yaml-rust",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "shlex"
|
||||
version = "1.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"
|
||||
|
||||
[[package]]
|
||||
name = "similar"
|
||||
version = "2.6.0"
|
||||
version = "2.5.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1de1d4f81173b03af4c0cbed3c898f6bff5b870e4a7f5d6f4057d62a7a4b686e"
|
||||
checksum = "fa42c91313f1d05da9b26f267f931cf178d4aba455b4c4622dd7355eb80c6640"
|
||||
|
||||
[[package]]
|
||||
name = "siphasher"
|
||||
|
@ -1147,7 +1134,7 @@ dependencies = [
|
|||
"proc-macro2",
|
||||
"quote",
|
||||
"rustversion",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1163,9 +1150,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "syn"
|
||||
version = "2.0.75"
|
||||
version = "2.0.70"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f6af063034fc1935ede7be0122941bafa9bacb949334d090b77ca98b5817c7d9"
|
||||
checksum = "2f0209b68b3613b093e0ec905354eccaedcfe83b8cb37cbdeae64026c3064c16"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
|
@ -1174,21 +1161,20 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "target-lexicon"
|
||||
version = "0.12.16"
|
||||
version = "0.12.15"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
|
||||
checksum = "4873307b7c257eddcb50c9bedf158eb669578359fb28428bef438fec8e6ba7c2"
|
||||
|
||||
[[package]]
|
||||
name = "tempfile"
|
||||
version = "3.12.0"
|
||||
version = "3.10.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64"
|
||||
checksum = "85b77fafb263dd9d05cbeac119526425676db3784113aa9295c88498cbf8bff1"
|
||||
dependencies = [
|
||||
"cfg-if",
|
||||
"fastrand",
|
||||
"once_cell",
|
||||
"rustix",
|
||||
"windows-sys 0.59.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1217,22 +1203,22 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "thiserror"
|
||||
version = "1.0.63"
|
||||
version = "1.0.61"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724"
|
||||
checksum = "c546c80d6be4bc6a00c0f01730c08df82eaa7a7a61f11d656526506112cc1709"
|
||||
dependencies = [
|
||||
"thiserror-impl",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "thiserror-impl"
|
||||
version = "1.0.63"
|
||||
version = "1.0.61"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
|
||||
checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1350,9 +1336,9 @@ checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821"
|
|||
|
||||
[[package]]
|
||||
name = "version_check"
|
||||
version = "0.9.5"
|
||||
version = "0.9.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "0b928f33d975fc6ad9f86c8f283853ad26bdd5b10b7f1542aa2fa15e2289105a"
|
||||
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"
|
||||
|
||||
[[package]]
|
||||
name = "walkdir"
|
||||
|
@ -1388,11 +1374,11 @@ checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
|
|||
|
||||
[[package]]
|
||||
name = "winapi-util"
|
||||
version = "0.1.9"
|
||||
version = "0.1.8"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
|
||||
checksum = "4d4cc384e1e73b93bafa6fb4f1df8c41695c8a91cf9c4c64358067d15a7b6c6b"
|
||||
dependencies = [
|
||||
"windows-sys 0.59.0",
|
||||
"windows-sys",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1410,15 +1396,6 @@ dependencies = [
|
|||
"windows-targets",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "windows-sys"
|
||||
version = "0.59.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1e38bc4d79ed67fd075bcc251a1c39b32a1776bbe92e5bef1f0bf1f8c531853b"
|
||||
dependencies = [
|
||||
"windows-targets",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "windows-targets"
|
||||
version = "0.52.6"
|
||||
|
@ -1498,7 +1475,6 @@ version = "0.7.35"
|
|||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1b9b4fd18abc82b8136838da5d50bae7bdea537c574d8dc1a34ed098d6c166f0"
|
||||
dependencies = [
|
||||
"byteorder",
|
||||
"zerocopy-derive",
|
||||
]
|
||||
|
||||
|
@ -1510,5 +1486,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.75",
|
||||
"syn 2.0.70",
|
||||
]
|
||||
|
|
|
@ -2,11 +2,11 @@
|
|||
"nodes": {
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1723637854,
|
||||
"narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
|
||||
"lastModified": 1720418205,
|
||||
"narHash": "sha256-cPJoFPXU44GlhWg4pUk9oUPqurPlCFZ11ZQPk21GTPU=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
|
||||
"rev": "655a58a72a6601292512670343087c2d75d859c1",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
35
flake.nix
35
flake.nix
|
@ -6,7 +6,6 @@
|
|||
outputs = { self, nixpkgs }:
|
||||
let
|
||||
pkgs = import nixpkgs { system = "x86_64-linux"; };
|
||||
pkgs32 = import nixpkgs { system = "i686-linux"; };
|
||||
in rec {
|
||||
packages.x86_64-linux = rec {
|
||||
llvm-nac3 = pkgs.callPackage ./nix/llvm {};
|
||||
|
@ -14,24 +13,9 @@
|
|||
''
|
||||
mkdir -p $out/bin
|
||||
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
||||
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
|
||||
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
||||
'';
|
||||
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
|
||||
name = "demo-linalg-stub";
|
||||
src = ./nac3standalone/demo/linalg;
|
||||
cargoLock = {
|
||||
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
|
||||
};
|
||||
doCheck = false;
|
||||
};
|
||||
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
|
||||
name = "demo-linalg-stub32";
|
||||
src = ./nac3standalone/demo/linalg;
|
||||
cargoLock = {
|
||||
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
|
||||
};
|
||||
doCheck = false;
|
||||
};
|
||||
nac3artiq = pkgs.python3Packages.toPythonModule (
|
||||
pkgs.rustPlatform.buildRustPackage rec {
|
||||
name = "nac3artiq";
|
||||
|
@ -40,8 +24,9 @@
|
|||
cargoLock = {
|
||||
lockFile = ./Cargo.lock;
|
||||
};
|
||||
cargoTestFlags = [ "--features" "test" ];
|
||||
passthru.cargoLock = cargoLock;
|
||||
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
||||
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
|
||||
checkPhase =
|
||||
|
@ -49,9 +34,7 @@
|
|||
echo "Checking nac3standalone demos..."
|
||||
pushd nac3standalone/demo
|
||||
patchShebangs .
|
||||
export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
|
||||
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
|
||||
./check_demos.sh -i686
|
||||
./check_demos.sh
|
||||
popd
|
||||
echo "Running Cargo tests..."
|
||||
cargoCheckHook
|
||||
|
@ -168,7 +151,7 @@
|
|||
buildInputs = with pkgs; [
|
||||
# build dependencies
|
||||
packages.x86_64-linux.llvm-nac3
|
||||
(pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
|
||||
llvmPackages_14.clang llvmPackages_14.llvm.out # for running nac3standalone demos
|
||||
packages.x86_64-linux.llvm-tools-irrt
|
||||
cargo
|
||||
rustc
|
||||
|
@ -180,12 +163,10 @@
|
|||
clippy
|
||||
pre-commit
|
||||
rustfmt
|
||||
rust-analyzer
|
||||
];
|
||||
shellHook =
|
||||
''
|
||||
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
|
||||
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
|
||||
'';
|
||||
# https://nixos.wiki/wiki/Rust#Shell.nix_example
|
||||
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
|
||||
};
|
||||
devShells.x86_64-linux.msys2 = pkgs.mkShell {
|
||||
name = "nac3-dev-shell-msys2";
|
||||
|
|
|
@ -24,4 +24,3 @@ features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-l
|
|||
|
||||
[features]
|
||||
init-llvm-profile = []
|
||||
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
||||
|
|
|
@ -1,24 +0,0 @@
|
|||
from min_artiq import *
|
||||
from numpy import int32
|
||||
|
||||
|
||||
@nac3
|
||||
class EmptyList:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@rpc
|
||||
def get_empty(self) -> list[int32]:
|
||||
return []
|
||||
|
||||
@kernel
|
||||
def run(self):
|
||||
a: list[int32] = self.get_empty()
|
||||
if a != []:
|
||||
raise ValueError
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
EmptyList().run()
|
|
@ -1,26 +0,0 @@
|
|||
from min_artiq import *
|
||||
from numpy import ndarray, zeros as np_zeros
|
||||
|
||||
|
||||
@nac3
|
||||
class StrFail:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def hello(self, arg: str):
|
||||
pass
|
||||
|
||||
@kernel
|
||||
def consume_ndarray(self, arg: ndarray[str, 1]):
|
||||
pass
|
||||
|
||||
def run(self):
|
||||
self.hello("world")
|
||||
self.consume_ndarray(np_zeros([10], dtype=str))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
StrFail().run()
|
|
@ -2,9 +2,7 @@ use nac3core::{
|
|||
codegen::{
|
||||
expr::gen_call,
|
||||
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject, ndarray::NDArrayObject, range::RangeObject},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
stmt::{gen_block, gen_with},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
|
@ -15,11 +13,7 @@ use nac3core::{
|
|||
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
types::IntType,
|
||||
values::{BasicValueEnum, PointerValue, StructValue},
|
||||
AddressSpace, IntPredicate,
|
||||
context::Context, module::Linkage, types::IntType, values::BasicValueEnum, AddressSpace,
|
||||
};
|
||||
|
||||
use pyo3::{
|
||||
|
@ -29,12 +23,10 @@ use pyo3::{
|
|||
|
||||
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||
|
||||
use itertools::Itertools;
|
||||
use std::{
|
||||
collections::{hash_map::DefaultHasher, HashMap},
|
||||
collections::hash_map::DefaultHasher,
|
||||
collections::HashMap,
|
||||
hash::{Hash, Hasher},
|
||||
iter::once,
|
||||
mem,
|
||||
sync::Arc,
|
||||
};
|
||||
|
||||
|
@ -394,7 +386,7 @@ fn gen_rpc_tag(
|
|||
} else {
|
||||
let ty_enum = ctx.unifier.get_ty(ty);
|
||||
match &*ty_enum {
|
||||
TTuple { ty, is_vararg_ctx: false } => {
|
||||
TTuple { ty } => {
|
||||
buffer.push(b't');
|
||||
buffer.push(ty.len() as u8);
|
||||
for ty in ty {
|
||||
|
@ -422,10 +414,7 @@ fn gen_rpc_tag(
|
|||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
assert!(
|
||||
(0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims),
|
||||
"Only NDArrays of sizes between 0 and 255 can be RPCed"
|
||||
);
|
||||
assert!((0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims));
|
||||
|
||||
buffer.push(b'a');
|
||||
buffer.push((ndarray_ndims & 0xFF) as u8);
|
||||
|
@ -437,77 +426,6 @@ fn gen_rpc_tag(
|
|||
Ok(())
|
||||
}
|
||||
|
||||
/// Formats an RPC argument to conform to the expected format required by `send_value`.
|
||||
///
|
||||
/// See `artiq/firmware/libproto_artiq/rpc_proto.rs` for the expected format.
|
||||
fn format_rpc_arg<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(arg, arg_ty, arg_idx): (BasicValueEnum<'ctx>, Type, usize),
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
|
||||
let arg_slot = match &*ctx.unifier.get_ty_immutable(arg_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
// NAC3: NDArray = { usize, usize*, T* }
|
||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||
|
||||
let ndarray = AnyObject { ty: arg_ty, value: arg };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
|
||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
// `ndarray.data` is possibly not contiguous. We need to force it to be continuous,
|
||||
// and we might have to copy the whole ndarray.
|
||||
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
|
||||
|
||||
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
|
||||
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
|
||||
|
||||
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
|
||||
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
|
||||
|
||||
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
|
||||
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
|
||||
|
||||
// buf = { data: void*, shape: [size_t; ndims]; }
|
||||
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
|
||||
let buf_data = buf;
|
||||
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
|
||||
|
||||
// Write to `buf->data`
|
||||
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
|
||||
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
|
||||
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
|
||||
|
||||
// Write to `buf->shape`
|
||||
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
|
||||
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
|
||||
|
||||
buf.value
|
||||
}
|
||||
|
||||
_ => {
|
||||
let arg_slot = generator
|
||||
.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{arg_idx}")))
|
||||
.unwrap();
|
||||
ctx.builder.build_store(arg_slot, arg).unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
};
|
||||
|
||||
debug_assert_eq!(arg_slot.get_type(), llvm_pi8);
|
||||
|
||||
arg_slot
|
||||
}
|
||||
|
||||
fn rpc_codegen_callback_fn<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: Option<(Type, ValueEnum<'ctx>)>,
|
||||
|
@ -515,10 +433,10 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
||||
let ptr_type = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let int8 = ctx.ctx.i8_type();
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ptr_type = int8.ptr_type(AddressSpace::default());
|
||||
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
|
||||
|
||||
let service_id = int32.const_int(fun.1 .0 as u64, false);
|
||||
|
@ -591,25 +509,22 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||
.0
|
||||
.args
|
||||
.iter()
|
||||
.map(|arg| {
|
||||
mapping
|
||||
.remove(&arg.name)
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, arg.ty)
|
||||
.map(|llvm_val| (llvm_val, arg.ty))
|
||||
})
|
||||
.collect::<Result<Vec<(_, _)>, _>>()?;
|
||||
.map(|arg| mapping.remove(&arg.name).unwrap().to_basic_value_enum(ctx, generator, arg.ty))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
if let Some(obj) = obj {
|
||||
if let ValueEnum::Static(obj_val) = obj.1 {
|
||||
real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
|
||||
if let ValueEnum::Static(obj) = obj.1 {
|
||||
real_params.insert(0, obj.get_const_obj(ctx, generator));
|
||||
} else {
|
||||
// should be an error here...
|
||||
panic!("only host object is allowed");
|
||||
}
|
||||
}
|
||||
|
||||
for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
|
||||
let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
|
||||
for (i, arg) in real_params.iter().enumerate() {
|
||||
let arg_slot =
|
||||
generator.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{i}"))).unwrap();
|
||||
ctx.builder.build_store(arg_slot, *arg).unwrap();
|
||||
let arg_slot = ctx.builder.build_bitcast(arg_slot, ptr_type, "rpc.arg").unwrap();
|
||||
let arg_ptr = unsafe {
|
||||
ctx.builder.build_gep(
|
||||
args_ptr,
|
||||
|
@ -785,7 +700,6 @@ pub fn attributes_writeback(
|
|||
name: i.to_string().into(),
|
||||
ty: *ty,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
})
|
||||
.collect(),
|
||||
ret: ctx.primitives.none,
|
||||
|
@ -809,468 +723,3 @@ pub fn rpc_codegen_callback() -> Arc<GenCall> {
|
|||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
|
||||
})))
|
||||
}
|
||||
|
||||
/// Returns the `fprintf` format constant for the given [`llvm_int_t`][`IntType`] on a platform with
|
||||
/// [`llvm_usize`] as its native word size.
|
||||
///
|
||||
/// Note that, similar to format constants in `<inttypes.h>`, these constants need to be prepended
|
||||
/// with `%`.
|
||||
#[must_use]
|
||||
fn get_fprintf_format_constant<'ctx>(
|
||||
llvm_usize: IntType<'ctx>,
|
||||
llvm_int_t: IntType<'ctx>,
|
||||
is_unsigned: bool,
|
||||
) -> String {
|
||||
debug_assert!(matches!(llvm_usize.get_bit_width(), 8 | 16 | 32 | 64));
|
||||
|
||||
let conv_spec = if is_unsigned { 'u' } else { 'd' };
|
||||
|
||||
// https://en.cppreference.com/w/c/language/arithmetic_types
|
||||
// Note that NAC3 does **not** support LP32 and LLP64 configurations
|
||||
match llvm_int_t.get_bit_width() {
|
||||
8 => format!("hh{conv_spec}"),
|
||||
16 => format!("h{conv_spec}"),
|
||||
32 => conv_spec.to_string(),
|
||||
64 => format!("{}{conv_spec}", if llvm_usize.get_bit_width() == 64 { "l" } else { "ll" }),
|
||||
_ => todo!(
|
||||
"Not yet implemented for i{} on {}-bit platform",
|
||||
llvm_int_t.get_bit_width(),
|
||||
llvm_usize.get_bit_width()
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
/// Prints one or more `values` to `core_log` or `rtio_log`.
|
||||
///
|
||||
/// * `separator` - The separator between multiple values.
|
||||
/// * `suffix` - String to terminate the printed string, if any.
|
||||
/// * `as_repr` - Whether the `repr()` output of values instead of `str()`.
|
||||
/// * `as_rtio` - Whether to print to `rtio_log` instead of `core_log`.
|
||||
fn polymorphic_print<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
values: &[(Type, ValueEnum<'ctx>)],
|
||||
separator: &str,
|
||||
suffix: Option<&str>,
|
||||
as_repr: bool,
|
||||
as_rtio: bool,
|
||||
) -> Result<(), String> {
|
||||
let printf = |ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
fmt: String,
|
||||
args: Vec<BasicValueEnum<'ctx>>| {
|
||||
debug_assert!(!fmt.is_empty());
|
||||
debug_assert_eq!(fmt.as_bytes().last().unwrap(), &0u8);
|
||||
|
||||
let fn_name = if as_rtio { "rtio_log" } else { "core_log" };
|
||||
let print_fn = ctx.module.get_function(fn_name).unwrap_or_else(|| {
|
||||
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let fn_t = if as_rtio {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
llvm_void.fn_type(&[llvm_pi8.into()], true)
|
||||
} else {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
llvm_i32.fn_type(&[llvm_pi8.into()], true)
|
||||
};
|
||||
ctx.module.add_function(fn_name, fn_t, None)
|
||||
});
|
||||
|
||||
let fmt = ctx.gen_string(generator, fmt);
|
||||
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
print_fn,
|
||||
&once(fmt.into()).chain(args).map(BasicValueEnum::into).collect_vec(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
};
|
||||
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let suffix = suffix.unwrap_or_default();
|
||||
|
||||
let mut fmt = String::new();
|
||||
let mut args = Vec::new();
|
||||
|
||||
let flush = |ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
fmt: &mut String,
|
||||
args: &mut Vec<BasicValueEnum<'ctx>>| {
|
||||
if !fmt.is_empty() {
|
||||
fmt.push('\0');
|
||||
printf(ctx, generator, mem::take(fmt), mem::take(args));
|
||||
}
|
||||
};
|
||||
|
||||
for (ty, value) in values {
|
||||
let ty = *ty;
|
||||
let value = value.clone().to_basic_value_enum(ctx, generator, ty).unwrap();
|
||||
|
||||
if !fmt.is_empty() {
|
||||
fmt.push_str(separator);
|
||||
}
|
||||
|
||||
match &*ctx.unifier.get_ty_immutable(ty) {
|
||||
TypeEnum::TTuple { ty: tys, is_vararg_ctx: false } => {
|
||||
let pvalue = {
|
||||
let pvalue = generator.gen_var_alloc(ctx, value.get_type(), None).unwrap();
|
||||
ctx.builder.build_store(pvalue, value).unwrap();
|
||||
pvalue
|
||||
};
|
||||
|
||||
fmt.push('(');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let tuple_vals = tys
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, ty)| {
|
||||
(*ty, {
|
||||
let pfield =
|
||||
ctx.builder.build_struct_gep(pvalue, i as u32, "").unwrap();
|
||||
|
||||
ValueEnum::from(ctx.builder.build_load(pfield, "").unwrap())
|
||||
})
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
polymorphic_print(ctx, generator, &tuple_vals, ", ", None, true, as_rtio)?;
|
||||
|
||||
if tuple_vals.len() == 1 {
|
||||
fmt.push_str(",)");
|
||||
} else {
|
||||
fmt.push(')');
|
||||
}
|
||||
}
|
||||
|
||||
TypeEnum::TFunc { .. } => todo!(),
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::None.id() => {
|
||||
fmt.push_str("None");
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Bool.id() => {
|
||||
fmt.push_str("%.*s");
|
||||
|
||||
let true_str = ctx.gen_string(generator, "True");
|
||||
let true_data =
|
||||
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
|
||||
let false_str = ctx.gen_string(generator, "False");
|
||||
let false_data =
|
||||
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
let false_len =
|
||||
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
|
||||
|
||||
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
||||
|
||||
args.extend([
|
||||
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
|
||||
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
|
||||
]);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == PrimDef::Int32.id()
|
||||
|| *obj_id == PrimDef::Int64.id()
|
||||
|| *obj_id == PrimDef::UInt32.id()
|
||||
|| *obj_id == PrimDef::UInt64.id() =>
|
||||
{
|
||||
let is_unsigned =
|
||||
*obj_id == PrimDef::UInt32.id() || *obj_id == PrimDef::UInt64.id();
|
||||
|
||||
let llvm_int_t = value.get_type().into_int_type();
|
||||
debug_assert!(matches!(llvm_usize.get_bit_width(), 32 | 64));
|
||||
debug_assert!(matches!(llvm_int_t.get_bit_width(), 32 | 64));
|
||||
|
||||
let fmt_spec = format!(
|
||||
"%{}",
|
||||
get_fprintf_format_constant(llvm_usize, llvm_int_t, is_unsigned)
|
||||
);
|
||||
|
||||
fmt.push_str(fmt_spec.as_str());
|
||||
args.push(value);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Float.id() => {
|
||||
fmt.push_str("%g");
|
||||
args.push(value);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Str.id() => {
|
||||
if as_repr {
|
||||
fmt.push_str("\"%.*s\"");
|
||||
} else {
|
||||
fmt.push_str("%.*s");
|
||||
}
|
||||
|
||||
let str = value.into_struct_value();
|
||||
let str_data = unsafe { str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
let str_len = unsafe { str.get_field_at_index_unchecked(1) }.into_int_value();
|
||||
|
||||
args.extend(&[str_len.into(), str_data.into()]);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
|
||||
fmt.push('[');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let list = AnyObject { ty, value };
|
||||
let list = ListObject::from_object(generator, ctx, list);
|
||||
|
||||
let items = list.instance.get(generator, ctx, |f| f.items);
|
||||
|
||||
let len = list.instance.get(generator, ctx, |f| f.len).value;
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(len, false),
|
||||
|generator, ctx, _, i| {
|
||||
let item = items.get_index(generator, ctx, i).value;
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(list.item_type, item.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
as_rtio,
|
||||
)?;
|
||||
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
Ok(ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, i, last, "")
|
||||
.unwrap())
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
|
||||
fmt.push(']');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
fmt.push_str("array([");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let ndarray = AnyObject { ty, value };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
|
||||
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
|
||||
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let i = hdl.get_index(generator, ctx);
|
||||
let scalar = hdl.get_scalar(generator, ctx);
|
||||
|
||||
// if (i != 0) { puts(", "); }
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_, ctx| {
|
||||
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
|
||||
Ok(not_first.value)
|
||||
},
|
||||
|generator, ctx| {
|
||||
printf(ctx, generator, ", \0".into(), Vec::default());
|
||||
Ok(())
|
||||
},
|
||||
|_, _| Ok(()),
|
||||
)?;
|
||||
|
||||
// Print element
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(scalar.ty, scalar.value.into())],
|
||||
"",
|
||||
None,
|
||||
true,
|
||||
as_rtio,
|
||||
)?;
|
||||
Ok(())
|
||||
})?;
|
||||
|
||||
fmt.push_str(")]");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Range.id() => {
|
||||
fmt.push_str("range(");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let range = AnyObject { ty, value };
|
||||
let range = RangeObject::from_object(generator, ctx, range);
|
||||
|
||||
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||
let start = start.value;
|
||||
let stop = stop.value;
|
||||
let step = step.value;
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[
|
||||
(ctx.primitives.int32, start.into()),
|
||||
(ctx.primitives.int32, stop.into()),
|
||||
(ctx.primitives.int32, step.into()),
|
||||
],
|
||||
", ",
|
||||
None,
|
||||
false,
|
||||
as_rtio,
|
||||
)?;
|
||||
|
||||
fmt.push(')');
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Exception.id() => {
|
||||
let fmt_str = format!(
|
||||
"%{}(%{}, %{1:}, %{1:})",
|
||||
get_fprintf_format_constant(llvm_usize, llvm_i32, false),
|
||||
get_fprintf_format_constant(llvm_usize, llvm_i64, false),
|
||||
);
|
||||
|
||||
let exn = value.into_pointer_value();
|
||||
let name = ctx
|
||||
.build_in_bounds_gep_and_load(
|
||||
exn,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
|
||||
None,
|
||||
)
|
||||
.into_int_value();
|
||||
let param0 = ctx
|
||||
.build_in_bounds_gep_and_load(
|
||||
exn,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(6, false)],
|
||||
None,
|
||||
)
|
||||
.into_int_value();
|
||||
let param1 = ctx
|
||||
.build_in_bounds_gep_and_load(
|
||||
exn,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(7, false)],
|
||||
None,
|
||||
)
|
||||
.into_int_value();
|
||||
let param2 = ctx
|
||||
.build_in_bounds_gep_and_load(
|
||||
exn,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(8, false)],
|
||||
None,
|
||||
)
|
||||
.into_int_value();
|
||||
|
||||
fmt.push_str(fmt_str.as_str());
|
||||
args.extend_from_slice(&[name.into(), param0.into(), param1.into(), param2.into()]);
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
"Unsupported object type for polymorphic_print: {}",
|
||||
ctx.unifier.stringify(ty)
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
fmt.push_str(suffix);
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Invokes the `core_log` intrinsic function.
|
||||
pub fn call_core_log_impl<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
arg: (Type, BasicValueEnum<'ctx>),
|
||||
) -> Result<(), String> {
|
||||
let (arg_ty, arg_val) = arg;
|
||||
|
||||
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\n"), false, false)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Invokes the `rtio_log` intrinsic function.
|
||||
pub fn call_rtio_log_impl<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
channel: StructValue<'ctx>,
|
||||
arg: (Type, BasicValueEnum<'ctx>),
|
||||
) -> Result<(), String> {
|
||||
let (arg_ty, arg_val) = arg;
|
||||
|
||||
polymorphic_print(
|
||||
ctx,
|
||||
generator,
|
||||
&[(ctx.primitives.str, channel.into())],
|
||||
" ",
|
||||
Some("\x1E"),
|
||||
false,
|
||||
true,
|
||||
)?;
|
||||
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\x1D"), false, true)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Generates a call to `core_log`.
|
||||
pub fn gen_core_log<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<(), String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let value_ty = fun.0.args[0].ty;
|
||||
let value_arg = args[0].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
|
||||
call_core_log_impl(ctx, generator, (value_ty, value_arg))
|
||||
}
|
||||
|
||||
/// Generates a call to `rtio_log`.
|
||||
pub fn gen_rtio_log<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<(), String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
let channel_ty = fun.0.args[0].ty;
|
||||
assert!(ctx.unifier.unioned(channel_ty, ctx.primitives.str));
|
||||
let channel_arg =
|
||||
args[0].1.clone().to_basic_value_enum(ctx, generator, channel_ty)?.into_struct_value();
|
||||
let value_ty = fun.0.args[1].ty;
|
||||
let value_arg = args[1].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
|
||||
call_rtio_log_impl(ctx, generator, channel_arg, (value_ty, value_arg))
|
||||
}
|
||||
|
|
|
@ -24,7 +24,6 @@ use std::rc::Rc;
|
|||
use std::sync::Arc;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::{Linkage, Module},
|
||||
passes::PassBuilderOptions,
|
||||
|
@ -33,10 +32,9 @@ use inkwell::{
|
|||
OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
||||
use nac3core::typecheck::typedef::{TypeEnum, Unifier, VarMap};
|
||||
use nac3parser::{
|
||||
ast::{ExprKind, Stmt, StmtKind, StrRef},
|
||||
parser::parse_program,
|
||||
|
@ -52,7 +50,7 @@ use nac3core::{
|
|||
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
|
||||
symbol_resolver::SymbolResolver,
|
||||
toplevel::{
|
||||
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
|
||||
composer::{ComposerConfig, TopLevelComposer},
|
||||
DefinitionId, GenCall, TopLevelDef,
|
||||
},
|
||||
typecheck::typedef::{FunSignature, FuncArg},
|
||||
|
@ -61,13 +59,13 @@ use nac3core::{
|
|||
|
||||
use nac3ld::Linker;
|
||||
|
||||
use tempfile::{self, TempDir};
|
||||
|
||||
use crate::codegen::attributes_writeback;
|
||||
use crate::{
|
||||
codegen::{
|
||||
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
|
||||
},
|
||||
codegen::{rpc_codegen_callback, ArtiqCodeGenerator},
|
||||
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
|
||||
};
|
||||
use tempfile::{self, TempDir};
|
||||
|
||||
mod codegen;
|
||||
mod symbol_resolver;
|
||||
|
@ -128,7 +126,7 @@ struct Nac3 {
|
|||
isa: Isa,
|
||||
time_fns: &'static (dyn TimeFns + Sync),
|
||||
primitive: PrimitiveStore,
|
||||
builtins: Vec<BuiltinFuncSpec>,
|
||||
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
|
||||
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
|
||||
primitive_ids: PrimitivePythonId,
|
||||
working_directory: TempDir,
|
||||
|
@ -266,7 +264,7 @@ impl Nac3 {
|
|||
arg_names.len(),
|
||||
));
|
||||
}
|
||||
for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
|
||||
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() {
|
||||
let in_name = match arg_names.get(i) {
|
||||
Some(n) => n,
|
||||
None if default_value.is_none() => {
|
||||
|
@ -302,64 +300,6 @@ impl Nac3 {
|
|||
None
|
||||
}
|
||||
|
||||
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
|
||||
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
|
||||
vec![
|
||||
Box::new(|primitives, unifier| {
|
||||
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
|
||||
|
||||
(
|
||||
"core_log".into(),
|
||||
FunSignature {
|
||||
args: vec![FuncArg {
|
||||
name: "arg".into(),
|
||||
ty: arg_ty.ty,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: primitives.none,
|
||||
vars: into_var_map([arg_ty]),
|
||||
},
|
||||
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
|
||||
gen_core_log(ctx, &obj, fun, &args, generator)?;
|
||||
|
||||
Ok(None)
|
||||
}))),
|
||||
)
|
||||
}),
|
||||
Box::new(|primitives, unifier| {
|
||||
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
|
||||
|
||||
(
|
||||
"rtio_log".into(),
|
||||
FunSignature {
|
||||
args: vec![
|
||||
FuncArg {
|
||||
name: "channel".into(),
|
||||
ty: primitives.str,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "arg".into(),
|
||||
ty: arg_ty.ty,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
],
|
||||
ret: primitives.none,
|
||||
vars: into_var_map([arg_ty]),
|
||||
},
|
||||
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
|
||||
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
|
||||
|
||||
Ok(None)
|
||||
}))),
|
||||
)
|
||||
}),
|
||||
]
|
||||
}
|
||||
|
||||
fn compile_method<T>(
|
||||
&self,
|
||||
obj: &PyAny,
|
||||
|
@ -372,7 +312,6 @@ impl Nac3 {
|
|||
let size_t = self.isa.get_size_type();
|
||||
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
|
||||
self.builtins.clone(),
|
||||
Self::get_lateinit_builtins(),
|
||||
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
|
||||
size_t,
|
||||
);
|
||||
|
@ -558,11 +497,6 @@ impl Nac3 {
|
|||
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
|
||||
.unwrap();
|
||||
|
||||
// Process IRRT
|
||||
let context = inkwell::context::Context::create();
|
||||
let irrt = load_irrt(&context);
|
||||
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||
|
||||
let fun_signature =
|
||||
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
||||
let mut store = ConcreteTypeStore::new();
|
||||
|
@ -691,9 +625,7 @@ impl Nac3 {
|
|||
let buffer = buffer.as_slice().into();
|
||||
membuffer.lock().push(buffer);
|
||||
})));
|
||||
let size_t = Context::create()
|
||||
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
|
||||
.get_bit_width();
|
||||
let size_t = if self.isa == Isa::Host { 64 } else { 32 };
|
||||
let num_threads = if is_multithreaded() { 4 } else { 1 };
|
||||
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
|
||||
let threads: Vec<_> = thread_names
|
||||
|
@ -712,9 +644,6 @@ impl Nac3 {
|
|||
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
|
||||
let context = inkwell::context::Context::create();
|
||||
let module = context.create_module("attributes_writeback");
|
||||
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
||||
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
||||
module.set_triple(&target_machine.get_triple());
|
||||
let builder = context.create_builder();
|
||||
let (_, module, _) = gen_func_impl(
|
||||
&context,
|
||||
|
@ -733,7 +662,7 @@ impl Nac3 {
|
|||
membuffer.lock().push(buffer);
|
||||
});
|
||||
|
||||
// Link all modules into `main`.
|
||||
let context = inkwell::context::Context::create();
|
||||
let buffers = membuffers.lock();
|
||||
let main = context
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||
|
@ -762,7 +691,8 @@ impl Nac3 {
|
|||
)
|
||||
.unwrap();
|
||||
|
||||
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
main.link_in_module(load_irrt(&context))
|
||||
.map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
|
||||
let mut function_iter = main.get_first_function();
|
||||
while let Some(func) = function_iter {
|
||||
|
@ -917,7 +847,7 @@ impl Nac3 {
|
|||
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
|
||||
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
|
||||
};
|
||||
let (primitive, _) = TopLevelComposer::make_primitives(isa.get_size_type());
|
||||
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(isa.get_size_type()).0;
|
||||
let builtins = vec![
|
||||
(
|
||||
"now_mu".into(),
|
||||
|
@ -933,7 +863,6 @@ impl Nac3 {
|
|||
name: "t".into(),
|
||||
ty: primitive.int64,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: primitive.none,
|
||||
vars: VarMap::new(),
|
||||
|
@ -953,7 +882,6 @@ impl Nac3 {
|
|||
name: "dt".into(),
|
||||
ty: primitive.int64,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: primitive.none,
|
||||
vars: VarMap::new(),
|
||||
|
|
|
@ -1,15 +1,12 @@
|
|||
use crate::PrimitivePythonId;
|
||||
use inkwell::{
|
||||
module::Linkage,
|
||||
types::BasicType,
|
||||
values::{BasicValue, BasicValueEnum},
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
model::*,
|
||||
object::ndarray::{make_contiguous_strides, NDArray},
|
||||
classes::{NDArrayType, ProxyType},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||
|
@ -27,7 +24,7 @@ use nac3parser::ast::{self, StrRef};
|
|||
use parking_lot::{Mutex, RwLock};
|
||||
use pyo3::{
|
||||
types::{PyDict, PyTuple},
|
||||
PyAny, PyErr, PyObject, PyResult, Python,
|
||||
PyAny, PyObject, PyResult, Python,
|
||||
};
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
|
@ -37,6 +34,8 @@ use std::{
|
|||
},
|
||||
};
|
||||
|
||||
use crate::PrimitivePythonId;
|
||||
|
||||
pub enum PrimitiveValue {
|
||||
I32(i32),
|
||||
I64(i64),
|
||||
|
@ -134,8 +133,6 @@ impl StaticValue for PythonValue {
|
|||
format!("{}_const", self.id).as_str(),
|
||||
);
|
||||
global.set_constant(true);
|
||||
// Set linkage of global to private to avoid name collisions
|
||||
global.set_linkage(Linkage::Private);
|
||||
global.set_initializer(&ctx.ctx.const_struct(
|
||||
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
|
||||
false,
|
||||
|
@ -166,7 +163,7 @@ impl StaticValue for PythonValue {
|
|||
PrimitiveValue::Bool(val) => {
|
||||
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
|
||||
}
|
||||
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
|
||||
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
|
||||
});
|
||||
}
|
||||
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
|
||||
|
@ -354,7 +351,7 @@ impl InnerResolver {
|
|||
Ok(Ok((ndarray, false)))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
// do not handle type var param and concrete check here
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false)))
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
|
||||
} else if ty_id == self.primitive_ids.option {
|
||||
Ok(Ok((primitives.option, false)))
|
||||
} else if ty_id == self.primitive_ids.none {
|
||||
|
@ -558,10 +555,7 @@ impl InnerResolver {
|
|||
Err(err) => return Ok(Err(err)),
|
||||
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
|
||||
};
|
||||
Ok(Ok((
|
||||
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
|
||||
true,
|
||||
)))
|
||||
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
|
||||
}
|
||||
TypeEnum::TObj { params, obj_id, .. } => {
|
||||
let subst = {
|
||||
|
@ -803,9 +797,7 @@ impl InnerResolver {
|
|||
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
|
||||
.collect();
|
||||
let types = types?;
|
||||
Ok(types.map(|types| {
|
||||
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
|
||||
}))
|
||||
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
|
||||
}
|
||||
// special handling for option type since its class member layout in python side
|
||||
// is special and cannot be mapped directly to a nac3 type as below
|
||||
|
@ -980,7 +972,7 @@ impl InnerResolver {
|
|||
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
||||
let val: String = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
|
||||
Ok(Some(ctx.gen_string(generator, val).into()))
|
||||
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
|
||||
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
|
||||
let val: f64 = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
|
||||
|
@ -999,15 +991,8 @@ impl InnerResolver {
|
|||
}
|
||||
_ => unreachable!("must be list"),
|
||||
};
|
||||
let ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let size_t = generator.get_size_type(ctx.ctx);
|
||||
let ty = if len == 0
|
||||
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
|
||||
{
|
||||
// The default type for zero-length lists of unknown element type is size_t
|
||||
size_t.into()
|
||||
} else {
|
||||
ctx.get_llvm_type(generator, elem_ty)
|
||||
};
|
||||
let arr_ty = ctx
|
||||
.ctx
|
||||
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
|
||||
|
@ -1087,12 +1072,15 @@ impl InnerResolver {
|
|||
let (ndarray_dtype, ndarray_ndims) =
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||
|
||||
let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
|
||||
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
|
||||
|
||||
{
|
||||
if self.global_value_ids.read().contains_key(&id) {
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(
|
||||
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
)
|
||||
|
@ -1112,143 +1100,103 @@ impl InnerResolver {
|
|||
} else {
|
||||
todo!("Unpacking literal of more than one element unimplemented")
|
||||
};
|
||||
let Ok(ndims) = u64::try_from(ndarray_ndims) else {
|
||||
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else {
|
||||
unreachable!("Expected u64 value for ndarray_ndims")
|
||||
};
|
||||
|
||||
// Obtain the shape of the ndarray
|
||||
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
|
||||
assert_eq!(shape_tuple.len(), ndims as usize);
|
||||
|
||||
// The Rust type inferencer cannot figure this out
|
||||
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
|
||||
assert_eq!(shape_tuple.len(), ndarray_ndims as usize);
|
||||
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, elem)| {
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})?
|
||||
.unwrap();
|
||||
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
|
||||
Ok(value)
|
||||
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err(
|
||||
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
let shape_values = shape_values?;
|
||||
|
||||
// Also use this opportunity to get the constant values of `shape_values` for calculating strides.
|
||||
let shape_u64s = shape_values
|
||||
.iter()
|
||||
.map(|dim| {
|
||||
assert!(dim.value.is_const());
|
||||
dim.value.get_zero_extended_constant().unwrap()
|
||||
})
|
||||
.collect_vec();
|
||||
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
|
||||
let shape_values = shape_values?.unwrap();
|
||||
let shape_values = llvm_usize.const_array(
|
||||
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(),
|
||||
);
|
||||
|
||||
// create a global for ndarray.shape and initialize it using the shape
|
||||
let shape_global = ctx.module.add_global(
|
||||
Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
|
||||
llvm_usize.array_type(ndarray_ndims as u32),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".shape"),
|
||||
);
|
||||
shape_global.set_initializer(&shape_values.value);
|
||||
shape_global.set_initializer(&shape_values);
|
||||
|
||||
// Obtain the (flattened) elements of the ndarray
|
||||
let sz: usize = obj.getattr("size")?.extract()?;
|
||||
let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
|
||||
let data: Result<Option<Vec<_>>, _> = (0..sz)
|
||||
.map(|i| {
|
||||
obj.getattr("flat")?.get_item(i).and_then(|elem| {
|
||||
let value = self
|
||||
.get_obj_value(py, elem, ctx, generator, ndarray_dtype)
|
||||
.map_err(|e| {
|
||||
super::CompileError::new_err(format!(
|
||||
"Error getting element {i}: {e}"
|
||||
))
|
||||
})?
|
||||
.unwrap();
|
||||
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| {
|
||||
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
|
||||
})
|
||||
})
|
||||
})
|
||||
.collect();
|
||||
let data = data?.unwrap().into_iter();
|
||||
let data = match ndarray_dtype_llvm_ty {
|
||||
BasicTypeEnum::ArrayType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
|
||||
}
|
||||
|
||||
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
|
||||
Ok(value)
|
||||
})
|
||||
})
|
||||
.try_collect()?;
|
||||
let data = dtype.const_array(generator, ctx.ctx, &data_values);
|
||||
BasicTypeEnum::FloatType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::IntType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::PointerType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::StructType(ty) => {
|
||||
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
|
||||
}
|
||||
|
||||
BasicTypeEnum::VectorType(_) => unreachable!(),
|
||||
};
|
||||
|
||||
// create a global for ndarray.data and initialize it using the elements
|
||||
//
|
||||
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
|
||||
// We will have to cast it to an `u8*` later.
|
||||
let data_global = ctx.module.add_global(
|
||||
Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
|
||||
ndarray_dtype_llvm_ty.array_type(sz as u32),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".data"),
|
||||
);
|
||||
data_global.set_initializer(&data.value);
|
||||
|
||||
// Get the constant itemsize.
|
||||
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
|
||||
let itemsize = itemsize.get_zero_extended_constant().unwrap();
|
||||
|
||||
// Create the strides needed for ndarray.strides
|
||||
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
|
||||
let strides = strides
|
||||
.into_iter()
|
||||
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
|
||||
.collect_vec();
|
||||
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
|
||||
|
||||
// create a global for ndarray.strides and initialize it
|
||||
let strides_global = ctx.module.add_global(
|
||||
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
|
||||
Some(AddressSpace::default()),
|
||||
&(id_str.clone() + ".strides"),
|
||||
);
|
||||
strides_global.set_initializer(&strides.value);
|
||||
data_global.set_initializer(&data);
|
||||
|
||||
// create a global for the ndarray object and initialize it
|
||||
// We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
|
||||
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
||||
llvm_usize.const_int(ndarray_ndims, false).into(),
|
||||
shape_global
|
||||
.as_pointer_value()
|
||||
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
data_global
|
||||
.as_pointer_value()
|
||||
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
|
||||
.into(),
|
||||
]);
|
||||
|
||||
// NOTE: data_global is an array of dtype, we want a `u8*`.
|
||||
let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
|
||||
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
|
||||
|
||||
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
|
||||
|
||||
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims as u64);
|
||||
|
||||
let ndarray_shape =
|
||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
|
||||
|
||||
let ndarray_strides =
|
||||
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
|
||||
|
||||
let ndarray = Struct(NDArray).const_struct(
|
||||
generator,
|
||||
ctx.ctx,
|
||||
&[
|
||||
ndarray_data.value.as_basic_value_enum(),
|
||||
ndarray_itemsize.value.as_basic_value_enum(),
|
||||
ndarray_ndims.value.as_basic_value_enum(),
|
||||
ndarray_shape.value.as_basic_value_enum(),
|
||||
ndarray_strides.value.as_basic_value_enum(),
|
||||
],
|
||||
);
|
||||
|
||||
let ndarray_global = ctx.module.add_global(
|
||||
Struct(NDArray).get_type(generator, ctx.ctx),
|
||||
let ndarray = ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
);
|
||||
ndarray_global.set_initializer(&ndarray.value);
|
||||
ndarray.set_initializer(&value);
|
||||
|
||||
Ok(Some(ndarray_global.as_pointer_value().into()))
|
||||
Ok(Some(ndarray.as_pointer_value().into()))
|
||||
} else if ty_id == self.primitive_ids.tuple {
|
||||
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
|
||||
let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
|
||||
unreachable!()
|
||||
};
|
||||
let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() };
|
||||
|
||||
let tup_tys = ty.iter();
|
||||
let elements: &PyTuple = obj.downcast()?;
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
[features]
|
||||
test = []
|
||||
|
||||
[package]
|
||||
name = "nac3core"
|
||||
version = "0.1.0"
|
||||
authors = ["M-Labs"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
no-escape-analysis = []
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.13"
|
||||
crossbeam = "0.8"
|
||||
|
@ -14,8 +14,8 @@ indexmap = "2.2"
|
|||
parking_lot = "0.12"
|
||||
rayon = "1.8"
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
strum = "0.26"
|
||||
strum_macros = "0.26"
|
||||
strum = "0.26.2"
|
||||
strum_macros = "0.26.4"
|
||||
|
||||
[dependencies.inkwell]
|
||||
version = "0.4"
|
||||
|
|
|
@ -7,51 +7,39 @@ use std::{
|
|||
process::{Command, Stdio},
|
||||
};
|
||||
|
||||
fn main() {
|
||||
// Define relevant directories
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
let irrt_dir = Path::new("irrt");
|
||||
|
||||
fn compile_irrt(irrt_dir: &Path, out_dir: &Path) {
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
/*
|
||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||
*/
|
||||
let mut flags: Vec<&str> = vec![
|
||||
let flags: &[&str] = &[
|
||||
"--target=wasm32",
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
"-x",
|
||||
"c++",
|
||||
"-fno-discard-value-names",
|
||||
"-fno-exceptions",
|
||||
"-fno-rtti",
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => "-O0",
|
||||
Ok("release") => "-O3",
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
},
|
||||
"-emit-llvm",
|
||||
"-S",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-o",
|
||||
"-",
|
||||
"-Werror=return-type",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
"-o",
|
||||
"-",
|
||||
];
|
||||
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => {
|
||||
flags.push("-O0");
|
||||
flags.push("-DIRRT_DEBUG_ASSERT");
|
||||
}
|
||||
Ok("release") => {
|
||||
flags.push("-O3");
|
||||
}
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
}
|
||||
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap());
|
||||
|
||||
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||
|
||||
// Compile IRRT and capture the LLVM IR output
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(flags)
|
||||
.output()
|
||||
|
@ -65,17 +53,11 @@ fn main() {
|
|||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||
let mut filtered_output = String::with_capacity(output.len());
|
||||
|
||||
// Filter out irrelevant IR
|
||||
//
|
||||
// Regex:
|
||||
// - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
|
||||
// - `(?m:^declare.*?$)` captures LLVM `declare` lines
|
||||
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
|
||||
// - `(?m:^@.+?=.+$)` captures global constants
|
||||
let regex_filter = Regex::new(
|
||||
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
|
||||
)
|
||||
.unwrap();
|
||||
// (?ms:^define.*?\}$) to capture `define` blocks
|
||||
// (?m:^declare.*?$) to capture `declare` blocks
|
||||
// (?m:^%.+?=\s*type\s*\{.+?\}$) to capture `type` declarations
|
||||
let regex_filter =
|
||||
Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)").unwrap();
|
||||
for f in regex_filter.captures_iter(&output) {
|
||||
assert_eq!(f.len(), 1);
|
||||
filtered_output.push_str(&f[0]);
|
||||
|
@ -86,20 +68,14 @@ fn main() {
|
|||
.unwrap()
|
||||
.replace_all(&filtered_output, "");
|
||||
|
||||
// For debugging
|
||||
// Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
|
||||
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
|
||||
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
|
||||
if env::var(DEBUG_DUMP_IRRT).is_ok() {
|
||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
||||
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||
file.write_all(output.as_bytes()).unwrap();
|
||||
|
||||
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||
}
|
||||
|
||||
// Assemble the emitted and filtered IR to .bc
|
||||
// That .bc will be integrated into nac3core's codegen
|
||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||
.stdin(Stdio::piped())
|
||||
.arg("-o")
|
||||
|
@ -109,3 +85,50 @@ fn main() {
|
|||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||
assert!(llvm_as.wait().unwrap().success());
|
||||
}
|
||||
|
||||
fn compile_irrt_test(irrt_dir: &Path, out_dir: &Path) {
|
||||
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
|
||||
let exe_path = out_dir.join("irrt_test.out");
|
||||
|
||||
let flags: &[&str] = &[
|
||||
irrt_test_cpp_path.to_str().unwrap(),
|
||||
"-x",
|
||||
"c++",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
"-g",
|
||||
"-fno-discard-value-names",
|
||||
"-O0",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-Werror=return-type",
|
||||
"-lm", // for `tgamma()`, `lgamma()`
|
||||
"-o",
|
||||
exe_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
Command::new("clang-irrt-test")
|
||||
.args(flags)
|
||||
.output()
|
||||
.map(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap());
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
|
||||
let irrt_dir = Path::new("./irrt");
|
||||
|
||||
compile_irrt(irrt_dir, out_dir);
|
||||
|
||||
// https://github.com/rust-lang/cargo/issues/2549
|
||||
// `cargo test -F test` to also build `irrt_test.cpp
|
||||
if cfg!(feature = "test") {
|
||||
compile_irrt_test(irrt_dir, out_dir);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,15 +1,5 @@
|
|||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
#include <irrt/ndarray/array.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/ndarray/indexing.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
#include <irrt/ndarray/matmul.hpp>
|
||||
#include <irrt/ndarray/reshape.hpp>
|
||||
#include <irrt/ndarray/transpose.hpp>
|
||||
#include <irrt/original.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
#include "irrt_everything.hpp"
|
||||
|
||||
/*
|
||||
This file will be read by `clang-irrt` to conveniently produce LLVM IR for `nac3core/codegen`.
|
||||
*/
|
||||
|
|
|
@ -0,0 +1,437 @@
|
|||
#ifndef IRRT_DONT_TYPEDEF_INTS
|
||||
typedef _BitInt(8) int8_t;
|
||||
typedef unsigned _BitInt(8) uint8_t;
|
||||
typedef _BitInt(32) int32_t;
|
||||
typedef unsigned _BitInt(32) uint32_t;
|
||||
typedef _BitInt(64) int64_t;
|
||||
typedef unsigned _BitInt(64) uint64_t;
|
||||
#endif
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
typedef uint32_t NDIndex;
|
||||
// The type of an index or a value describing the length of a range/slice is
|
||||
// always `int32_t`.
|
||||
typedef int32_t SliceIndex;
|
||||
|
||||
template <typename T>
|
||||
static T max(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T min(T a, T b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
static T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static SizeT __nac3_ndarray_calc_size_impl(
|
||||
const SizeT *list_data,
|
||||
SizeT list_len,
|
||||
SizeT begin_idx,
|
||||
SizeT end_idx
|
||||
) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_nd_indices_impl(
|
||||
SizeT index,
|
||||
const SizeT *dims,
|
||||
SizeT num_dims,
|
||||
NDIndex *idxs
|
||||
) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static SizeT __nac3_ndarray_flatten_index_impl(
|
||||
const SizeT *dims,
|
||||
SizeT num_dims,
|
||||
const NDIndex *indices,
|
||||
SizeT num_indices
|
||||
) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_broadcast_impl(
|
||||
const SizeT *lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT *rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT *out_dims
|
||||
) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT *out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_broadcast_idx_impl(
|
||||
const SizeT *src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
static void __nac3_ndarray_strides_from_shape_impl(
|
||||
SizeT ndims,
|
||||
SizeT *shape,
|
||||
SizeT *dst_strides
|
||||
) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
int dim_i = ndims - i - 1;
|
||||
dst_strides[dim_i] = stride_product;
|
||||
stride_product *= shape[dim_i];
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t *dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t *src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(
|
||||
const uint32_t *list_data,
|
||||
uint32_t list_len,
|
||||
uint32_t begin_idx,
|
||||
uint32_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(
|
||||
const uint64_t *list_data,
|
||||
uint64_t list_len,
|
||||
uint64_t begin_idx,
|
||||
uint64_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(
|
||||
uint32_t index,
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(
|
||||
uint64_t index,
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint32_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint64_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(
|
||||
const uint32_t *lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t *rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t *out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(
|
||||
const uint64_t *lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t *rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t *out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(
|
||||
const uint32_t *src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(
|
||||
const uint64_t *src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_strides_from_shape(uint32_t ndims, uint32_t* shape, uint32_t* dst_strides) {
|
||||
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_strides_from_shape64(uint64_t ndims, uint64_t* shape, uint64_t* dst_strides) {
|
||||
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
|
||||
}
|
||||
}
|
|
@ -1,9 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
template <typename SizeT> struct CSlice
|
||||
{
|
||||
uint8_t *base;
|
||||
SizeT len;
|
||||
};
|
|
@ -1,20 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
namespace cstr
|
||||
{
|
||||
/**
|
||||
* @brief Implementation of `strlen()`.
|
||||
*/
|
||||
uint32_t length(const char *str)
|
||||
{
|
||||
uint32_t length = 0;
|
||||
while (*str != '\0')
|
||||
{
|
||||
length++;
|
||||
str++;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
} // namespace cstr
|
|
@ -1,21 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||
#else
|
||||
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||
#endif
|
||||
|
||||
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
|
||||
"IRRT debug assert failed: " msg, param1, param2, param3);
|
||||
|
||||
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
|
||||
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||
}
|
||||
|
||||
#define debug_assert(SizeT, expr) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
|
||||
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||
}
|
|
@ -1,80 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/cslice.hpp>
|
||||
#include <irrt/cstr_util.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
/**
|
||||
* @brief The int type of ARTIQ exception IDs.
|
||||
*/
|
||||
typedef int32_t ExceptionId;
|
||||
|
||||
/*
|
||||
* Set of exceptions C++ IRRT can use.
|
||||
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||
*/
|
||||
extern "C"
|
||||
{
|
||||
ExceptionId EXN_INDEX_ERROR;
|
||||
ExceptionId EXN_VALUE_ERROR;
|
||||
ExceptionId EXN_ASSERTION_ERROR;
|
||||
ExceptionId EXN_TYPE_ERROR;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Extern function to `__nac3_raise`
|
||||
*
|
||||
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||
*/
|
||||
extern "C" void __nac3_raise(void *err);
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief NAC3's Exception struct
|
||||
*/
|
||||
template <typename SizeT> struct Exception
|
||||
{
|
||||
ExceptionId id;
|
||||
CSlice<SizeT> filename;
|
||||
int32_t line;
|
||||
int32_t column;
|
||||
CSlice<SizeT> function;
|
||||
CSlice<SizeT> msg;
|
||||
int64_t params[3];
|
||||
};
|
||||
|
||||
const int64_t NO_PARAM = 0;
|
||||
|
||||
template <typename SizeT>
|
||||
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
|
||||
int64_t param0, int64_t param1, int64_t param2)
|
||||
{
|
||||
Exception<SizeT> e = {
|
||||
.id = id,
|
||||
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
|
||||
.line = line,
|
||||
.column = 0,
|
||||
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
|
||||
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
|
||||
};
|
||||
e.params[0] = param0;
|
||||
e.params[1] = param1;
|
||||
e.params[2] = param2;
|
||||
__nac3_raise((void *)&e);
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||
* @param SizeT The runtime `size_t` type.
|
||||
* @param id The ID of the exception to raise.
|
||||
* @param msg A global constant C-string of the error message.
|
||||
*
|
||||
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
|
||||
* `NO_PARAM` to indicate they are unused.
|
||||
*/
|
||||
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
||||
} // namespace
|
|
@ -1,8 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
|
@ -1,19 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template <typename SizeT> struct List
|
||||
{
|
||||
uint8_t *items;
|
||||
SizeT len;
|
||||
};
|
||||
} // namespace
|
|
@ -1,14 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> const T &max(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T> const T &min(const T &a, const T &b)
|
||||
{
|
||||
return a > b ? b : a;
|
||||
}
|
||||
} // namespace
|
|
@ -1,130 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace array
|
||||
{
|
||||
template <typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
if (shape[axis] == -1)
|
||||
{
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len)
|
||||
{
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims)
|
||||
{
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
|
||||
{
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL)
|
||||
{
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray))
|
||||
{
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims)
|
||||
{
|
||||
// `list` has type `list[ItemType]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
}
|
||||
else
|
||||
{
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT> **lists = (List<SizeT> **)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++)
|
||||
{
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
|
||||
{
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace array
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
|
||||
{
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
|
||||
{
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
|
@ -1,380 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace basic
|
||||
{
|
||||
/**
|
||||
* @brief Asserts that `shape` does not contain negative dimensions.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape to check on
|
||||
*/
|
||||
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
|
||||
{
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
if (shape[axis] < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"negative dimensions are not allowed; axis {0} "
|
||||
"has dimension {1}",
|
||||
axis, shape[axis], NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
|
||||
*
|
||||
* This function throws error messages for output shape mismatches.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
|
||||
const SizeT *output_shape)
|
||||
{
|
||||
if (ndarray_ndims != output_ndims)
|
||||
{
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||
output_ndims, ndarray_ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
|
||||
{
|
||||
if (ndarray_shape[axis] != output_shape[axis])
|
||||
{
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"Mismatched dimensions on axis {0}, output has "
|
||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||
axis, output_shape[axis], ndarray_shape[axis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of elements of an ndarray given its shape.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape of the ndarray
|
||||
*/
|
||||
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
|
||||
{
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||
*
|
||||
* @param ndims Number of elements in `shape` and `indices`
|
||||
* @param shape The shape of the ndarray
|
||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||
* @param nth The index of the element of interest.
|
||||
*/
|
||||
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
|
||||
{
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = ndims - i - 1;
|
||||
SizeT dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an `ndarray`
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.size`
|
||||
*/
|
||||
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return of the number of its content of an `ndarray`.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||
*/
|
||||
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
return size(ndarray) * ndarray->itemsize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.__len__`.
|
||||
*
|
||||
* @param dst_length The returned result
|
||||
*/
|
||||
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
// numpy prohibits `__len__` on unsized objects
|
||||
if (ndarray->ndims == 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
else
|
||||
{
|
||||
return ndarray->shape[0];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||
*
|
||||
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
*/
|
||||
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
|
||||
{
|
||||
// Other references:
|
||||
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
|
||||
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||
//
|
||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||
// the following must hold:
|
||||
//
|
||||
// strides[-1] == itemsize
|
||||
// strides[i] == shape[i+1] * strides[i + 1]
|
||||
// [...]
|
||||
// According to these rules, a 0- or 1-dimensional array is either both
|
||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||
// there are exceptions for arrays with zero or one item, in the first
|
||||
// case the check is relaxed up to and including the first dimension
|
||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||
// can be true for all dimensions and both flags are set.
|
||||
|
||||
if (ndarray->ndims == 0)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 1; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis_i = ndarray->ndims - i - 1;
|
||||
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the element indexed by `indices`.
|
||||
*/
|
||||
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||
{
|
||||
uint8_t *element = ndarray->data;
|
||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||
element += indices[dim_i] * ndarray->strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convenience function. Like `get_pelement_by_indices` but
|
||||
* reinterprets the element pointer.
|
||||
*/
|
||||
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
|
||||
{
|
||||
return (T *)get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
|
||||
{
|
||||
uint8_t *element = ndarray->data;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
SizeT dim = ndarray->shape[axis];
|
||||
element += ndarray->strides[axis] * (nth % dim);
|
||||
nth /= dim;
|
||||
}
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the strides of an ndarray given an ndarray `shape`
|
||||
* and assuming that the ndarray is fully c-contagious.
|
||||
*
|
||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||
*/
|
||||
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
|
||||
{
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++)
|
||||
{
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||
stride_product *= ndarray->shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set an element in `ndarray`.
|
||||
*
|
||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||
*/
|
||||
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
|
||||
{
|
||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||
*
|
||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||
*/
|
||||
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
// TODO: Make this faster with memcpy
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||
|
||||
for (SizeT i = 0; i < size(src_ndarray); i++)
|
||||
{
|
||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
|
||||
}
|
||||
}
|
||||
} // namespace basic
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::basic;
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
|
||||
{
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
|
||||
{
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
|
||||
int32_t output_ndims, const int32_t *output_shape)
|
||||
{
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
|
||||
int64_t output_ndims, const int64_t *output_shape)
|
||||
{
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return len(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
|
||||
{
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
|
||||
{
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
|
||||
{
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
|
||||
{
|
||||
return get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
|
||||
{
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
|
||||
{
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -1,188 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename SizeT> struct ShapeEntry
|
||||
{
|
||||
SizeT ndims;
|
||||
SizeT *shape;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace broadcast
|
||||
{
|
||||
/**
|
||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||
*
|
||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
*/
|
||||
template <typename SizeT>
|
||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
|
||||
{
|
||||
if (src_ndims > target_ndims)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 0; i < src_ndims; i++)
|
||||
{
|
||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||
if (!(src_dim == 1 || target_dim == src_dim))
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||
*
|
||||
* @param num_shapes Number of entries in `shapes`
|
||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||
* @param dst_ndims The length of `dst_shape`.
|
||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||
* of `np.broadcast_shapes` and write it here.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
|
||||
{
|
||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
|
||||
{
|
||||
dst_shape[dst_axis] = 1;
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
SizeT max_ndims_found = 0;
|
||||
#endif
|
||||
|
||||
for (SizeT i = 0; i < num_shapes; i++)
|
||||
{
|
||||
ShapeEntry<SizeT> entry = shapes[i];
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||
#endif
|
||||
|
||||
for (SizeT j = 0; j < entry.ndims; j++)
|
||||
{
|
||||
SizeT entry_axis = entry.ndims - j - 1;
|
||||
SizeT dst_axis = dst_ndims - j - 1;
|
||||
|
||||
SizeT entry_dim = entry.shape[entry_axis];
|
||||
SizeT dst_dim = dst_shape[dst_axis];
|
||||
|
||||
if (dst_dim == 1)
|
||||
{
|
||||
dst_shape[dst_axis] = entry_dim;
|
||||
}
|
||||
else if (entry_dim == 1 || entry_dim == dst_dim)
|
||||
{
|
||||
// Do nothing
|
||||
}
|
||||
else
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"shape mismatch: objects cannot be broadcast "
|
||||
"to a single shape.",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||
*
|
||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||
* and return the result by modifying `dst_ndarray`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is unchanged.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||
*/
|
||||
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||
src_ndarray->shape))
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
|
||||
{
|
||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
|
||||
{
|
||||
// Freeze the steps in-place
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace broadcast
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::broadcast;
|
||||
|
||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
|
||||
int32_t *dst_shape)
|
||||
{
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
|
||||
int64_t *dst_shape)
|
||||
{
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief The NDArray object
|
||||
*
|
||||
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
*/
|
||||
template <typename SizeT> struct NDArray
|
||||
{
|
||||
/**
|
||||
* @brief The underlying data this `ndarray` is pointing to.
|
||||
*
|
||||
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
|
||||
*/
|
||||
uint8_t *data;
|
||||
|
||||
/**
|
||||
* @brief The number of bytes of a single element in `data`.
|
||||
*/
|
||||
SizeT itemsize;
|
||||
|
||||
/**
|
||||
* @brief The number of dimensions of this shape.
|
||||
*/
|
||||
SizeT ndims;
|
||||
|
||||
/**
|
||||
* @brief The NDArray shape, with length equal to `ndims`.
|
||||
*
|
||||
* Note that it may contain 0.
|
||||
*/
|
||||
SizeT *shape;
|
||||
|
||||
/**
|
||||
* @brief Array strides, with length equal to `ndims`
|
||||
*
|
||||
* The stride values are in units of bytes, not number of elements.
|
||||
*
|
||||
* Note that `strides` can have negative values.
|
||||
*/
|
||||
SizeT *strides;
|
||||
};
|
||||
} // namespace
|
|
@ -1,242 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
typedef uint8_t NDIndexType;
|
||||
|
||||
/**
|
||||
* @brief A single element index
|
||||
*
|
||||
* `data` points to a `int32_t`.
|
||||
*/
|
||||
|
||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||
/**
|
||||
* @brief A slice index
|
||||
*
|
||||
* `data` points to a `Slice<int32_t>`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||
|
||||
/**
|
||||
* @brief `np.newaxis` / `None`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||
|
||||
/**
|
||||
* @brief `Ellipsis` / `...`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||
|
||||
/**
|
||||
* @brief An index used in ndarray indexing
|
||||
*/
|
||||
struct NDIndex
|
||||
{
|
||||
/**
|
||||
* @brief Enum tag to specify the type of index.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
NDIndexType type;
|
||||
|
||||
/**
|
||||
* @brief The accompanying data associated with `type`.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
uint8_t *data;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace indexing
|
||||
{
|
||||
/**
|
||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
*
|
||||
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
|
||||
*
|
||||
* This function also does proper assertions on `indices` to check for out of bounds access.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||
* indexing `src_ndarray` with `indices`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||
*
|
||||
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||
* @param src_ndarray The NDArray to be indexed.
|
||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
|
||||
{
|
||||
// Validate `indices`.
|
||||
|
||||
// Expected value of `dst_ndarray->ndims`.
|
||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||
SizeT num_indexed = 0;
|
||||
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
|
||||
SizeT num_ellipsis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_indices; i++)
|
||||
{
|
||||
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||
{
|
||||
expected_dst_ndims--;
|
||||
num_indexed++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
|
||||
{
|
||||
num_indexed++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
|
||||
{
|
||||
expected_dst_ndims++;
|
||||
}
|
||||
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
|
||||
{
|
||||
num_ellipsis++;
|
||||
if (num_ellipsis > 1)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||
|
||||
if (src_ndarray->ndims - num_indexed < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"too many indices for array: array is {0}-dimensional, "
|
||||
"but {1} were indexed",
|
||||
src_ndarray->ndims, num_indices, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
SizeT src_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (int32_t i = 0; i < num_indices; i++)
|
||||
{
|
||||
const NDIndex *index = &indices[i];
|
||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
|
||||
{
|
||||
SizeT input = (SizeT) * ((int32_t *)index->data);
|
||||
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
|
||||
|
||||
if (k == -1)
|
||||
{
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"index {0} is out of bounds for axis {1} "
|
||||
"with size {2}",
|
||||
input, src_axis, src_ndarray->shape[src_axis]);
|
||||
}
|
||||
|
||||
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
||||
|
||||
src_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_SLICE)
|
||||
{
|
||||
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
|
||||
|
||||
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||
|
||||
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
dst_ndarray->shape[dst_axis] = 1;
|
||||
|
||||
dst_axis++;
|
||||
}
|
||||
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
|
||||
{
|
||||
// The number of ':' entries this '...' implies.
|
||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||
|
||||
for (SizeT j = 0; j < ellipsis_size; j++)
|
||||
{
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
|
||||
{
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||
}
|
||||
} // namespace indexing
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::indexing;
|
||||
|
||||
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
|
||||
NDArray<int32_t> *dst_ndarray)
|
||||
{
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
|
||||
NDArray<int64_t> *dst_ndarray)
|
||||
{
|
||||
index(num_indices, indices, src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -1,142 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
/**
|
||||
* @brief Helper struct to enumerate through all indices under a shape.
|
||||
*
|
||||
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
|
||||
* - `[0, 0]`
|
||||
* - `[0, 1]`
|
||||
* - `[1, 0]`
|
||||
* - `[1, 1]`
|
||||
* - `[2, 0]`
|
||||
* - `[2, 1]`
|
||||
* - end.
|
||||
*
|
||||
* Interesting cases:
|
||||
* - If ndims == 0, there is one enumeration.
|
||||
* - If shape contains zeroes, there are no enumerations.
|
||||
*/
|
||||
template <typename SizeT> struct NDIter
|
||||
{
|
||||
SizeT ndims;
|
||||
SizeT *shape;
|
||||
SizeT *strides;
|
||||
|
||||
/**
|
||||
* @brief The current indices.
|
||||
*
|
||||
* Must be allocated by the caller.
|
||||
*/
|
||||
SizeT *indices;
|
||||
|
||||
/**
|
||||
* @brief The nth (0-based) index of the current indices.
|
||||
*/
|
||||
SizeT nth;
|
||||
|
||||
/**
|
||||
* @brief Pointer to the current element.
|
||||
*/
|
||||
uint8_t *element;
|
||||
|
||||
/**
|
||||
* @brief The product of shape.
|
||||
*/
|
||||
SizeT size;
|
||||
|
||||
// TODO:: There is something called backstrides to speedup iteration.
|
||||
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||
// Maybe LLVM is clever and knows how to optimize.
|
||||
|
||||
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
|
||||
{
|
||||
this->ndims = ndims;
|
||||
this->shape = shape;
|
||||
this->strides = strides;
|
||||
|
||||
this->indices = indices;
|
||||
this->element = element;
|
||||
|
||||
// Compute size and backstrides
|
||||
this->size = 1;
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
this->size *= shape[i];
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
indices[axis] = 0;
|
||||
nth = 0;
|
||||
}
|
||||
|
||||
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
|
||||
{
|
||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
|
||||
}
|
||||
|
||||
bool has_next()
|
||||
{
|
||||
return nth < size;
|
||||
}
|
||||
|
||||
void next()
|
||||
{
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = ndims - i - 1;
|
||||
indices[axis]++;
|
||||
if (indices[axis] >= shape[axis])
|
||||
{
|
||||
indices[axis] = 0;
|
||||
|
||||
// TODO: Can be optimized with backstrides.
|
||||
element -= strides[axis] * (shape[axis] - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
element += strides[axis];
|
||||
break;
|
||||
}
|
||||
}
|
||||
nth++;
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
|
||||
{
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
|
||||
{
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
|
||||
{
|
||||
return iter->has_next();
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
|
||||
{
|
||||
return iter->has_next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next(NDIter<int32_t> *iter)
|
||||
{
|
||||
iter->next();
|
||||
}
|
||||
|
||||
void __nac3_nditer_next64(NDIter<int64_t> *iter)
|
||||
{
|
||||
iter->next();
|
||||
}
|
||||
}
|
|
@ -1,92 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
|
||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace matmul
|
||||
{
|
||||
|
||||
/**
|
||||
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||
*
|
||||
* Example:
|
||||
* Suppose `a_shape == [1, 97, 4, 2]`
|
||||
* and `b_shape == [99, 98, 1, 2, 5]`,
|
||||
*
|
||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||
* ^^^^^^^^^^ ^^^^
|
||||
* (broadcasted) (4x2 @ 2x5 => 4x5)
|
||||
*
|
||||
* @param a_ndims Length of `a_shape`.
|
||||
* @param a_shape Shape of `a`.
|
||||
* @param b_ndims Length of `b_shape`.
|
||||
* @param b_shape Shape of `b`.
|
||||
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
|
||||
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
|
||||
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
|
||||
{
|
||||
debug_assert(SizeT, a_ndims >= 2);
|
||||
debug_assert(SizeT, b_ndims >= 2);
|
||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||
|
||||
// Check that a and b are compatible for matmul
|
||||
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
|
||||
{
|
||||
// This is a custom error message. Different from NumPy.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
|
||||
}
|
||||
|
||||
const SizeT num_entries = 2;
|
||||
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
|
||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||
|
||||
// TODO: Optimize this
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
|
||||
|
||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
}
|
||||
} // namespace matmul
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::matmul;
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
|
||||
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
|
||||
int32_t *dst_shape)
|
||||
{
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
|
||||
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
|
||||
int64_t *dst_shape)
|
||||
{
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
}
|
|
@ -1,125 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace reshape
|
||||
{
|
||||
/**
|
||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||
*
|
||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||
* modified to contain the resolved dimension.
|
||||
*
|
||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||
*
|
||||
* @param size The `.size` of `<ndarray>`
|
||||
* @param new_ndims Number of elements in `new_shape`
|
||||
* @param new_shape Target shape to reshape to
|
||||
*/
|
||||
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
|
||||
{
|
||||
// Is there a -1 in `new_shape`?
|
||||
bool neg1_exists = false;
|
||||
// Location of -1, only initialized if `neg1_exists` is true
|
||||
SizeT neg1_axis_i;
|
||||
// The computed ndarray size of `new_shape`
|
||||
SizeT new_size = 1;
|
||||
|
||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
|
||||
{
|
||||
SizeT dim = new_shape[axis_i];
|
||||
if (dim < 0)
|
||||
{
|
||||
if (dim == -1)
|
||||
{
|
||||
if (neg1_exists)
|
||||
{
|
||||
// Multiple `-1` found. Throw an error.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
else
|
||||
{
|
||||
neg1_exists = true;
|
||||
neg1_axis_i = axis_i;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// TODO: What? In `np.reshape` any negative dimensions is
|
||||
// treated like its `-1`.
|
||||
//
|
||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||
//
|
||||
// It is not documented by numpy.
|
||||
// Throw an error for now...
|
||||
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
new_size *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool can_reshape;
|
||||
if (neg1_exists)
|
||||
{
|
||||
// Let `x` be the unknown dimension
|
||||
// Solve `x * <new_size> = <size>`
|
||||
if (new_size == 0 && size == 0)
|
||||
{
|
||||
// `x` has infinitely many solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else if (new_size == 0 && size != 0)
|
||||
{
|
||||
// `x` has no solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else if (size % new_size != 0)
|
||||
{
|
||||
// `x` has no integer solutions
|
||||
can_reshape = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
can_reshape = true;
|
||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
can_reshape = (new_size == size);
|
||||
}
|
||||
|
||||
if (!can_reshape)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
}
|
||||
} // namespace reshape
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
|
||||
{
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
|
||||
{
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
}
|
|
@ -1,155 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
/*
|
||||
* Notes on `np.transpose(<array>, <axes>)`
|
||||
*
|
||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||
* but it is not documented in numpy.
|
||||
*
|
||||
* Supporting it for now.
|
||||
*/
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace ndarray
|
||||
{
|
||||
namespace transpose
|
||||
{
|
||||
/**
|
||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||
*
|
||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||
* is specified but the user, use this function to do assertions on it.
|
||||
*
|
||||
* @param ndims The number of dimensions of `<array>`
|
||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||
* @param axes The user specified `<axes>`.
|
||||
*/
|
||||
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
|
||||
{
|
||||
if (ndims != num_axes)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Optimize this
|
||||
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
axe_specified[i] = false;
|
||||
|
||||
for (SizeT i = 0; i < ndims; i++)
|
||||
{
|
||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||
if (axis == -1)
|
||||
{
|
||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (axe_specified[axis])
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
axe_specified[axis] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||
*
|
||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||
*
|
||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||
*
|
||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged
|
||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||
*
|
||||
* @param src_ndarray The NDArray to build a transpose view on
|
||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
|
||||
{
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||
const auto ndims = src_ndarray->ndims;
|
||||
|
||||
if (axes != nullptr)
|
||||
assert_transpose_axes(ndims, num_axes, axes);
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||
if (axes == nullptr)
|
||||
{
|
||||
// `np.transpose(<array>, axes=None)`
|
||||
|
||||
/*
|
||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||
* is reversing the order of strides and shape.
|
||||
*
|
||||
* This is a fast implementation to handle this special (but very common) case.
|
||||
*/
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
// `np.transpose(<array>, <axes>)`
|
||||
|
||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||
for (SizeT axis = 0; axis < ndims; axis++)
|
||||
{
|
||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace transpose
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
using namespace ndarray::transpose;
|
||||
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
|
||||
const int32_t *axes)
|
||||
{
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
|
||||
int64_t num_axes, const int64_t *axes)
|
||||
{
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
}
|
|
@ -1,215 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace
|
||||
{
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T> T __nac3_int_exp_impl(T base, T exp)
|
||||
{
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do
|
||||
{
|
||||
if (exp & 1)
|
||||
{
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) \
|
||||
{ \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
|
||||
{
|
||||
if (i < 0)
|
||||
{
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else if (i > len)
|
||||
{
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
|
||||
{
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0)
|
||||
{
|
||||
return ((diff - 1) / step) + 1;
|
||||
}
|
||||
else if (diff < 0 && step < 0)
|
||||
{
|
||||
return ((diff + 1) / step) + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
|
||||
SliceIndex src_arr_len, const SliceIndex size)
|
||||
{
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1)
|
||||
{
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0)
|
||||
{
|
||||
/* dropping */
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||
max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca)
|
||||
{
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
|
||||
{
|
||||
/* for constant optimization */
|
||||
if (size == 1)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
}
|
||||
else if (size == 4)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
}
|
||||
else if (size == 8)
|
||||
{
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start)
|
||||
{
|
||||
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x)
|
||||
{
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x)
|
||||
{
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z)
|
||||
{
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z))
|
||||
{
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x)
|
||||
{
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x))
|
||||
{
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
} // extern "C"
|
|
@ -1,224 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_types.hpp>
|
||||
#include <irrt/math_util.hpp>
|
||||
|
||||
namespace
|
||||
{
|
||||
namespace range
|
||||
{
|
||||
template <typename T> T len(T start, T stop, T step)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
|
||||
if (step > 0 && start < stop)
|
||||
return 1 + (stop - 1 - start) / step;
|
||||
else if (step < 0 && start > stop)
|
||||
return 1 + (start - 1 - stop) / (-step);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
} // namespace range
|
||||
|
||||
/**
|
||||
* @brief A Python range.
|
||||
*/
|
||||
template <typename T> struct Range
|
||||
{
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
|
||||
/**
|
||||
* @brief Calculate the `len()` of this range.
|
||||
*/
|
||||
template <typename SizeT> T len()
|
||||
{
|
||||
debug_assert(SizeT, step != 0);
|
||||
return range::len(start, stop, step);
|
||||
}
|
||||
};
|
||||
|
||||
namespace slice
|
||||
{
|
||||
/**
|
||||
* @brief Resolve a slice index under a given length like Python indexing.
|
||||
*
|
||||
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
|
||||
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
|
||||
*
|
||||
* If `length` is 0, 0 is returned for any value of `index`.
|
||||
*
|
||||
* If `index` is out of bounds, clamps the returned value between `0` and
|
||||
* `length - 1` (inclusive).
|
||||
*
|
||||
*/
|
||||
template <typename T> T resolve_index_in_length_clamped(T length, T index)
|
||||
{
|
||||
if (index < 0)
|
||||
{
|
||||
return max<T>(length + index, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
return min<T>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `resolve_index_in_length_clamped`, but returns `-1` if `index` is out of bounds.
|
||||
*/
|
||||
template <typename T> T resolve_index_in_length(T length, T index)
|
||||
{
|
||||
T resolved = index < 0 ? length + index : index;
|
||||
if (0 <= resolved && resolved < length)
|
||||
{
|
||||
return resolved;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve a slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template <typename T>
|
||||
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
|
||||
T *range_start, T *range_stop, T *range_step)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
*range_step = step_defined ? step : 1;
|
||||
bool step_is_negative = *range_step < 0;
|
||||
|
||||
T lower, upper;
|
||||
if (step_is_negative)
|
||||
{
|
||||
lower = -1;
|
||||
upper = length - 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
lower = 0;
|
||||
upper = length;
|
||||
}
|
||||
|
||||
if (start_defined)
|
||||
{
|
||||
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
|
||||
}
|
||||
else
|
||||
{
|
||||
*range_start = step_is_negative ? upper : lower;
|
||||
}
|
||||
|
||||
if (stop_defined)
|
||||
{
|
||||
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
|
||||
}
|
||||
else
|
||||
{
|
||||
*range_stop = step_is_negative ? lower : upper;
|
||||
}
|
||||
}
|
||||
} // namespace slice
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with **unresolved** indices.
|
||||
*/
|
||||
template <typename T> struct Slice
|
||||
{
|
||||
bool start_defined;
|
||||
T start;
|
||||
|
||||
bool stop_defined;
|
||||
T stop;
|
||||
|
||||
bool step_defined;
|
||||
T step;
|
||||
|
||||
Slice()
|
||||
{
|
||||
this->reset();
|
||||
}
|
||||
|
||||
void reset()
|
||||
{
|
||||
this->start_defined = false;
|
||||
this->stop_defined = false;
|
||||
this->step_defined = false;
|
||||
}
|
||||
|
||||
void set_start(T start)
|
||||
{
|
||||
this->start_defined = true;
|
||||
this->start = start;
|
||||
}
|
||||
|
||||
void set_stop(T stop)
|
||||
{
|
||||
this->stop_defined = true;
|
||||
this->stop = stop;
|
||||
}
|
||||
|
||||
void set_step(T step)
|
||||
{
|
||||
this->step_defined = true;
|
||||
this->step = step;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve this slice as a range.
|
||||
*
|
||||
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
|
||||
*/
|
||||
template <typename SizeT> Range<T> indices(T length)
|
||||
{
|
||||
// Reference: https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
|
||||
debug_assert(SizeT, length >= 0);
|
||||
|
||||
Range<T> result;
|
||||
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
|
||||
&result.stop, &result.step);
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `.indices()` but with assertions.
|
||||
*/
|
||||
template <typename SizeT> Range<T> indices_checked(T length)
|
||||
{
|
||||
// TODO: Switch to `SizeT length`
|
||||
|
||||
if (length < 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
if (this->step_defined && this->step == 0)
|
||||
{
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
return this->indices<SizeT>(length);
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C"
|
||||
{
|
||||
int32_t __nac3_range_len_i32(int32_t start, int32_t stop, int32_t step)
|
||||
{
|
||||
range::len<int32_t>(start, stop, step);
|
||||
}
|
||||
|
||||
int32_t __nac3_range_len_i3264(int32_t start, int32_t stop, int32_t step)
|
||||
{
|
||||
range::len<int64_t>(start, stop, step);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,216 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
/*
|
||||
This header contains IRRT implementations
|
||||
that do not deserved to be categorized (e.g., into numpy, etc.)
|
||||
|
||||
Check out other *.hpp files before including them here!!
|
||||
*/
|
||||
|
||||
// The type of an index or a value describing the length of a range/slice is
|
||||
// always `int32_t`.
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t *dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t *src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_basic.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
#include "irrt_numpy_ndarray.hpp"
|
||||
|
||||
/*
|
||||
All IRRT implementations.
|
||||
|
||||
We don't have any pre-compiled objects, so we are writing all implementations in headers and
|
||||
concatenate them with `#include` into one massive source file that contains all the IRRT stuff.
|
||||
*/
|
|
@ -0,0 +1,466 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
|
||||
/*
|
||||
NDArray-related implementations.
|
||||
`*/
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
|
||||
namespace {
|
||||
namespace ndarray_util {
|
||||
template <typename SizeT>
|
||||
static void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
||||
for (int32_t i = 0; i < ndims; i++) {
|
||||
int32_t dim_i = ndims - i - 1;
|
||||
int32_t dim = shape[dim_i];
|
||||
|
||||
indices[dim_i] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the strides of an ndarray given an ndarray `shape`
|
||||
// and assuming that the ndarray is *fully C-contagious*.
|
||||
//
|
||||
// You might want to read up on https://ajcr.net/stride-guide-part-1/.
|
||||
template <typename SizeT>
|
||||
static void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
int dim_i = ndims - i - 1;
|
||||
dst_strides[dim_i] = stride_product * itemsize;
|
||||
stride_product *= shape[dim_i];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the size/# of elements of an ndarray given its shape
|
||||
template <typename SizeT>
|
||||
static SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) size *= shape[dim_i];
|
||||
return size;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static bool can_broadcast_shape_to(
|
||||
const SizeT target_ndims,
|
||||
const SizeT *target_shape,
|
||||
const SizeT src_ndims,
|
||||
const SizeT *src_shape
|
||||
) {
|
||||
/*
|
||||
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
|
||||
This function handles this example:
|
||||
```
|
||||
Image (3d array): 256 x 256 x 3
|
||||
Scale (1d array): 3
|
||||
Result (3d array): 256 x 256 x 3
|
||||
```
|
||||
|
||||
Other interesting examples to consider:
|
||||
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
|
||||
- `can_broadcast_shape_to([3], [3, 1]) == false`
|
||||
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
|
||||
|
||||
In cases when the shapes contain zero(es):
|
||||
- `can_broadcast_shape_to([0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0], [2]) == false`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
|
||||
*/
|
||||
|
||||
// This is essentially doing the following in Python:
|
||||
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
|
||||
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
|
||||
SizeT target_dim_i = target_ndims - i - 1;
|
||||
SizeT src_dim_i = src_ndims - i - 1;
|
||||
|
||||
bool target_dim_exists = target_dim_i >= 0;
|
||||
bool src_dim_exists = src_dim_i >= 0;
|
||||
|
||||
SizeT target_dim = target_dim_exists ? target_shape[target_dim_i] : 1;
|
||||
SizeT src_dim = src_dim_exists ? src_shape[src_dim_i] : 1;
|
||||
|
||||
bool ok = src_dim == 1 || target_dim == src_dim;
|
||||
if (!ok) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
typedef uint8_t NDSliceType;
|
||||
extern "C" {
|
||||
const NDSliceType INPUT_SLICE_TYPE_INDEX = 0;
|
||||
const NDSliceType INPUT_SLICE_TYPE_SLICE = 1;
|
||||
}
|
||||
|
||||
struct NDSlice {
|
||||
// A poor-man's `std::variant<int, UserRange>`
|
||||
NDSliceType type;
|
||||
|
||||
/*
|
||||
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange`
|
||||
*/
|
||||
uint8_t *slice;
|
||||
};
|
||||
|
||||
namespace ndarray_util {
|
||||
template<typename SizeT>
|
||||
SizeT deduce_ndims_after_slicing(SizeT ndims, SizeT num_slices, const NDSlice *slices) {
|
||||
irrt_assert(num_slices <= ndims);
|
||||
|
||||
SizeT final_ndims = ndims;
|
||||
for (SizeT i = 0; i < num_slices; i++) {
|
||||
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
|
||||
final_ndims--; // An integer slice demotes the rank by 1
|
||||
}
|
||||
}
|
||||
return final_ndims;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
struct NDArrayIndicesIter {
|
||||
SizeT ndims;
|
||||
const SizeT *shape;
|
||||
SizeT *indices;
|
||||
|
||||
void set_indices_zero() {
|
||||
__builtin_memset(indices, 0, sizeof(SizeT) * ndims);
|
||||
}
|
||||
|
||||
void next() {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT dim_i = ndims - i - 1;
|
||||
|
||||
indices[dim_i]++;
|
||||
if (indices[dim_i] < shape[dim_i]) {
|
||||
break;
|
||||
} else {
|
||||
indices[dim_i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
|
||||
//
|
||||
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
|
||||
//
|
||||
// Some resources you might find helpful:
|
||||
// - The official numpy implementations:
|
||||
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
// - On strides (about reshaping, slicing, C-contagiousness, etc)
|
||||
// - https://ajcr.net/stride-guide-part-1/.
|
||||
// - https://ajcr.net/stride-guide-part-2/.
|
||||
// - https://ajcr.net/stride-guide-part-3/.
|
||||
template <typename SizeT>
|
||||
struct NDArray {
|
||||
// The underlying data this `ndarray` is pointing to.
|
||||
//
|
||||
// NOTE: Formally this should be of type `void *`, but clang
|
||||
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
|
||||
// so we will put `uint8_t *` here for clarity.
|
||||
uint8_t *data;
|
||||
|
||||
// The number of bytes of a single element in `data`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT itemsize;
|
||||
|
||||
// The number of dimensions of this shape.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT ndims;
|
||||
|
||||
// Array shape, with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
//
|
||||
// NOTE: `shape` can contain 0.
|
||||
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
|
||||
SizeT *shape;
|
||||
|
||||
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `signed`.
|
||||
//
|
||||
// NOTE: `strides` can have negative numbers.
|
||||
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
|
||||
SizeT *strides;
|
||||
|
||||
// Calculate the size/# of elements of an `ndarray`.
|
||||
// This function corresponds to `np.size(<ndarray>)` or `ndarray.size`
|
||||
SizeT size() {
|
||||
return ndarray_util::calc_size_from_shape(ndims, shape);
|
||||
}
|
||||
|
||||
// Calculate the number of bytes of its content of an `ndarray` *in its view*.
|
||||
// This function corresponds to `ndarray.nbytes`
|
||||
SizeT nbytes() {
|
||||
return this->size() * itemsize;
|
||||
}
|
||||
|
||||
void set_value_at_pelement(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement(const SizeT *indices) {
|
||||
uint8_t* element = data;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
|
||||
element += indices[dim_i] * strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
uint8_t* get_nth_pelement(SizeT nth) {
|
||||
irrt_assert(0 <= nth);
|
||||
irrt_assert(nth < this->size());
|
||||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
|
||||
return get_pelement(indices);
|
||||
}
|
||||
|
||||
// Get pointer to the first element of this ndarray, assuming
|
||||
// `this->size() > 0`, i.e., not "degenerate" due to zeroes in `this->shape`)
|
||||
//
|
||||
// This is particularly useful for when the ndarray is just containing a single scalar.
|
||||
uint8_t* get_first_pelement() {
|
||||
irrt_assert(this->size() > 0);
|
||||
return this->data; // ...It is simply `this->data`
|
||||
}
|
||||
|
||||
// Is the given `indices` valid/in-bounds?
|
||||
bool in_bounds(const SizeT *indices) {
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) {
|
||||
bool dim_ok = indices[dim_i] < shape[dim_i];
|
||||
if (!dim_ok) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Fill the ndarray with a value
|
||||
void fill_generic(const uint8_t* pvalue) {
|
||||
NDArrayIndicesIter<SizeT> iter;
|
||||
iter.ndims = this->ndims;
|
||||
iter.shape = this->shape;
|
||||
iter.indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndims);
|
||||
iter.set_indices_zero();
|
||||
|
||||
for (SizeT i = 0; i < this->size(); i++, iter.next()) {
|
||||
uint8_t* pelement = get_pelement(iter.indices);
|
||||
set_value_at_pelement(pelement, pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
// Set the strides of the ndarray with `ndarray_util::set_strides_by_shape`
|
||||
void set_strides_by_shape() {
|
||||
ndarray_util::set_strides_by_shape(itemsize, ndims, strides, shape);
|
||||
}
|
||||
|
||||
// https://numpy.org/doc/stable/reference/generated/numpy.eye.html
|
||||
void set_to_eye(SizeT k, const uint8_t* zero_pvalue, const uint8_t* one_pvalue) {
|
||||
__builtin_assume(ndims == 2);
|
||||
|
||||
// TODO: Better implementation
|
||||
|
||||
fill_generic(zero_pvalue);
|
||||
for (SizeT i = 0; i < min(shape[0], shape[1]); i++) {
|
||||
SizeT row = i;
|
||||
SizeT col = i + k;
|
||||
SizeT indices[2] = { row, col };
|
||||
|
||||
if (!in_bounds(indices)) continue;
|
||||
|
||||
uint8_t* pelement = get_pelement(indices);
|
||||
set_value_at_pelement(pelement, one_pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
// To support numpy complex slices (e.g., `my_array[:50:2,4,:2:-1]`)
|
||||
//
|
||||
// Things assumed by this function:
|
||||
// - `dst_ndarray` is allocated by the caller
|
||||
// - `dst_ndarray.ndims` has the correct value (according to `ndarray_util::deduce_ndims_after_slicing`).
|
||||
// - ... and `dst_ndarray.shape` and `dst_ndarray.strides` have been allocated by the caller as well
|
||||
//
|
||||
// Other notes:
|
||||
// - `dst_ndarray->data` does not have to be set, it will be derived.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
|
||||
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
|
||||
void slice(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
|
||||
irrt_assert(dst_ndarray->ndims == ndarray_util::deduce_ndims_after_slicing(this->ndims, num_ndslices, ndslices));
|
||||
|
||||
dst_ndarray->data = this->data;
|
||||
|
||||
SizeT this_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_ndslices; i++) {
|
||||
NDSlice *ndslice = &ndslices[i];
|
||||
if (ndslice->type == INPUT_SLICE_TYPE_INDEX) {
|
||||
// Handle when the ndslice is just a single (possibly negative) integer
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^------ like this
|
||||
SizeT index_user = *((SizeT*) ndslice->slice);
|
||||
SizeT index = resolve_index_in_length(this->shape[this_axis], index_user);
|
||||
dst_ndarray->data += index * this->strides[this_axis]; // Add offset
|
||||
|
||||
// Next
|
||||
this_axis++;
|
||||
} else if (ndslice->type == INPUT_SLICE_TYPE_SLICE) {
|
||||
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^^------^^^^----- like these
|
||||
UserSlice<SizeT>* user_slice = (UserSlice<SizeT>*) ndslice->slice;
|
||||
Slice<SizeT> slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
|
||||
// NOTE: There is no need to write special code to handle negative steps/strides.
|
||||
// This simple implementation meticulously handles both positive and negative steps/strides.
|
||||
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
|
||||
dst_ndarray->data += slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = slice.step * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = slice.len(); // Determine shape dimension
|
||||
|
||||
// Next
|
||||
dst_axis++;
|
||||
this_axis++;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
irrt_assert(dst_axis == dst_ndarray->ndims); // Sanity check on the implementation
|
||||
}
|
||||
|
||||
// Similar to `np.broadcast_to(<ndarray>, <target_shape>)`
|
||||
// Assumptions:
|
||||
// - `this` has to be fully initialized.
|
||||
// - `dst_ndarray->ndims` has to be set.
|
||||
// - `dst_ndarray->shape` has to be set, this determines the shape `this` broadcasts to.
|
||||
//
|
||||
// Other notes:
|
||||
// - `dst_ndarray->data` does not have to be set, it will be set to `this->data`.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->data`.
|
||||
// - `dst_ndarray->strides` does not have to be set, it will be overwritten.
|
||||
//
|
||||
// Cautions:
|
||||
// ```
|
||||
// xs = np.zeros((4,))
|
||||
// ys = np.zero((4, 1))
|
||||
// ys[:] = xs # ok
|
||||
//
|
||||
// xs = np.zeros((1, 4))
|
||||
// ys = np.zero((4,))
|
||||
// ys[:] = xs # allowed
|
||||
// # However `np.broadcast_to(xs, (4,))` would fails, as per numpy's broadcasting rule.
|
||||
// # and apparently numpy will "deprecate" this? SEE https://github.com/numpy/numpy/issues/21744
|
||||
// # This implementation will NOT support this assignment.
|
||||
// ```
|
||||
void broadcast_to(NDArray<SizeT>* dst_ndarray) {
|
||||
dst_ndarray->data = this->data;
|
||||
dst_ndarray->itemsize = this->itemsize;
|
||||
|
||||
irrt_assert(
|
||||
ndarray_util::can_broadcast_shape_to(
|
||||
dst_ndarray->ndims,
|
||||
dst_ndarray->shape,
|
||||
this->ndims,
|
||||
this->shape
|
||||
)
|
||||
);
|
||||
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < max(this->ndims, dst_ndarray->ndims); i++) {
|
||||
SizeT this_dim_i = this->ndims - i - 1;
|
||||
SizeT dst_dim_i = dst_ndarray->ndims - i - 1;
|
||||
|
||||
bool this_dim_exists = this_dim_i >= 0;
|
||||
bool dst_dim_exists = dst_dim_i >= 0;
|
||||
|
||||
// TODO: Explain how this works
|
||||
bool c1 = this_dim_exists && this->shape[this_dim_i] == 1;
|
||||
bool c2 = dst_dim_exists && dst_ndarray->shape[dst_dim_i] != 1;
|
||||
if (!this_dim_exists || (c1 && c2)) {
|
||||
dst_ndarray->strides[dst_dim_i] = 0; // Freeze it in-place
|
||||
} else {
|
||||
dst_ndarray->strides[dst_dim_i] = stride_product * this->itemsize;
|
||||
stride_product *= this->shape[this_dim_i]; // NOTE: this_dim_exist must be true here.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Simulates `this_ndarray[:] = src_ndarray`, with automatic broadcasting.
|
||||
// Caution on https://github.com/numpy/numpy/issues/21744
|
||||
// Also see `NDArray::broadcast_to`
|
||||
void assign_with(NDArray<SizeT>* src_ndarray) {
|
||||
irrt_assert(
|
||||
ndarray_util::can_broadcast_shape_to(
|
||||
this->ndims,
|
||||
this->shape,
|
||||
src_ndarray->ndims,
|
||||
src_ndarray->shape
|
||||
)
|
||||
);
|
||||
|
||||
// Broadcast the `src_ndarray` to make the reading process *much* easier
|
||||
SizeT* broadcasted_src_ndarray_strides = __builtin_alloca(sizeof(SizeT) * this->ndims); // Remember to allocate strides beforehand
|
||||
NDArray<SizeT> broadcasted_src_ndarray = {
|
||||
.ndims = this->ndims,
|
||||
.shape = this->shape,
|
||||
.strides = broadcasted_src_ndarray_strides
|
||||
};
|
||||
src_ndarray->broadcast_to(&broadcasted_src_ndarray);
|
||||
|
||||
// Using iter instead of `get_nth_pelement` because it is slightly faster
|
||||
SizeT* indices = __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
auto iter = NDArrayIndicesIter<SizeT> {
|
||||
.ndims = this->ndims,
|
||||
.shape = this->shape,
|
||||
.indices = indices
|
||||
};
|
||||
const SizeT this_size = this->size();
|
||||
for (SizeT i = 0; i < this_size; i++, iter.next()) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_pelement(indices);
|
||||
uint8_t* this_pelement = this->get_pelement(indices);
|
||||
this->set_value_at_pelement(src_pelement, src_pelement);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
// void __nac3_ndarray_slice(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice<int32_t> *slices, NDArray<int32_t> *dst_ndarray) {
|
||||
// // ndarray->slice(num_slices, slices, dst_ndarray);
|
||||
// }
|
||||
}
|
|
@ -0,0 +1,80 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
// A proper slice in IRRT, all negative indices have be resolved to absolute values.
|
||||
// Even though nac3core's slices are always `int32_t`, we will template slice anyway
|
||||
// since this struct is used as a general utility.
|
||||
template <typename T>
|
||||
struct Slice {
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
|
||||
// The length/The number of elements of the slice if it were a range,
|
||||
// i.e., the value of `len(range(this->start, this->stop, this->end))`
|
||||
T len() {
|
||||
T diff = stop - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
T resolve_index_in_length(T length, T index) {
|
||||
irrt_assert(length >= 0);
|
||||
if (index < 0) {
|
||||
// Remember that index is negative, so do a plus here
|
||||
return max(length + index, 0);
|
||||
} else {
|
||||
return min(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: using a bitfield for the `*_defined` is better, at the
|
||||
// cost of a more annoying implementation in nac3core inkwell
|
||||
template <typename T>
|
||||
struct UserSlice {
|
||||
uint8_t start_defined;
|
||||
T start;
|
||||
|
||||
uint8_t stop_defined;
|
||||
T stop;
|
||||
|
||||
uint8_t step_defined;
|
||||
T step;
|
||||
|
||||
// Like Python's `slice(start, stop, step).indices(length)`
|
||||
Slice<T> indices(T length) {
|
||||
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
|
||||
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
|
||||
irrt_assert(length >= 0);
|
||||
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
|
||||
|
||||
Slice<T> result;
|
||||
result.step = step_defined ? step : 1;
|
||||
bool step_is_negative = result.step < 0;
|
||||
|
||||
if (start_defined) {
|
||||
result.start = resolve_index_in_length(length, start);
|
||||
} else {
|
||||
result.start = step_is_negative ? length - 1 : 0;
|
||||
}
|
||||
|
||||
if (stop_defined) {
|
||||
result.stop = resolve_index_in_length(length, stop);
|
||||
} else {
|
||||
result.stop = step_is_negative ? -1 : length;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
}
|
|
@ -0,0 +1,658 @@
|
|||
// This file will be compiled like a real C++ program,
|
||||
// and we do have the luxury to use the standard libraries.
|
||||
// That is if the nix flakes do not have issues... especially on msys2...
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
// Set `IRRT_DONT_TYPEDEF_INTS` because `cstdint` defines them
|
||||
#define IRRT_DONT_TYPEDEF_INTS
|
||||
#include "irrt_everything.hpp"
|
||||
|
||||
void test_fail() {
|
||||
printf("[!] Test failed\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
void __begin_test(const char* function_name, const char* file, int line) {
|
||||
printf("######### Running %s @ %s:%d\n", function_name, file, line);
|
||||
}
|
||||
|
||||
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
|
||||
|
||||
template <typename T>
|
||||
void debug_print_array(const char* format, int len, T* as) {
|
||||
printf("[");
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (i != 0) printf(", ");
|
||||
printf(format, as[i]);
|
||||
}
|
||||
printf("]");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void assert_arrays_match(const char* label, const char* format, int len, T* expected, T* got) {
|
||||
if (!arrays_match(len, expected, got)) {
|
||||
printf(">>>>>>> %s\n", label);
|
||||
printf(" Expecting = ");
|
||||
debug_print_array(format, len, expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
debug_print_array(format, len, got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void assert_values_match(const char* label, const char* format, T expected, T got) {
|
||||
if (expected != got) {
|
||||
printf(">>>>>>> %s\n", label);
|
||||
printf(" Expecting = ");
|
||||
printf(format, expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
printf(format, got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
void print_repeated(const char *str, int count) {
|
||||
for (int i = 0; i < count; i++) {
|
||||
printf("%s", str);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT, typename ElementT>
|
||||
void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* cursor, SizeT depth, NDArray<SizeT>* ndarray) {
|
||||
// A really lazy recursive implementation
|
||||
|
||||
// Add left padding unless its the first entry (since there would be "[[[" before it)
|
||||
if (!first) {
|
||||
print_repeated(" ", depth);
|
||||
}
|
||||
|
||||
const SizeT dim = ndarray->shape[depth];
|
||||
if (depth + 1 == ndarray->ndims) {
|
||||
// Recursed down to last dimension, print the values in a nice list
|
||||
printf("[");
|
||||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
|
||||
for (SizeT i = 0; i < dim; i++) {
|
||||
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement(indices);
|
||||
ElementT element = *pelement;
|
||||
|
||||
if (i != 0) printf(", "); // List delimiter
|
||||
printf(format, element);
|
||||
printf("(@");
|
||||
debug_print_array("%d", ndarray->ndims, indices);
|
||||
printf(")");
|
||||
|
||||
(*cursor)++;
|
||||
}
|
||||
printf("]");
|
||||
} else {
|
||||
printf("[");
|
||||
for (SizeT i = 0; i < ndarray->shape[depth]; i++) {
|
||||
__print_ndarray_aux<SizeT, ElementT>(
|
||||
format,
|
||||
i == 0, // first?
|
||||
i + 1 == dim, // last?
|
||||
cursor,
|
||||
depth + 1,
|
||||
ndarray
|
||||
);
|
||||
}
|
||||
printf("]");
|
||||
}
|
||||
|
||||
// Add newline unless its the last entry (since there will be "]]]" after it)
|
||||
if (!last) {
|
||||
print_repeated("\n", depth);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT, typename ElementT>
|
||||
void print_ndarray(const char *format, NDArray<SizeT>* ndarray) {
|
||||
if (ndarray->ndims == 0) {
|
||||
printf("<empty ndarray>");
|
||||
} else {
|
||||
SizeT cursor = 0;
|
||||
__print_ndarray_aux<SizeT, ElementT>(format, true, true, &cursor, 0, ndarray);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_normal() {
|
||||
// Test shapes with normal values
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 3, 5, 7 };
|
||||
assert_values_match("size", "%d", 210, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_has_zero() {
|
||||
// Test shapes with 0 in them
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 0, 5, 7 };
|
||||
assert_values_match("size", "%d", 0, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_set_strides_by_shape() {
|
||||
// Test `set_strides_by_shape()`
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 99, 3, 5, 7 };
|
||||
int32_t strides[4] = { 0 };
|
||||
ndarray_util::set_strides_by_shape((int32_t) sizeof(int32_t), 4, strides, shape);
|
||||
|
||||
int32_t expected_strides[4] = {
|
||||
105 * sizeof(int32_t),
|
||||
35 * sizeof(int32_t),
|
||||
7 * sizeof(int32_t),
|
||||
1 * sizeof(int32_t)
|
||||
};
|
||||
assert_arrays_match("strides", "%u", 4u, expected_strides, strides);
|
||||
}
|
||||
|
||||
void test_ndarray_indices_iter_normal() {
|
||||
// Test NDArrayIndicesIter normal behavior
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[3] = { 1, 2, 3 };
|
||||
int32_t indices[3] = { 0, 0, 0 };
|
||||
auto iter = NDArrayIndicesIter<int32_t> {
|
||||
.ndims = 3,
|
||||
.shape = shape,
|
||||
.indices = indices
|
||||
};
|
||||
|
||||
assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
|
||||
iter.next();
|
||||
assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
}
|
||||
|
||||
void test_ndarray_fill_generic() {
|
||||
// Test ndarray fill_generic
|
||||
BEGIN_TEST();
|
||||
|
||||
// Choose a type that's neither int32_t nor uint64_t (candidates of SizeT) to spice it up
|
||||
// Also make all the octets non-zero, to see if `memcpy` in `fill_generic` is working perfectly.
|
||||
uint16_t fill_value = 0xFACE;
|
||||
|
||||
uint16_t in_data[6] = { 100, 101, 102, 103, 104, 105 }; // Fill `data` with values that != `999`
|
||||
int32_t in_itemsize = sizeof(uint16_t);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 2, 3 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides,
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
ndarray.fill_generic((uint8_t*) &fill_value); // `fill_generic` here
|
||||
|
||||
uint16_t expected_data[6] = { fill_value, fill_value, fill_value, fill_value, fill_value, fill_value };
|
||||
assert_arrays_match("data", "0x%hX", 6, expected_data, in_data);
|
||||
}
|
||||
|
||||
void test_ndarray_set_to_eye() {
|
||||
// Test `set_to_eye` behavior (helper function to implement `np.eye()`)
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[9] = { 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 3 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides,
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
double zero = 0.0;
|
||||
double one = 1.0;
|
||||
ndarray.set_to_eye(1, (uint8_t*) &zero, (uint8_t*) &one);
|
||||
|
||||
assert_values_match("in_data[0]", "%f", 0.0, in_data[0]);
|
||||
assert_values_match("in_data[1]", "%f", 1.0, in_data[1]);
|
||||
assert_values_match("in_data[2]", "%f", 0.0, in_data[2]);
|
||||
assert_values_match("in_data[3]", "%f", 0.0, in_data[3]);
|
||||
assert_values_match("in_data[4]", "%f", 0.0, in_data[4]);
|
||||
assert_values_match("in_data[5]", "%f", 1.0, in_data[5]);
|
||||
assert_values_match("in_data[6]", "%f", 0.0, in_data[6]);
|
||||
assert_values_match("in_data[7]", "%f", 0.0, in_data[7]);
|
||||
assert_values_match("in_data[8]", "%f", 0.0, in_data[8]);
|
||||
}
|
||||
|
||||
void test_slice_1() {
|
||||
// Test `slice(5, None, None).indices(100) == slice(5, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 5,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 5, slice.start);
|
||||
assert_values_match("stop", "%d", 100, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_2() {
|
||||
// Test `slice(400, 999, None).indices(100) == slice(100, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 400,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 100, slice.start);
|
||||
assert_values_match("stop", "%d", 100, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_3() {
|
||||
// Test `slice(-10, -5, None).indices(100) == slice(90, 95, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = -10,
|
||||
.stop_defined = 1,
|
||||
.stop = -5,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 90, slice.start);
|
||||
assert_values_match("stop", "%d", 95, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_4() {
|
||||
// Test `slice(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = -5
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 99, slice.start);
|
||||
assert_values_match("stop", "%d", -1, slice.stop);
|
||||
assert_values_match("step", "%d", -5, slice.step);
|
||||
}
|
||||
|
||||
void test_ndslice_1() {
|
||||
/*
|
||||
Reference Python code:
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[-2:, 1::2]
|
||||
# array([[ 5., 7.],
|
||||
# [ 9., 11.]])
|
||||
|
||||
assert dst_ndarray.shape == (2, 2)
|
||||
assert dst_ndarray.strides == (32, 16)
|
||||
assert dst_ndarray[0, 0] == 5.0
|
||||
assert dst_ndarray[0, 1] == 7.0
|
||||
assert dst_ndarray[1, 0] == 9.0
|
||||
assert dst_ndarray[1, 1] == 11.0
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
// Destination ndarray
|
||||
// As documented, ndims and shape & strides must be allocated and determined by the caller.
|
||||
const int32_t dst_ndims = 2;
|
||||
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[-2::, 1::2]`
|
||||
UserSlice<int32_t> user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = -2,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0
|
||||
};
|
||||
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
.start_defined = 1,
|
||||
.start = 1,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = 2
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 2;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_1 },
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2, 2 };
|
||||
int32_t expected_strides[dst_ndims] = { 32, 16 };
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_2() {
|
||||
/*
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[2, ::-2]
|
||||
# array([11., 9.])
|
||||
|
||||
assert dst_ndarray.shape == (2,)
|
||||
assert dst_ndarray.strides == (-16,)
|
||||
assert dst_ndarray[0] == 11.0
|
||||
assert dst_ndarray[1] == 9.0
|
||||
|
||||
dst_ndarray[1, 0] == 99 # If you write to `dst_ndarray`
|
||||
assert ndarray[1, 3] == 99 # `ndarray` also updates!!
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
// Destination ndarray
|
||||
// As documented, ndims and shape & strides must be allocated and determined by the caller.
|
||||
const int32_t dst_ndims = 1;
|
||||
int32_t dst_shape[dst_ndims] = {999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[2, ::-2]`
|
||||
int32_t user_slice_1 = 2;
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = -2
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 2;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_INDEX, .slice = (uint8_t*) &user_slice_1 },
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2 };
|
||||
int32_t expected_strides[dst_ndims] = { -16 };
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
// [5.0, 3.0]
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1 })));
|
||||
}
|
||||
|
||||
void test_can_broadcast_shape() {
|
||||
BEGIN_TEST();
|
||||
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 5, (int32_t[]) { 1, 1, 1, 1, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [3, 1]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 2, (int32_t[]) { 3, 1 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 1, (int32_t[]) { 3 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([1], [3]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 3 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([1], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 1 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 3, (int32_t[]) { 256, 1, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [2]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 2 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
|
||||
// In cases when the shapes contain zero(es)
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0], [2]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 2 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 1, 1, 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 4, 1, 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([4, 3], [0, 3]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([4, 3], [0, 0]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 0 })
|
||||
);
|
||||
}
|
||||
|
||||
void test_ndarray_broadcast_1() {
|
||||
/*
|
||||
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||
# >>> [[19.9 29.9 39.9 49.9]]
|
||||
#
|
||||
# array = np.broadcast_to(array, (2, 3, 4))
|
||||
# >>> [[[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]
|
||||
# >>> [[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]]
|
||||
#
|
||||
# assery array.strides == (0, 0, 8)
|
||||
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[4] = { 19.9, 29.9, 39.9, 49.9 };
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = {1, 4};
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = sizeof(double),
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
const int32_t dst_ndims = 3;
|
||||
int32_t dst_shape[dst_ndims] = {2, 3, 4};
|
||||
int32_t dst_strides[dst_ndims] = {};
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
ndarray.broadcast_to(&dst_ndarray);
|
||||
|
||||
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {1, 2, 3})));
|
||||
}
|
||||
|
||||
void test_assign_with() {
|
||||
/*
|
||||
```
|
||||
xs = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64)
|
||||
ys = xs.shape
|
||||
```
|
||||
*/
|
||||
}
|
||||
|
||||
int main() {
|
||||
test_calc_size_from_shape_normal();
|
||||
test_calc_size_from_shape_has_zero();
|
||||
test_set_strides_by_shape();
|
||||
test_ndarray_indices_iter_normal();
|
||||
test_ndarray_fill_generic();
|
||||
test_ndarray_set_to_eye();
|
||||
test_slice_1();
|
||||
test_slice_2();
|
||||
test_slice_3();
|
||||
test_slice_4();
|
||||
test_ndslice_1();
|
||||
test_ndslice_2();
|
||||
test_can_broadcast_shape();
|
||||
test_ndarray_broadcast_1();
|
||||
test_assign_with();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
#pragma once
|
||||
|
||||
// This is made toggleable since `irrt_test.cpp` itself would include
|
||||
// headers that define the `int_t` family.
|
||||
#ifndef IRRT_DONT_TYPEDEF_INTS
|
||||
typedef _BitInt(8) int8_t;
|
||||
typedef unsigned _BitInt(8) uint8_t;
|
||||
typedef _BitInt(32) int32_t;
|
||||
typedef unsigned _BitInt(32) uint32_t;
|
||||
typedef _BitInt(64) int64_t;
|
||||
typedef unsigned _BitInt(64) uint64_t;
|
||||
#endif
|
||||
|
||||
typedef int32_t SliceIndex;
|
|
@ -0,0 +1,37 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
T max(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T min(T a, T b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool arrays_match(int len, T *as, T *bs) {
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (as[i] != bs[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void irrt_panic() {
|
||||
// Crash the program for now.
|
||||
// TODO: Don't crash the program
|
||||
// ... or at least produce a good message when doing testing IRRT
|
||||
|
||||
uint8_t* death = nullptr;
|
||||
*death = 0; // TODO: address 0 on hardware might be writable?
|
||||
}
|
||||
|
||||
// TODO: Make this a macro and allow it to be toggled on/off (e.g., debug vs release)
|
||||
void irrt_assert(bool condition) {
|
||||
if (!condition) irrt_panic();
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -25,7 +25,6 @@ pub struct ConcreteFuncArg {
|
|||
pub name: StrRef,
|
||||
pub ty: ConcreteType,
|
||||
pub default_value: Option<SymbolValue>,
|
||||
pub is_vararg: bool,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
|
@ -47,7 +46,6 @@ pub enum ConcreteTypeEnum {
|
|||
TPrimitive(Primitive),
|
||||
TTuple {
|
||||
ty: Vec<ConcreteType>,
|
||||
is_vararg_ctx: bool,
|
||||
},
|
||||
TObj {
|
||||
obj_id: DefinitionId,
|
||||
|
@ -104,16 +102,8 @@ impl ConcreteTypeStore {
|
|||
.iter()
|
||||
.map(|arg| ConcreteFuncArg {
|
||||
name: arg.name,
|
||||
ty: if arg.is_vararg {
|
||||
let tuple_ty = unifier
|
||||
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
|
||||
|
||||
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
|
||||
} else {
|
||||
self.from_unifier_type(unifier, primitives, arg.ty, cache)
|
||||
},
|
||||
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache),
|
||||
default_value: arg.default_value.clone(),
|
||||
is_vararg: arg.is_vararg,
|
||||
})
|
||||
.collect(),
|
||||
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
|
||||
|
@ -168,12 +158,11 @@ impl ConcreteTypeStore {
|
|||
cache.insert(ty, None);
|
||||
let ty_enum = unifier.get_ty(ty);
|
||||
let result = match &*ty_enum {
|
||||
TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
|
||||
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple {
|
||||
ty: ty
|
||||
.iter()
|
||||
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
|
||||
.collect(),
|
||||
is_vararg_ctx: *is_vararg_ctx,
|
||||
},
|
||||
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
|
||||
obj_id: *obj_id,
|
||||
|
@ -259,12 +248,11 @@ impl ConcreteTypeStore {
|
|||
*cache.get_mut(&cty).unwrap() = Some(ty);
|
||||
return ty;
|
||||
}
|
||||
ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
|
||||
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple {
|
||||
ty: ty
|
||||
.iter()
|
||||
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
|
||||
.collect(),
|
||||
is_vararg_ctx: *is_vararg_ctx,
|
||||
},
|
||||
ConcreteTypeEnum::TVirtual { ty } => {
|
||||
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
|
||||
|
@ -289,7 +277,6 @@ impl ConcreteTypeStore {
|
|||
name: arg.name,
|
||||
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
|
||||
default_value: arg.default_value.clone(),
|
||||
is_vararg: false,
|
||||
})
|
||||
.collect(),
|
||||
ret: self.to_unifier_type(unifier, primitives, *ret, cache),
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -13,8 +13,8 @@ use crate::codegen::CodeGenContext;
|
|||
/// * `$extern_fn:literal`: Name of underlying extern function
|
||||
///
|
||||
/// Optional Arguments:
|
||||
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
|
||||
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
|
||||
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
|
||||
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
|
||||
/// These will be used unless other attributes are specified
|
||||
/// * `$(,$args:ident)*`: Operands of the extern function
|
||||
/// The data type of these operands will be set to `FloatValue`
|
||||
|
@ -130,62 +130,3 @@ pub fn call_ldexp<'ctx>(
|
|||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Macro to generate `np_linalg` and `sp_linalg` functions
|
||||
/// The function takes as input `NDArray` and returns ()
|
||||
///
|
||||
/// Arguments:
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$extern_fn:literal`: Name of underlying extern function
|
||||
/// * (2/3/4): Number of `NDArray` that function takes as input
|
||||
///
|
||||
/// Note:
|
||||
/// The operands and resulting `NDArray` are both passed as input to the funcion
|
||||
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
|
||||
/// The function changes the content of the output `NDArray` in-place
|
||||
macro_rules! generate_linalg_extern_fn {
|
||||
($fn_name:ident, $extern_fn:literal, 2) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal, 3) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal, 4) => {
|
||||
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
|
||||
};
|
||||
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
|
||||
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
|
||||
pub fn $fn_name<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>
|
||||
$(,$input_matrix: BasicValueEnum<'ctx>)*,
|
||||
name: Option<&str>,
|
||||
){
|
||||
const FN_NAME: &str = $extern_fn;
|
||||
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
|
||||
|
||||
let func = ctx.module.add_function(FN_NAME, fn_type, None);
|
||||
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
func
|
||||
});
|
||||
|
||||
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
|
||||
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
|
||||
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
|
||||
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
|
||||
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
|
||||
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);
|
||||
|
|
|
@ -57,7 +57,6 @@ pub trait CodeGenerator {
|
|||
/// - fun: Function signature, definition ID and the substitution key.
|
||||
/// - params: Function parameters. Note that this does not include the object even if the
|
||||
/// function is a class method.
|
||||
///
|
||||
/// Note that this function should check if the function is generated in another thread (due to
|
||||
/// possible race condition), see the default implementation for an example.
|
||||
fn gen_func_instance<'ctx>(
|
||||
|
@ -124,45 +123,11 @@ pub trait CodeGenerator {
|
|||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign(self, ctx, target, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an assignment expression where LHS is a `"target_list"`.
|
||||
///
|
||||
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
|
||||
fn gen_assign_target_list<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
targets: &Vec<Expr<Option<Type>>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_assign_target_list(self, ctx, targets, value, value_ty)
|
||||
}
|
||||
|
||||
/// Generate code for an item assignment.
|
||||
///
|
||||
/// i.e., `target[key] = value`
|
||||
fn gen_setitem<'ctx>(
|
||||
&mut self,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
key: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
Self: Sized,
|
||||
{
|
||||
gen_setitem(self, ctx, target, key, value, value_ty)
|
||||
gen_assign(self, ctx, target, value)
|
||||
}
|
||||
|
||||
/// Generate code for a while expression.
|
||||
|
|
|
@ -1,21 +1,23 @@
|
|||
use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
|
||||
use crate::{typecheck::typedef::Type, util::SizeVariant};
|
||||
|
||||
mod test;
|
||||
|
||||
use super::{
|
||||
model::*,
|
||||
object::{
|
||||
list::List,
|
||||
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, NpArrayType,
|
||||
NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
llvm_intrinsics, CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use function::CallFunction;
|
||||
use crate::codegen::classes::TypedArrayLikeAccessor;
|
||||
use crate::codegen::stmt::gen_for_callback_incrementing;
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
@ -326,11 +328,12 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
|||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let size_ty = generator.get_size_type(ctx.ctx);
|
||||
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
|
||||
|
@ -356,14 +359,16 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
let dest_arr_ptr =
|
||||
dest_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
let src_arr_ptr =
|
||||
src_arr.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte)).value;
|
||||
|
||||
let dest_len = dest_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
|
||||
let src_len = src_arr.get(generator, ctx, |f| f.len).truncate(generator, ctx, Int32).value;
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
|
@ -459,10 +464,8 @@ pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
|
||||
let new_len = Int(SizeT).z_extend_or_bit_cast(generator, ctx, new_len);
|
||||
dest_arr.set(ctx, |f| f.len, new_len);
|
||||
|
||||
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, generator, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
||||
|
@ -562,339 +565,427 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
|||
.unwrap()
|
||||
}
|
||||
|
||||
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
||||
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
||||
#[must_use]
|
||||
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'_, '_>,
|
||||
name: &str,
|
||||
) -> String {
|
||||
let mut name = name.to_owned();
|
||||
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
||||
32 => {}
|
||||
64 => name.push_str("64"),
|
||||
bit_width => {
|
||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||
}
|
||||
}
|
||||
name
|
||||
}
|
||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
/// calculated total size.
|
||||
///
|
||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
|
||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dims: &Dims,
|
||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dims: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
/// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
|
||||
pub fn setup_irrt_exceptions<'ctx>(
|
||||
ctx: &'ctx Context,
|
||||
module: &Module<'ctx>,
|
||||
symbol_resolver: &dyn SymbolResolver,
|
||||
) {
|
||||
let exn_id_type = ctx.i32_type();
|
||||
|
||||
let errors = &[
|
||||
("EXN_INDEX_ERROR", "0:IndexError"),
|
||||
("EXN_VALUE_ERROR", "0:ValueError"),
|
||||
("EXN_ASSERTION_ERROR", "0:AssertionError"),
|
||||
("EXN_TYPE_ERROR", "0:TypeError"),
|
||||
];
|
||||
|
||||
for (irrt_name, symbol_name) in errors {
|
||||
let exn_id = symbol_resolver.get_string_id(symbol_name);
|
||||
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
|
||||
|
||||
let global = module.get_global(irrt_name).unwrap_or_else(|| {
|
||||
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
|
||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_size",
|
||||
64 => "__nac3_ndarray_calc_size64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
let ndarray_calc_size_fn =
|
||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
});
|
||||
global.set_initializer(&exn_id);
|
||||
}
|
||||
|
||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_size_fn,
|
||||
&[
|
||||
dims.base_ptr(ctx, generator).into(),
|
||||
dims.size(ctx, generator).into(),
|
||||
begin.into(),
|
||||
end.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
pub fn call_nac3_range_len_i32<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
/// containing `i32` indices of the flattened index.
|
||||
///
|
||||
/// * `index` - The index to compute the multidimensional index for.
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: Instance<'ctx, Int<Int32>>,
|
||||
stop: Instance<'ctx, Int<Int32>>,
|
||||
step: Instance<'ctx, Int<Int32>>,
|
||||
) -> Instance<'ctx, Int<Int32>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_range_len_i32");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(start)
|
||||
.arg(stop)
|
||||
.arg(step)
|
||||
.returning_auto("range_len")
|
||||
index: IntValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_nd_indices",
|
||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_nd_indices_fn =
|
||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_void.fn_type(
|
||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_nd_indices_fn,
|
||||
&[
|
||||
index.into(),
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
|
||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Indices,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Indices: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
debug_assert_eq!(
|
||||
IntType::try_from(indices.element_type(ctx, generator))
|
||||
.map(IntType::get_bit_width)
|
||||
.unwrap_or_default(),
|
||||
llvm_i32.get_bit_width(),
|
||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
debug_assert_eq!(
|
||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
|
||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_flatten_index",
|
||||
64 => "__nac3_ndarray_flatten_index64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_flatten_index_fn =
|
||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_call(
|
||||
ndarray_flatten_index_fn,
|
||||
&[
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
indices.size(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: Instance<'ctx, Int<SizeT>>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Index,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Index: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: NDArrayValue<'ctx>,
|
||||
rhs: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast",
|
||||
64 => "__nac3_ndarray_calc_broadcast64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_util_assert_shape_no_negative",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
|
||||
}
|
||||
llvm_usize.const_zero(),
|
||||
(min_ndims, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
(
|
||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
)
|
||||
};
|
||||
|
||||
pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
output_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
let lhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let rhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
|
||||
let lhs_eq_rhs = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
.unwrap();
|
||||
|
||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_util_assert_output_shape_same",
|
||||
is_compatible,
|
||||
"0:ValueError",
|
||||
"operands could not be broadcast together",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(ndarray_ndims)
|
||||
.arg(ndarray_shape)
|
||||
.arg(output_ndims)
|
||||
.arg(output_shape)
|
||||
.returning_void();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[
|
||||
lhs_dims.into(),
|
||||
lhs_ndims.into(),
|
||||
rhs_dims.into(),
|
||||
rhs_ndims.into(),
|
||||
out_dims.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
out_dims,
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
/// array `broadcast_idx`.
|
||||
pub fn call_ndarray_calc_broadcast_index<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
|
||||
}
|
||||
array: NDArrayValue<'ctx>,
|
||||
broadcast_idx: &BroadcastIdx,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
index: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
|
||||
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
|
||||
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
|
||||
}
|
||||
|
||||
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
|
||||
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
num_indices: Instance<'ctx, Int<SizeT>>,
|
||||
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(num_indices)
|
||||
.arg(indices)
|
||||
.arg(src_ndarray)
|
||||
.arg(dst_ndarray)
|
||||
.returning_void();
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndims: Instance<'ctx, Int<SizeT>>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_set_and_validate_list_shape",
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
|
||||
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||
let array_ndims = array.load_ndims(ctx);
|
||||
let broadcast_idx_ptr = unsafe {
|
||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
|
||||
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_array_write_list_to_array",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
|
||||
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant {
|
||||
match ty.get_bit_width() {
|
||||
32 => SizeVariant::Bits32,
|
||||
64 => SizeVariant::Bits64,
|
||||
_ => unreachable!("Unsupported int type bit width {}", ty.get_bit_width()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
size: Instance<'ctx, Int<SizeT>>,
|
||||
new_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(
|
||||
generator,
|
||||
ctx,
|
||||
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
|
||||
);
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(size)
|
||||
.arg(new_ndims)
|
||||
.arg(new_shape)
|
||||
.returning_void();
|
||||
fn get_size_type_dependent_function<'ctx, BuildFuncTypeFn>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size_type: IntType<'ctx>,
|
||||
base_name: &str,
|
||||
build_func_type: BuildFuncTypeFn,
|
||||
) -> FunctionValue<'ctx>
|
||||
where
|
||||
BuildFuncTypeFn: Fn() -> FunctionType<'ctx>,
|
||||
{
|
||||
let mut fn_name = base_name.to_owned();
|
||||
match get_size_variant(size_type) {
|
||||
SizeVariant::Bits32 => {
|
||||
// The original fn_name is the correct function name
|
||||
}
|
||||
SizeVariant::Bits64 => {
|
||||
// Append "64" at the end, this is the naming convention for 64-bit
|
||||
fn_name.push_str("64");
|
||||
}
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
|
||||
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
|
||||
// Get (or declare then get if does not exist) the corresponding function
|
||||
ctx.module.get_function(&fn_name).unwrap_or_else(|| {
|
||||
let fn_type = build_func_type();
|
||||
ctx.module.add_function(&fn_name, fn_type, None)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
num_shape_entries: Instance<'ctx, Int<SizeT>>,
|
||||
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
|
||||
dst_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(num_shape_entries)
|
||||
.arg(shape_entries)
|
||||
.arg(dst_ndims)
|
||||
.arg(dst_shape)
|
||||
.returning_void();
|
||||
fn get_ndarray_struct_ptr<'ctx>(ctx: &'ctx Context, size_type: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let i8_type = ctx.i8_type();
|
||||
|
||||
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() };
|
||||
let struct_ty = ndarray_ty.fields().whole_struct.as_struct_type(ctx);
|
||||
struct_ty.ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
num_axes: Instance<'ctx, Int<SizeT>>,
|
||||
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(src_ndarray)
|
||||
.arg(dst_ndarray)
|
||||
.arg(num_axes)
|
||||
.arg(axes)
|
||||
.returning_void();
|
||||
}
|
||||
pub fn call_nac3_ndarray_size<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || {
|
||||
size_type.fn_type(&[get_ndarray_struct_ptr(ctx.ctx, size_type).into()], false)
|
||||
});
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
b_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
final_ndims: Instance<'ctx, Int<SizeT>>,
|
||||
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let name =
|
||||
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
|
||||
CallFunction::begin(generator, ctx, &name)
|
||||
.arg(a_ndims)
|
||||
.arg(a_shape)
|
||||
.arg(b_ndims)
|
||||
.arg(b_shape)
|
||||
.arg(final_ndims)
|
||||
.arg(new_a_shape)
|
||||
.arg(new_b_shape)
|
||||
.arg(dst_shape)
|
||||
.returning_void();
|
||||
ctx.builder
|
||||
.build_call(function, &[ndarray.ptr.into()], "size")
|
||||
.unwrap()
|
||||
.try_as_basic_value()
|
||||
.unwrap_left()
|
||||
.into_int_value()
|
||||
}
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::{path::Path, process::Command};
|
||||
|
||||
#[test]
|
||||
fn run_irrt_test() {
|
||||
assert!(
|
||||
cfg!(feature = "test"),
|
||||
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
|
||||
);
|
||||
|
||||
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
|
||||
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
|
||||
|
||||
if !output.status.success() {
|
||||
eprintln!("irrt_test failed with status {}:", output.status);
|
||||
eprintln!("====== stdout ======");
|
||||
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
|
||||
eprintln!("====== stderr ======");
|
||||
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
|
||||
eprintln!("====================");
|
||||
|
||||
panic!("irrt_test failed");
|
||||
}
|
||||
}
|
||||
}
|
|
@ -35,40 +35,6 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
|||
unreachable!()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.va_start";
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
|
||||
const FN_NAME: &str = "llvm.va_end";
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_stacksave<'ctx>(
|
||||
|
@ -205,9 +171,8 @@ pub fn call_memcpy_generic<'ctx>(
|
|||
/// * `$ctx:ident`: Reference to the current Code Generation Context
|
||||
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
|
||||
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
|
||||
/// Use `BasicValueEnum::into_int_value` for Integer return type and
|
||||
/// `BasicValueEnum::into_float_value` for Float return type
|
||||
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
|
||||
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
|
||||
/// * `$llvm_ty:ident`: Type of first operand
|
||||
/// * `,($val:ident)*`: Comma separated list of operands
|
||||
macro_rules! generate_llvm_intrinsic_fn_body {
|
||||
|
@ -223,7 +188,7 @@ macro_rules! generate_llvm_intrinsic_fn_body {
|
|||
/// Arguments:
|
||||
/// * `float/int`: Indicates the return and argument type of the function
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
|
||||
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
|
||||
/// * `$val:ident`: The operand for unary operations
|
||||
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use crate::{
|
||||
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
|
@ -23,9 +24,7 @@ use inkwell::{
|
|||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use model::*;
|
||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||
use object::{list::List, ndarray::NDArray, range::Range};
|
||||
use parking_lot::{Condvar, Mutex};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{
|
||||
|
@ -42,9 +41,7 @@ pub mod extern_fns;
|
|||
mod generator;
|
||||
pub mod irrt;
|
||||
pub mod llvm_intrinsics;
|
||||
pub mod model;
|
||||
pub mod numpy;
|
||||
pub mod object;
|
||||
pub mod stmt;
|
||||
|
||||
#[cfg(test)]
|
||||
|
@ -71,16 +68,6 @@ pub struct CodeGenLLVMOptions {
|
|||
pub target: CodeGenTargetMachineOptions,
|
||||
}
|
||||
|
||||
impl CodeGenLLVMOptions {
|
||||
/// Creates a [`TargetMachine`] using the target options specified by this struct.
|
||||
///
|
||||
/// See [`Target::create_target_machine`].
|
||||
#[must_use]
|
||||
pub fn create_target_machine(&self) -> Option<TargetMachine> {
|
||||
self.target.create_target_machine(self.opt_level)
|
||||
}
|
||||
}
|
||||
|
||||
/// Additional options for code generation for the target machine.
|
||||
#[derive(Clone, Debug, Eq, PartialEq)]
|
||||
pub struct CodeGenTargetMachineOptions {
|
||||
|
@ -351,10 +338,6 @@ impl WorkerRegistry {
|
|||
let mut builder = context.create_builder();
|
||||
let mut module = context.create_module(generator.get_name());
|
||||
|
||||
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
||||
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
||||
module.set_triple(&target_machine.get_triple());
|
||||
|
||||
module.add_basic_value_flag(
|
||||
"Debug Info Version",
|
||||
inkwell::module::FlagBehavior::Warning,
|
||||
|
@ -378,10 +361,6 @@ impl WorkerRegistry {
|
|||
errors.insert(e);
|
||||
// create a new empty module just to continue codegen and collect errors
|
||||
module = context.create_module(&format!("{}_recover", generator.get_name()));
|
||||
|
||||
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
||||
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
||||
module.set_triple(&target_machine.get_triple());
|
||||
}
|
||||
}
|
||||
*self.task_count.lock() -= 1;
|
||||
|
@ -447,7 +426,7 @@ pub struct CodeGenTask {
|
|||
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
ctx: &'ctx Context,
|
||||
module: &Module<'ctx>,
|
||||
generator: &G,
|
||||
generator: &mut G,
|
||||
unifier: &mut Unifier,
|
||||
top_level: &TopLevelContext,
|
||||
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
|
||||
|
@ -487,12 +466,17 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
type_cache,
|
||||
*params.iter().next().unwrap().1,
|
||||
);
|
||||
let item = Any(element_type);
|
||||
Ptr(Struct(List { item })).get_type(generator, ctx).as_basic_type_enum()
|
||||
|
||||
ListType::new(generator, ctx, element_type).as_base_type().into()
|
||||
}
|
||||
|
||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
|
||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
||||
let element_type = get_llvm_type(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
@ -536,10 +520,8 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
};
|
||||
return ty;
|
||||
}
|
||||
TTuple { ty, is_vararg_ctx } => {
|
||||
TTuple { ty } => {
|
||||
// a struct with fields in the order present in the tuple
|
||||
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
|
||||
|
||||
let fields = ty
|
||||
.iter()
|
||||
.map(|ty| {
|
||||
|
@ -569,7 +551,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
ctx: &'ctx Context,
|
||||
module: &Module<'ctx>,
|
||||
generator: &G,
|
||||
generator: &mut G,
|
||||
unifier: &mut Unifier,
|
||||
top_level: &TopLevelContext,
|
||||
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
|
||||
|
@ -578,11 +560,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
) -> BasicTypeEnum<'ctx> {
|
||||
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
|
||||
// consistency.
|
||||
if unifier.unioned(ty, primitives.bool) {
|
||||
return if unifier.unioned(ty, primitives.bool) {
|
||||
ctx.bool_type().into()
|
||||
} else {
|
||||
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Whether `sret` is needed for a return value with type `ty`.
|
||||
|
@ -607,40 +589,6 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
|
|||
need_sret_impl(ty, true)
|
||||
}
|
||||
|
||||
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
|
||||
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
|
||||
let triple = TargetMachine::normalize_triple(triple);
|
||||
let triple = triple.as_str().to_str().unwrap();
|
||||
let arch = triple.split('-').next().unwrap();
|
||||
|
||||
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
|
||||
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
|
||||
match arch {
|
||||
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
|
||||
ctx.i8_type().ptr_type(AddressSpace::default()).into()
|
||||
}
|
||||
"amd64" | "x86_64" | "x86_64h" => {
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
|
||||
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
|
||||
va_list_tag.set_body(
|
||||
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
|
||||
false,
|
||||
);
|
||||
va_list_tag.into()
|
||||
}
|
||||
"armv7" => {
|
||||
let va_list = ctx.opaque_struct_type("struct.__va_list");
|
||||
va_list.set_body(&[llvm_pi8.into()], false);
|
||||
va_list.into()
|
||||
}
|
||||
triple => {
|
||||
todo!("Unsupported platform for varargs: {triple}")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Implementation for generating LLVM IR for a function.
|
||||
pub fn gen_func_impl<
|
||||
'ctx,
|
||||
|
@ -720,7 +668,7 @@ pub fn gen_func_impl<
|
|||
Some(t) => t.as_basic_type_enum(),
|
||||
}
|
||||
}),
|
||||
(primitives.range, Ptr(Range::<Int32>::default()).get_type(generator, context).into()),
|
||||
(primitives.range, RangeType::new(context).as_base_type().into()),
|
||||
(primitives.exception, {
|
||||
let name = "Exception";
|
||||
if let Some(t) = module.get_struct_type(name) {
|
||||
|
@ -752,7 +700,6 @@ pub fn gen_func_impl<
|
|||
name: arg.name,
|
||||
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
|
||||
default_value: arg.default_value.clone(),
|
||||
is_vararg: arg.is_vararg,
|
||||
})
|
||||
.collect_vec(),
|
||||
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
|
||||
|
@ -775,10 +722,7 @@ pub fn gen_func_impl<
|
|||
let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
|
||||
let mut params = args
|
||||
.iter()
|
||||
.filter(|arg| !arg.is_vararg)
|
||||
.map(|arg| {
|
||||
debug_assert!(!arg.is_vararg);
|
||||
|
||||
get_llvm_abi_type(
|
||||
context,
|
||||
&module,
|
||||
|
@ -797,12 +741,9 @@ pub fn gen_func_impl<
|
|||
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
|
||||
}
|
||||
|
||||
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
|
||||
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
|
||||
|
||||
let fn_type = match ret_type {
|
||||
Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, vararg_arg.is_some()),
|
||||
_ => context.void_type().fn_type(¶ms, vararg_arg.is_some()),
|
||||
Some(ret_type) if !has_sret => ret_type.fn_type(¶ms, false),
|
||||
_ => context.void_type().fn_type(¶ms, false),
|
||||
};
|
||||
|
||||
let symbol = &task.symbol_name;
|
||||
|
@ -832,9 +773,7 @@ pub fn gen_func_impl<
|
|||
|
||||
let mut var_assignment = HashMap::new();
|
||||
let offset = u32::from(has_sret);
|
||||
|
||||
// Store non-vararg argument values into local variables
|
||||
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
|
||||
for (n, arg) in args.iter().enumerate() {
|
||||
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
|
||||
let local_type = get_llvm_type(
|
||||
context,
|
||||
|
@ -867,8 +806,6 @@ pub fn gen_func_impl<
|
|||
var_assignment.insert(arg.name, (alloca, None, 0));
|
||||
}
|
||||
|
||||
// TODO: Save vararg parameters as list
|
||||
|
||||
let return_buffer = if has_sret {
|
||||
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
|
||||
} else {
|
||||
|
@ -1091,9 +1028,3 @@ fn gen_in_range_check<'ctx>(
|
|||
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
|
||||
}
|
||||
|
||||
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
|
||||
/// passed to the variadic function.
|
||||
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
|
||||
format!("__{}_va_count", &arg_name).into()
|
||||
}
|
||||
|
|
|
@ -1,42 +0,0 @@
|
|||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A [`Model`] of any [`BasicTypeEnum`].
|
||||
///
|
||||
/// Use this when you cannot know the type beforehand or cannot be abstracted with [`Model`].
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
|
||||
|
||||
impl<'ctx> Model<'ctx> for Any<'ctx> {
|
||||
type Value = BasicValueEnum<'ctx>;
|
||||
type Type = BasicTypeEnum<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> Self::Type {
|
||||
self.0
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &mut G,
|
||||
_ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
if ty == self.0 {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,140 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{ArrayType, BasicType, BasicTypeEnum},
|
||||
values::{ArrayValue, IntValue},
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait LenKind: fmt::Debug + Clone + Copy {
|
||||
fn get_length(&self) -> u32;
|
||||
}
|
||||
|
||||
/// A statically known length.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Len<const N: u32>;
|
||||
|
||||
/// A dynamically known length.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyLen(pub u32);
|
||||
|
||||
impl<const N: u32> LenKind for Len<N> {
|
||||
fn get_length(&self) -> u32 {
|
||||
N
|
||||
}
|
||||
}
|
||||
|
||||
impl LenKind for AnyLen {
|
||||
fn get_length(&self) -> u32 {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
/// A Model for an [`ArrayType`].
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Array<Len, Item> {
|
||||
/// Length of this array.
|
||||
pub len: Len,
|
||||
/// [`Model`] of an array item.
|
||||
pub item: Item,
|
||||
}
|
||||
|
||||
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
|
||||
type Value = ArrayValue<'ctx>;
|
||||
type Type = ArrayType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.item.get_type(generator, ctx).array_type(self.len.get_length())
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let BasicTypeEnum::ArrayType(ty) = ty else {
|
||||
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
if ty.len() != self.len.get_length() {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
||||
ty.len(),
|
||||
self.len.get_length()
|
||||
)));
|
||||
}
|
||||
|
||||
self.item
|
||||
.check_type(generator, ctx, ty.get_element_type())
|
||||
.map_err(|err| err.under_context("an ArrayType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
|
||||
/// Get the pointer to the `i`-th (0-based) array element.
|
||||
pub fn gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
|
||||
|
||||
Ptr(self.model.0.item).believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Like `gep` but `i` is a constant.
|
||||
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
|
||||
assert!(
|
||||
i < u64::from(self.model.0.len.get_length()),
|
||||
"Index {i} is out of bounds. Array length = {}",
|
||||
self.model.0.len.get_length()
|
||||
);
|
||||
|
||||
let i = ctx.ctx.i32_type().const_int(i, false);
|
||||
self.gep(ctx, i)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||
pub fn get<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.gep(ctx, i).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Like `get` but `i` is a constant.
|
||||
pub fn get_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: u64,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.gep_const(ctx, i).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||
pub fn set(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: IntValue<'ctx>,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.gep(ctx, i).store(ctx, value);
|
||||
}
|
||||
|
||||
/// Like `set` but `i` is a constant.
|
||||
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
|
||||
self.gep_const(ctx, i).store(ctx, value);
|
||||
}
|
||||
}
|
|
@ -1,156 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::*, values::*};
|
||||
use itertools::Itertools;
|
||||
|
||||
use super::*;
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelError(pub String);
|
||||
|
||||
impl ModelError {
|
||||
pub(super) fn under_context(mut self, context: &str) -> Self {
|
||||
self.0.push_str(" ... in ");
|
||||
self.0.push_str(context);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
||||
type Type: BasicType<'ctx>;
|
||||
|
||||
/// Return the [`BasicType`] of this model.
|
||||
#[must_use]
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
|
||||
|
||||
fn sizeof<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntValue<'ctx> {
|
||||
self.get_type(generator, ctx).size_of().unwrap()
|
||||
}
|
||||
|
||||
/// Check if a [`BasicType`] is the same type of this model.
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError>;
|
||||
|
||||
/// Create an instance from a value with [`Instance::model`] being this model.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
||||
#[must_use]
|
||||
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
||||
Instance { model: *self, value }
|
||||
}
|
||||
|
||||
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
||||
/// Wrap it into an [`Instance`] if it is.
|
||||
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: V,
|
||||
) -> Result<Instance<'ctx, Self>, ModelError> {
|
||||
let value = value.as_basic_value_enum();
|
||||
self.check_type(generator, ctx, value.get_type())
|
||||
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
||||
|
||||
let Ok(value) = Self::Value::try_from(value) else {
|
||||
unreachable!("check_type() has bad implementation")
|
||||
};
|
||||
Ok(self.believe_value(value))
|
||||
}
|
||||
|
||||
// Allocate a value on the stack and return its pointer.
|
||||
fn alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Self>> {
|
||||
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
Ptr(*self).believe_value(p)
|
||||
}
|
||||
|
||||
// Allocate an array on the stack and return its pointer.
|
||||
fn array_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Self>> {
|
||||
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
|
||||
Ptr(*self).believe_value(p)
|
||||
}
|
||||
|
||||
fn var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&str>,
|
||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
||||
Ok(Ptr(*self).believe_value(p))
|
||||
}
|
||||
|
||||
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
|
||||
// TODO: Remove ArraySliceValue
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
||||
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
|
||||
}
|
||||
|
||||
fn const_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
values: &[Instance<'ctx, Self>],
|
||||
) -> Instance<'ctx, Array<AnyLen, Self>> {
|
||||
macro_rules! make {
|
||||
($t:expr, $into_value:expr) => {
|
||||
$t.const_array(
|
||||
&values
|
||||
.iter()
|
||||
.map(|x| $into_value(x.value.as_basic_value_enum()))
|
||||
.collect_vec(),
|
||||
)
|
||||
};
|
||||
}
|
||||
|
||||
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
|
||||
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
|
||||
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
|
||||
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
|
||||
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
|
||||
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
|
||||
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
|
||||
};
|
||||
|
||||
Array { len: AnyLen(values.len() as u32), item: *self }
|
||||
.check_value(generator, ctx, value)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Instance<'ctx, M: Model<'ctx>> {
|
||||
/// The model of this instance.
|
||||
pub model: M,
|
||||
/// The value of this instance.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
|
||||
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
|
||||
pub value: M::Value,
|
||||
}
|
|
@ -1,87 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::FloatType, values::FloatValue};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float64;
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float32 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float64 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f64_type()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float<N>(pub N);
|
||||
|
||||
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
|
||||
type Value = FloatValue<'ctx>;
|
||||
type Type = FloatType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_float_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = FloatType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_float_type(generator, ctx);
|
||||
|
||||
// TODO: Inkwell does not have get_bit_width for FloatType?
|
||||
// TODO: Quick hack for now, but does this actually work?
|
||||
if ty != exp_ty {
|
||||
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -1,106 +0,0 @@
|
|||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
||||
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Arg<'ctx> {
|
||||
ty: BasicMetadataTypeEnum<'ctx>,
|
||||
val: BasicMetadataValueEnum<'ctx>,
|
||||
}
|
||||
|
||||
/// A structure to construct & call an LLVM function.
|
||||
///
|
||||
/// This is a helper to reduce IRRT Inkwell function call boilerplate
|
||||
// TODO: Remove the lifetimes somehow? There are 4 of them.
|
||||
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
||||
generator: &'d mut G,
|
||||
ctx: &'b CodeGenContext<'ctx, 'a>,
|
||||
/// Function name
|
||||
name: &'c str,
|
||||
/// Call arguments
|
||||
args: Vec<Arg<'ctx>>,
|
||||
/// LLVM function Attributes
|
||||
attrs: Vec<&'static str>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
|
||||
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
||||
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
||||
}
|
||||
|
||||
/// Push a list of LLVM function attributes to the function declaration.
|
||||
#[must_use]
|
||||
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
||||
self.attrs = attrs;
|
||||
self
|
||||
}
|
||||
|
||||
/// Push a call argument to the function call.
|
||||
#[allow(clippy::needless_pass_by_value)]
|
||||
#[must_use]
|
||||
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
||||
let arg = Arg {
|
||||
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
||||
val: arg.value.as_basic_value_enum().into(),
|
||||
};
|
||||
self.args.push(arg);
|
||||
self
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a value of type of `return_model`.
|
||||
#[must_use]
|
||||
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
||||
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
|
||||
|
||||
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
|
||||
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
||||
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
||||
ret
|
||||
}
|
||||
|
||||
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
||||
#[must_use]
|
||||
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
||||
self.returning(name, M::default())
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a void-type.
|
||||
pub fn returning_void(self) {
|
||||
let ret_ty = self.ctx.ctx.void_type();
|
||||
|
||||
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
|
||||
}
|
||||
|
||||
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
||||
where
|
||||
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
||||
{
|
||||
// Get the LLVM function.
|
||||
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
||||
// Declare the function if it doesn't exist.
|
||||
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
||||
|
||||
let func_type = make_fn_type(&tys);
|
||||
let func = self.ctx.module.add_function(self.name, func_type, None);
|
||||
|
||||
for attr in &self.attrs {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
|
||||
func
|
||||
});
|
||||
|
||||
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
||||
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
||||
}
|
||||
}
|
|
@ -1,349 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, IntType},
|
||||
values::IntValue,
|
||||
IntPredicate,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Bool;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Byte;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int64;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct SizeT;
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Bool {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.bool_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Byte {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i8_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int32 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int64 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i64_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for SizeT {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
generator.get_size_type(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int<N>(pub N);
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
|
||||
type Value = IntValue<'ctx>;
|
||||
type Type = IntType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_int_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = IntType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_int_type(generator, ctx);
|
||||
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
||||
exp_ty.get_bit_width(),
|
||||
ty.get_bit_width()
|
||||
)));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Int<N> {
|
||||
pub fn const_int<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: u64,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_int(value, false);
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn const_0<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_zero();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn const_1<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 1)
|
||||
}
|
||||
|
||||
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = self.get_type(generator, ctx).const_all_ones();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn s_extend<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn z_extend<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn truncate<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Self> {
|
||||
let value =
|
||||
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl Int<Bool> {
|
||||
#[must_use]
|
||||
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 0)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Self> {
|
||||
self.const_int(generator, ctx, 1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
|
||||
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).s_extend(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).z_extend(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
) -> Instance<'ctx, Int<NewN>> {
|
||||
Int(to_int_kind).truncate(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
|
||||
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn compare(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
op: IntPredicate,
|
||||
other: Self,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn not(&self, ctx: &CodeGenContext<'ctx, '_>) -> Self {
|
||||
let value = ctx.builder.build_not(self.value, "").unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
}
|
|
@ -1,17 +0,0 @@
|
|||
mod any;
|
||||
mod array;
|
||||
mod core;
|
||||
mod float;
|
||||
pub mod function;
|
||||
mod int;
|
||||
mod ptr;
|
||||
mod structure;
|
||||
pub mod util;
|
||||
|
||||
pub use any::*;
|
||||
pub use array::*;
|
||||
pub use core::*;
|
||||
pub use float::*;
|
||||
pub use int::*;
|
||||
pub use ptr::*;
|
||||
pub use structure::*;
|
|
@ -1,192 +0,0 @@
|
|||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Ptr<Item>(pub Item);
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
|
||||
type Value = PointerValue<'ctx>;
|
||||
type Type = PointerType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = PointerType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let elem_ty = ty.get_element_type();
|
||||
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
||||
)));
|
||||
};
|
||||
|
||||
// TODO: inkwell `get_element_type()` will be deprecated.
|
||||
// Remove the check for `get_element_type()` when the time comes.
|
||||
self.0
|
||||
.check_type(generator, ctx, elem_ty)
|
||||
.map_err(|err| err.under_context("a PointerType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Ptr<Element> {
|
||||
/// Return a ***constant*** nullptr.
|
||||
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Ptr<Element>> {
|
||||
let ptr = self.get_type(generator, ctx).const_null();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
||||
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Element>> {
|
||||
let t = self.get_type(generator, ctx.ctx);
|
||||
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
||||
#[must_use]
|
||||
pub fn offset(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
|
||||
self.model.believe_value(p)
|
||||
}
|
||||
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
||||
#[must_use]
|
||||
pub fn offset_const(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: u64,
|
||||
) -> Instance<'ctx, Ptr<Item>> {
|
||||
let offset = ctx.ctx.i32_type().const_int(offset, false);
|
||||
self.offset(ctx, offset)
|
||||
}
|
||||
|
||||
pub fn set_index(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.offset(ctx, index).store(ctx, value);
|
||||
}
|
||||
|
||||
pub fn set_index_const(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: u64,
|
||||
value: Instance<'ctx, Item>,
|
||||
) {
|
||||
self.offset_const(ctx, index).store(ctx, value);
|
||||
}
|
||||
|
||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.offset(ctx, index).load(generator, ctx)
|
||||
}
|
||||
|
||||
pub fn get_index_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
index: u64,
|
||||
) -> Instance<'ctx, Item> {
|
||||
self.offset_const(ctx, index).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
||||
pub fn load<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Item> {
|
||||
let value = ctx.builder.build_load(self.value, "").unwrap();
|
||||
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
||||
}
|
||||
|
||||
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
||||
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
|
||||
ctx.builder.build_store(self.value, value.value).unwrap();
|
||||
}
|
||||
|
||||
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
||||
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
new_item: NewItem,
|
||||
) -> Instance<'ctx, Ptr<NewItem>> {
|
||||
Ptr(new_item).pointer_cast(generator, ctx, self.value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_is_null(self.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
||||
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
|
||||
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
|
||||
Int(Bool).believe_value(value)
|
||||
}
|
||||
|
||||
pub fn copy_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
source: Self,
|
||||
num_items: IntValue<'ctx>,
|
||||
) {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// Force extend `num_items` and `itemsize` so their types would match.
|
||||
let itemsize = self.model.sizeof(generator, ctx.ctx);
|
||||
let itemsize =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(itemsize, llvm_usize, "").unwrap();
|
||||
let num_items =
|
||||
ctx.builder.build_int_z_extend_or_bit_cast(num_items, llvm_usize, "").unwrap();
|
||||
|
||||
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap();
|
||||
|
||||
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
|
||||
call_memcpy_generic(ctx, self.value, source.value, totalsize, is_volatile);
|
||||
}
|
||||
}
|
|
@ -1,261 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, StructType},
|
||||
values::{BasicValueEnum, StructValue},
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
|
||||
pub trait FieldTraversal<'ctx> {
|
||||
/// Output type of [`FieldTraversal::add`].
|
||||
type Out<M>;
|
||||
|
||||
/// Traverse through the type of a declared field and do something with it.
|
||||
///
|
||||
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
|
||||
/// * `model` - The [`Model`] representing the LLVM type of this field.
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
|
||||
|
||||
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
|
||||
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
|
||||
self.add(name, M::default())
|
||||
}
|
||||
}
|
||||
|
||||
/// Descriptor of an LLVM struct field.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GepField<M> {
|
||||
/// The GEP index of this field. This is the index to use with `build_gep`.
|
||||
pub gep_index: u64,
|
||||
/// The cosmetic name of this field.
|
||||
pub name: &'static str,
|
||||
/// The [`Model`] of this field's type.
|
||||
pub model: M,
|
||||
}
|
||||
|
||||
/// A traversal to get the GEP index of fields.
|
||||
pub struct GepFieldTraversal {
|
||||
/// The current GEP index.
|
||||
gep_index_counter: u64,
|
||||
}
|
||||
|
||||
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
||||
type Out<M> = GepField<M>;
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let gep_index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
Self::Out { gep_index, name, model }
|
||||
}
|
||||
}
|
||||
|
||||
/// A traversal to collect the field types of a struct.
|
||||
///
|
||||
/// This is used to collect the field types for [`Context::struct_type`].
|
||||
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a G,
|
||||
ctx: &'ctx Context,
|
||||
/// The collected field types so far, in order.
|
||||
field_types: Vec<BasicTypeEnum<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
||||
type Out<M> = (); // Checking types return nothing.
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
|
||||
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
|
||||
self.field_types.push(t);
|
||||
}
|
||||
}
|
||||
|
||||
/// A traversal to check the types of a field for debug assertions.
|
||||
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a mut G,
|
||||
ctx: &'ctx Context,
|
||||
/// The current GEP index, so we can tell the index of the field we are checking
|
||||
/// and report the GEP index.
|
||||
index: u32,
|
||||
/// The [`StructType`] to check.
|
||||
scrutinee: StructType<'ctx>,
|
||||
/// A list of collected errors so far.
|
||||
errors: Vec<ModelError>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
||||
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
||||
{
|
||||
type Out<M> = (); // Checking types return nothing.
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let i = self.index;
|
||||
self.index += 1;
|
||||
|
||||
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
|
||||
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
||||
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
|
||||
}
|
||||
} // Otherwise, it will be caught by Struct's `check_type`.
|
||||
}
|
||||
}
|
||||
|
||||
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Fields<F: FieldTraversal<'ctx>>;
|
||||
|
||||
/// Traverse map through all fields of this [`StructKind`].
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
||||
|
||||
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
|
||||
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
||||
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
||||
}
|
||||
|
||||
/// Get the LLVM [`StructType`] of this [`StructKind`].
|
||||
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> StructType<'ctx> {
|
||||
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
||||
self.traverse_fields(&mut traversal);
|
||||
|
||||
ctx.struct_type(&traversal.field_types, false)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Struct<S>(pub S);
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
|
||||
/// Create a constant struct value.
|
||||
///
|
||||
/// This function also validates `fields` and panic when there is something wrong.
|
||||
pub fn const_struct<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
fields: &[BasicValueEnum<'ctx>],
|
||||
) -> Instance<'ctx, Self> {
|
||||
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
|
||||
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
|
||||
// and if you try doing that Rust would force you put lifetimes everywhere.
|
||||
let val = ctx.const_struct(fields, false);
|
||||
self.check_value(generator, ctx, val).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
|
||||
type Value = StructValue<'ctx>;
|
||||
type Type = StructType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_struct_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = StructType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let mut traversal =
|
||||
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
|
||||
self.0.traverse_fields(&mut traversal);
|
||||
|
||||
let exp_num_fields = traversal.index;
|
||||
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
||||
if exp_num_fields != got_num_fields {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
||||
)));
|
||||
}
|
||||
|
||||
if !traversal.errors.is_empty() {
|
||||
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
|
||||
/// Get a field with [`StructValue::get_field_at_index`].
|
||||
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0.fields());
|
||||
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
|
||||
field.model.check_value(generator, ctx, val).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
|
||||
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
|
||||
pub fn gep<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, Ptr<M>>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0 .0.fields());
|
||||
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
|
||||
|
||||
let ptr = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
self.value,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
|
||||
field.name,
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
Ptr(field.model).believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).load(generator, ctx)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||
pub fn set<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
value: Instance<'ctx, M>,
|
||||
) where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).store(ctx, value);
|
||||
}
|
||||
}
|
|
@ -1,40 +0,0 @@
|
|||
use crate::codegen::{
|
||||
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
||||
pub fn gen_for_model<'ctx, 'a, G, F, N>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
start: Instance<'ctx, Int<N>>,
|
||||
stop: Instance<'ctx, Int<N>>,
|
||||
step: Instance<'ctx, Int<N>>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
Instance<'ctx, Int<N>>,
|
||||
) -> Result<(), String>,
|
||||
N: IntKind<'ctx> + Default,
|
||||
{
|
||||
let int_model = Int(N::default());
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
start.value,
|
||||
(stop.value, false),
|
||||
|g, ctx, hooks, i| {
|
||||
let i = int_model.believe_value(i);
|
||||
body(g, ctx, hooks, i)
|
||||
},
|
||||
step.value,
|
||||
)
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -1,12 +0,0 @@
|
|||
use inkwell::values::BasicValueEnum;
|
||||
|
||||
use crate::typecheck::typedef::Type;
|
||||
|
||||
/// An NAC3 LLVM Python object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyObject<'ctx> {
|
||||
/// Typechecker type of the object.
|
||||
pub ty: Type,
|
||||
/// LLVM value of the object.
|
||||
pub value: BasicValueEnum<'ctx>,
|
||||
}
|
|
@ -1,150 +0,0 @@
|
|||
use inkwell::types::BasicType;
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// Fields of [`List`]
|
||||
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||
/// Array pointer to content
|
||||
pub items: F::Out<Ptr<Item>>,
|
||||
/// Number of items in the array
|
||||
pub len: F::Out<Int<SizeT>>,
|
||||
}
|
||||
|
||||
/// A list in NAC3.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct List<Item> {
|
||||
/// Model of the list items
|
||||
pub item: Item,
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
items: traversal.add("items", Ptr(self.item)),
|
||||
len: traversal.add_auto("len"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A NAC3 Python List object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ListObject<'ctx> {
|
||||
/// Typechecker type of the list items. Could be [`TypeEnum::TVar`] if unresolved (like
|
||||
/// in the case of empty lists and the typechecker does not have enough hints).
|
||||
pub item_type: Type,
|
||||
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListObject<'ctx> {
|
||||
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
assert!(matches!(
|
||||
&*ctx.unifier.get_ty(object.ty),
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap()
|
||||
));
|
||||
|
||||
// Check typechecker type and extract `item_type`
|
||||
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
||||
}
|
||||
_ => {
|
||||
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
||||
}
|
||||
};
|
||||
|
||||
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
|
||||
// as a placeholder because there are no opaque pointers in LLVM 14.
|
||||
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
|
||||
generator.get_size_type(ctx.ctx).as_basic_type_enum()
|
||||
} else {
|
||||
ctx.get_llvm_type(generator, item_type)
|
||||
};
|
||||
|
||||
let plist = Ptr(Struct(List { item: Any(item_type_llvm) }));
|
||||
|
||||
// Create object
|
||||
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
ListObject { item_type, instance: value }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this list.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
self.instance.get(generator, ctx, |f| f.len)
|
||||
}
|
||||
|
||||
/// Get the `items` field as an opaque pointer.
|
||||
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Int<Byte>>> {
|
||||
self.instance.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte))
|
||||
}
|
||||
|
||||
/// Get the value of this [`ListObject`] as a list with opaque items.
|
||||
///
|
||||
/// This function allocates on the stack to create the list, but the
|
||||
/// reference to the `items` is preserved.
|
||||
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
|
||||
let opaque_list = Struct(List { item: Int(Byte) }).alloca(generator, ctx);
|
||||
|
||||
// Copy items pointer
|
||||
let items = self.get_opaque_items_ptr(generator, ctx);
|
||||
opaque_list.set(ctx, |f| f.items, items);
|
||||
|
||||
// Copy len
|
||||
let len = self.instance.get(generator, ctx, |f| f.len);
|
||||
opaque_list.set(ctx, |f| f.len, len);
|
||||
|
||||
opaque_list
|
||||
}
|
||||
|
||||
/// Allocate a list on the stack given its `item_type` and `len`.
|
||||
///
|
||||
/// The returned list's content will be:
|
||||
/// - `items`: allocated with an array of length `len` with uninitialized values.
|
||||
/// - `len`: set to `len`.
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
item_type: Type,
|
||||
len: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
// If `item_type` is unresolved, the list's ptr will default to `size_t*`
|
||||
// as a placeholder because there are no opaque pointers in LLVM 14.
|
||||
let item_type_llvm = if let TypeEnum::TVar { .. } = &*ctx.unifier.get_ty(item_type) {
|
||||
generator.get_size_type(ctx.ctx).as_basic_type_enum()
|
||||
} else {
|
||||
ctx.get_llvm_type(generator, item_type)
|
||||
};
|
||||
let items = Any(item_type_llvm).array_alloca(generator, ctx, len.value);
|
||||
|
||||
let instance = Struct(List { item: Any(item_type_llvm) }).alloca(generator, ctx);
|
||||
instance.set(ctx, |f| f.items, items);
|
||||
instance.set(ctx, |f| f.len, len);
|
||||
|
||||
ListObject { item_type, instance }
|
||||
}
|
||||
}
|
|
@ -1,5 +0,0 @@
|
|||
pub mod any;
|
||||
pub mod list;
|
||||
pub mod ndarray;
|
||||
pub mod range;
|
||||
pub mod tuple;
|
|
@ -1,178 +0,0 @@
|
|||
use super::NDArrayObject;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape,
|
||||
call_nac3_ndarray_array_write_list_to_array,
|
||||
},
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject},
|
||||
stmt::gen_if_else_expr_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> (Type, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||
let ndims = ndims + 1; // To count `list` itself.
|
||||
|
||||
(dtype, ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
fn make_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
let list_value = list.get_opaque_list_ptr(generator, ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
call_nac3_ndarray_array_set_and_validate_list_shape(
|
||||
generator, ctx, list_value, ndims, shape,
|
||||
);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
// Copy all contents from the list.
|
||||
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
fn make_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
// np_array without copying is only possible `list` is not nested.
|
||||
//
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
//
|
||||
// If `list` is `list[list[T]]` or worse, copy.
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
|
||||
|
||||
// Set data
|
||||
let data = list.get_opaque_items_ptr(generator, ctx);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
// ndarray->shape[0] = list->len;
|
||||
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
let list_len = list.instance.get(generator, ctx, |f| f.len);
|
||||
shape.set_index_const(ctx, 0, list_len);
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, copy
|
||||
NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list)
|
||||
}
|
||||
}
|
||||
|
||||
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray =
|
||||
NDArrayObject::make_np_array_list_try_no_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||
}
|
||||
|
||||
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_val,
|
||||
ndarray.dtype,
|
||||
ndarray.ndims,
|
||||
)
|
||||
}
|
||||
|
||||
/// Create a new ndarray like `np.array()`.
|
||||
///
|
||||
/// NOTE: The `ndmin` argument is not here. You may want to
|
||||
/// do [`NDArrayObject::atleast_nd`] to achieve that.
|
||||
pub fn make_np_array<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
copy: Instance<'ctx, Int<Bool>>,
|
||||
) -> Self {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||
}
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,135 +0,0 @@
|
|||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`ShapeEntry`]
|
||||
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
/// An IRRT structure used in broadcasting.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct ShapeEntry;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create a broadcast view on this ndarray with a target shape.
|
||||
///
|
||||
/// The input shape will be checked to make sure that it contains no negative values.
|
||||
///
|
||||
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||
/// The caller has to figure this out for this function.
|
||||
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||
#[must_use]
|
||||
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target_ndims: u64,
|
||||
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
|
||||
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||
|
||||
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||
broadcast_ndarray
|
||||
}
|
||||
}
|
||||
/// A result produced by [`broadcast_all_ndarrays`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BroadcastAllResult<'ctx> {
|
||||
/// The statically known `ndims` of the broadcast result.
|
||||
pub ndims: u64,
|
||||
/// The broadcasting shape.
|
||||
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
/// Broadcasted views on the inputs.
|
||||
///
|
||||
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||
/// is the same as the input.
|
||||
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||
}
|
||||
|
||||
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
|
||||
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
|
||||
broadcast_ndims: u64,
|
||||
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
|
||||
let num_shape_entries =
|
||||
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
|
||||
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
|
||||
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
|
||||
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
|
||||
|
||||
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
|
||||
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||
|
||||
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||
}
|
||||
|
||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
|
||||
call_nac3_ndarray_broadcast_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
num_shape_entries,
|
||||
shape_entries,
|
||||
broadcast_ndims,
|
||||
broadcast_shape,
|
||||
);
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
|
||||
/// containing all the information of the result of the broadcast operation.
|
||||
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarrays: &[Self],
|
||||
) -> BroadcastAllResult<'ctx> {
|
||||
assert!(!ndarrays.is_empty());
|
||||
|
||||
// Infer the broadcast output ndims.
|
||||
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||
|
||||
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
|
||||
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
|
||||
|
||||
let shape_entries = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
|
||||
.collect_vec();
|
||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||
|
||||
// Broadcast all the inputs to shape `dst_shape`.
|
||||
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
BroadcastAllResult {
|
||||
ndims: broadcast_ndims_int,
|
||||
shape: broadcast_shape,
|
||||
ndarrays: broadcast_ndarrays,
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,134 +0,0 @@
|
|||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`ContiguousNDArray`]
|
||||
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub data: F::Out<Ptr<Item>>,
|
||||
}
|
||||
|
||||
/// An ndarray without strides and non-opaque `data` field in NAC3.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ContiguousNDArray<M> {
|
||||
/// [`Model`] of the items.
|
||||
pub item: M,
|
||||
}
|
||||
|
||||
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
data: traversal.add("data", Ptr(self.item)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
|
||||
///
|
||||
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||
///
|
||||
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
||||
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
|
||||
///
|
||||
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
|
||||
/// will share memory with this ndarray.
|
||||
///
|
||||
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
|
||||
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
|
||||
/// if you don't care/cannot know the [`Model`] in advance.
|
||||
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
item_model: Item,
|
||||
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
|
||||
// Sanity check on `self.dtype` and `item_model`.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
// Allocate and setup the resulting [`ContiguousNDArray`].
|
||||
let result = cdarray_model.alloca(generator, ctx);
|
||||
|
||||
// Set ndims and shape.
|
||||
let ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||
result.set(ctx, |f| f.ndims, ndims);
|
||||
|
||||
let shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||
result.set(ctx, |f| f.shape, shape);
|
||||
|
||||
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb; This ndarray is contiguous.
|
||||
ctx.builder.position_at_end(then_bb);
|
||||
let data = self.instance.get(generator, ctx, |f| f.data);
|
||||
let data = data.pointer_cast(generator, ctx, item_model);
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
||||
// `make_copy` produces an ndarray with contiguous `data`.
|
||||
ctx.builder.position_at_end(else_bb);
|
||||
let copied_ndarray = self.make_copy(generator, ctx);
|
||||
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
|
||||
let data = data.pointer_cast(generator, ctx, item_model);
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition to end_bb for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
|
||||
///
|
||||
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
|
||||
/// same memory as the [`ContiguousNDArray`].
|
||||
///
|
||||
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
|
||||
/// the fact that the information should be contained within the [`ContiguousNDArray`].
|
||||
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
|
||||
|
||||
// Allocate the resulting ndarray.
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||
|
||||
// Copy shape and update strides
|
||||
let shape = carray.get(generator, ctx, |f| f.shape);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.set_strides_contiguous(generator, ctx);
|
||||
|
||||
// Share data
|
||||
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
ndarray
|
||||
}
|
||||
}
|
|
@ -1,176 +0,0 @@
|
|||
use inkwell::{values::BasicValueEnum, IntPredicate};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
|
||||
CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the one value in `np.ones()` of a `dtype`.
|
||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create an ndarray like `np.empty`.
|
||||
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
// Validate `shape`
|
||||
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.full`.
|
||||
pub fn make_np_full<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
|
||||
ndarray.fill(generator, ctx, fill_value);
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.zero`.
|
||||
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.ones`.
|
||||
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.eye`.
|
||||
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
nrows: Instance<'ctx, Int<SizeT>>,
|
||||
ncols: Instance<'ctx, Int<SizeT>>,
|
||||
offset: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||
|
||||
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
|
||||
|
||||
// Create data and make the matrix like look np.eye()
|
||||
ndarray.create_data(generator, ctx);
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||
// and this loop would not execute.
|
||||
|
||||
// Load up `row_i` and `col_i` from indices.
|
||||
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
|
||||
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
|
||||
|
||||
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
|
||||
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
||||
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.identity`.
|
||||
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
size: Instance<'ctx, Int<SizeT>>,
|
||||
) -> Self {
|
||||
// Convenient implementation
|
||||
let offset = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
|
||||
}
|
||||
}
|
|
@ -1,295 +0,0 @@
|
|||
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
pub type NDIndexType = Byte;
|
||||
|
||||
/// Fields of [`NDIndex`]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
|
||||
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation of an ndarray subscript index.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct NDIndex;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDIndex {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
||||
}
|
||||
}
|
||||
|
||||
/// Fields of [`Slice`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
|
||||
pub start_defined: F::Out<Int<Bool>>,
|
||||
pub start: F::Out<Int<N>>,
|
||||
pub stop_defined: F::Out<Int<Bool>>,
|
||||
pub stop: F::Out<Int<N>>,
|
||||
pub step_defined: F::Out<Int<Bool>>,
|
||||
pub step: F::Out<Int<N>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation of an (unresolved) slice.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct Slice<N> {
|
||||
int_kind: N,
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
|
||||
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
start_defined: traversal.add_auto("start_defined"),
|
||||
start: traversal.add("start", Int(self.int_kind)),
|
||||
stop_defined: traversal.add_auto("stop_defined"),
|
||||
stop: traversal.add("stop", Int(self.int_kind)),
|
||||
step_defined: traversal.add_auto("step_defined"),
|
||||
step: traversal.add("step", Int(self.int_kind)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience structure to prepare a [`Slice`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
|
||||
pub start: Option<Instance<'ctx, Int<N>>>,
|
||||
pub stop: Option<Instance<'ctx, Int<N>>>,
|
||||
pub step: Option<Instance<'ctx, Int<N>>>,
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
|
||||
/// Write the contents to an LLVM [`Slice`].
|
||||
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
|
||||
) {
|
||||
let false_ = Int(Bool).const_false(generator, ctx.ctx);
|
||||
let true_ = Int(Bool).const_true(generator, ctx.ctx);
|
||||
|
||||
match self.start {
|
||||
Some(start) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.stop {
|
||||
Some(stop) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.step {
|
||||
Some(step) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A convenience enum to prepare an [`NDIndex`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum RustNDIndex<'ctx> {
|
||||
SingleElement(Instance<'ctx, Int<Int32>>), // TODO: To be SizeT
|
||||
Slice(RustSlice<'ctx, Int32>),
|
||||
NewAxis,
|
||||
Ellipsis,
|
||||
}
|
||||
|
||||
impl<'ctx> RustNDIndex<'ctx> {
|
||||
/// Get the value to set `NDIndex::type` for this variant.
|
||||
fn get_type_id(&self) -> u64 {
|
||||
// Defined in IRRT, must be in sync
|
||||
match self {
|
||||
RustNDIndex::SingleElement(_) => 0,
|
||||
RustNDIndex::Slice(_) => 1,
|
||||
RustNDIndex::NewAxis => 2,
|
||||
RustNDIndex::Ellipsis => 3,
|
||||
}
|
||||
}
|
||||
|
||||
/// Write the contents to an LLVM [`NDIndex`].
|
||||
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
|
||||
) {
|
||||
// Set `dst_ndindex_ptr->type`
|
||||
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
|
||||
ctx,
|
||||
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
|
||||
);
|
||||
|
||||
// Set `dst_ndindex_ptr->data`
|
||||
match self {
|
||||
RustNDIndex::SingleElement(in_index) => {
|
||||
let index_ptr = Int(Int32).alloca(generator, ctx);
|
||||
index_ptr.store(ctx, *in_index);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||
}
|
||||
RustNDIndex::Slice(in_rust_slice) => {
|
||||
let user_slice_ptr = Struct(Slice { int_kind: Int32 }).alloca(generator, ctx);
|
||||
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
|
||||
}
|
||||
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
|
||||
pub fn alloca_ndindices<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
in_ndindices: &[RustNDIndex<'ctx>],
|
||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
|
||||
let ndindex_model = Struct(NDIndex);
|
||||
|
||||
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
|
||||
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
|
||||
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
|
||||
let pndindex = ndindices.offset_const(ctx, i as u64);
|
||||
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
||||
}
|
||||
|
||||
(num_ndindices, ndindices)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Get the ndims [`Type`] after indexing with a given slice.
|
||||
#[must_use]
|
||||
pub fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
|
||||
let mut ndims = self.ndims;
|
||||
for index in indices {
|
||||
match index {
|
||||
RustNDIndex::SingleElement(_) => {
|
||||
ndims -= 1; // Single elements decrements ndims
|
||||
}
|
||||
RustNDIndex::NewAxis => {
|
||||
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||
}
|
||||
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||
}
|
||||
}
|
||||
ndims
|
||||
}
|
||||
|
||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||
///
|
||||
/// This function behaves like NumPy's ndarray indexing, but if the indices index
|
||||
/// into a single element, an unsized ndarray is returned.
|
||||
#[must_use]
|
||||
pub fn index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: &[RustNDIndex<'ctx>],
|
||||
) -> Self {
|
||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
|
||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
|
||||
|
||||
let (num_indices, indices) = RustNDIndex::alloca_ndindices(generator, ctx, indices);
|
||||
call_nac3_ndarray_index(
|
||||
generator,
|
||||
ctx,
|
||||
num_indices,
|
||||
indices,
|
||||
self.instance,
|
||||
dst_ndarray.instance,
|
||||
);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
}
|
||||
|
||||
pub mod util {
|
||||
use itertools::Itertools;
|
||||
use nac3parser::ast::{Expr, ExprKind};
|
||||
|
||||
use crate::{
|
||||
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::{RustNDIndex, RustSlice};
|
||||
|
||||
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||
/// its list of [`RustNDIndex`]
|
||||
///
|
||||
/// i.e.,
|
||||
/// ```python
|
||||
/// my_ndarray[::3, 1, :2:]
|
||||
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||
/// ```
|
||||
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
subscript: &Expr<Option<Type>>,
|
||||
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// So we first "flatten" out the slice expression
|
||||
let index_exprs = match &subscript.node {
|
||||
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||
_ => vec![subscript],
|
||||
};
|
||||
|
||||
// Process all index expressions
|
||||
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||
for index_expr in index_exprs {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||
// Handle slices
|
||||
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
|
||||
RustNDIndex::Slice(RustSlice { start: lower, stop: upper, step })
|
||||
} else {
|
||||
// Treat and handle everything else as a single element index.
|
||||
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||
)?;
|
||||
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
|
||||
|
||||
RustNDIndex::SingleElement(index)
|
||||
};
|
||||
rust_ndindices.push(ndindex);
|
||||
}
|
||||
Ok(rust_ndindices)
|
||||
}
|
||||
}
|
|
@ -1,220 +0,0 @@
|
|||
use inkwell::values::BasicValueEnum;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
object::ndarray::{AnyObject, NDArrayObject},
|
||||
stmt::gen_for_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
|
||||
///
|
||||
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
|
||||
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
|
||||
///
|
||||
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
|
||||
pub fn broadcast_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarrays: &[Self],
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Broadcast inputs
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
||||
|
||||
let out_ndarray = match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray =
|
||||
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
|
||||
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
||||
result_ndarray.create_data(generator, ctx);
|
||||
result_ndarray
|
||||
}
|
||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||
// Use an existing ndarray.
|
||||
|
||||
// Check that its shape is compatible with the broadcast shape.
|
||||
result_ndarray.assert_can_be_written_by_out(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_result.ndims,
|
||||
broadcast_result.shape,
|
||||
);
|
||||
result_ndarray
|
||||
}
|
||||
};
|
||||
|
||||
// Map element-wise and store results into `mapped_ndarray`.
|
||||
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("broadcast_starmap"),
|
||||
|generator, ctx| {
|
||||
// Create NDIters for all broadcasted input ndarrays.
|
||||
let other_nditers = broadcast_result
|
||||
.ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
||||
.collect_vec();
|
||||
Ok((nditer, other_nditers))
|
||||
},
|
||||
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||
// We can simply use `out_nditer`'s `has_next()`.
|
||||
// `in_nditers`' `has_next()`s should return the same value.
|
||||
Ok(out_nditer.has_next(generator, ctx).value)
|
||||
},
|
||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||
// and write to `out_ndarray`.
|
||||
|
||||
let in_scalars = in_nditers
|
||||
.iter()
|
||||
.map(|nditer| nditer.get_scalar(generator, ctx).value)
|
||||
.collect_vec();
|
||||
|
||||
let result = mapping(generator, ctx, &in_scalars)?;
|
||||
|
||||
let p = out_nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|generator, ctx, (out_nditer, in_nditers)| {
|
||||
// Advance all iterators
|
||||
out_nditer.next(generator, ctx);
|
||||
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(out_ndarray)
|
||||
}
|
||||
|
||||
/// Map through this ndarray with an elementwise function.
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: Mapping,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
NDArrayObject::broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
out,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
|
||||
///
|
||||
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
|
||||
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
|
||||
///
|
||||
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
|
||||
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
|
||||
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
|
||||
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
|
||||
///
|
||||
/// ## Details:
|
||||
///
|
||||
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
|
||||
///
|
||||
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
|
||||
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
|
||||
/// with dtype `ret_dtype`.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: &[ScalarOrNDArray<'ctx>],
|
||||
ret_dtype: Type,
|
||||
mapping: MappingFn,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[BasicValueEnum<'ctx>],
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
// Check if all inputs are Scalars
|
||||
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
||||
|
||||
if let Some(scalars) = all_scalars {
|
||||
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
|
||||
let value = mapping(generator, ctx, &scalars)?;
|
||||
|
||||
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
|
||||
} else {
|
||||
// Promote all input to ndarrays and map through them.
|
||||
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
|
||||
let ndarray = NDArrayObject::broadcast_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&inputs,
|
||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||
mapping,
|
||||
)?;
|
||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||
}
|
||||
}
|
||||
|
||||
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
|
||||
///
|
||||
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
|
||||
///
|
||||
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
|
||||
/// returned as a [`ScalarOrNDArray::NDArray`].
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ret_dtype: Type,
|
||||
mapping: Mapping,
|
||||
) -> Result<ScalarOrNDArray<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BasicValueEnum<'ctx>,
|
||||
) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
ScalarOrNDArray::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
ret_dtype,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
|
@ -1,207 +0,0 @@
|
|||
use std::cmp::max;
|
||||
|
||||
use nac3parser::ast::Operator;
|
||||
use util::gen_for_model;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
|
||||
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::{magic_methods::Binop, typedef::Type},
|
||||
};
|
||||
|
||||
use super::{NDArrayObject, NDArrayOut};
|
||||
|
||||
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst_dtype: Type,
|
||||
in_a: NDArrayObject<'ctx>,
|
||||
in_b: NDArrayObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
assert!(in_a.ndims >= 2);
|
||||
assert!(in_b.ndims >= 2);
|
||||
|
||||
// Deduce ndims of the result of matmul.
|
||||
let ndims_int = max(in_a.ndims, in_b.ndims);
|
||||
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
|
||||
|
||||
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
|
||||
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
|
||||
|
||||
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
|
||||
// destination ndarray to store the result of matmul.
|
||||
let (a, b, dst) = {
|
||||
let in_a_ndims = in_a.ndims_llvm(generator, ctx.ctx);
|
||||
let in_a_shape = in_a.instance.get(generator, ctx, |f| f.shape);
|
||||
let in_b_ndims = in_b.ndims_llvm(generator, ctx.ctx);
|
||||
let in_b_shape = in_b.instance.get(generator, ctx, |f| f.shape);
|
||||
let a_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
let b_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
|
||||
// Matmul dimension compatibility is checked here.
|
||||
call_nac3_ndarray_matmul_calculate_shapes(
|
||||
generator, ctx, in_a_ndims, in_a_shape, in_b_ndims, in_b_shape, ndims, a_shape,
|
||||
b_shape, dst_shape,
|
||||
);
|
||||
|
||||
let a = in_a.broadcast_to(generator, ctx, ndims_int, a_shape);
|
||||
let b = in_b.broadcast_to(generator, ctx, ndims_int, b_shape);
|
||||
|
||||
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
|
||||
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
||||
dst.create_data(generator, ctx);
|
||||
|
||||
(a, b, dst)
|
||||
};
|
||||
|
||||
let len =
|
||||
a.instance.get(generator, ctx, |f| f.shape).get_index_const(generator, ctx, ndims_int - 1);
|
||||
|
||||
let at_row = ndims_int - 2;
|
||||
let at_col = ndims_int - 1;
|
||||
|
||||
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
|
||||
let dst_zero = dst_dtype_llvm.const_zero();
|
||||
|
||||
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
|
||||
let pdst_ij = hdl.get_pointer(generator, ctx);
|
||||
|
||||
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
|
||||
|
||||
let indices = hdl.get_indices();
|
||||
let i = indices.get_index_const(generator, ctx, at_row);
|
||||
let j = indices.get_index_const(generator, ctx, at_col);
|
||||
|
||||
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
|
||||
// `indices` is modified to index into `a` and `b`, and restored.
|
||||
indices.set_index_const(ctx, at_row, i);
|
||||
indices.set_index_const(ctx, at_col, k);
|
||||
let a_ik = a.get_scalar_by_indices(generator, ctx, indices);
|
||||
|
||||
indices.set_index_const(ctx, at_row, k);
|
||||
indices.set_index_const(ctx, at_col, j);
|
||||
let b_kj = b.get_scalar_by_indices(generator, ctx, indices);
|
||||
|
||||
// Restore `indices`.
|
||||
indices.set_index_const(ctx, at_row, i);
|
||||
indices.set_index_const(ctx, at_col, j);
|
||||
|
||||
// x = a_[...]ik * b_[...]kj
|
||||
let x = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(a.dtype), a_ik.value),
|
||||
Binop::normal(Operator::Mult),
|
||||
(&Some(b.dtype), b_kj.value),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
|
||||
// dst_[...]ij += x
|
||||
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
|
||||
let dst_ij = gen_binop_expr_with_values(
|
||||
generator,
|
||||
ctx,
|
||||
(&Some(dst_dtype), dst_ij),
|
||||
Binop::normal(Operator::Add),
|
||||
(&Some(dst_dtype), x),
|
||||
ctx.current_loc,
|
||||
)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, dst_dtype)?;
|
||||
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
dst
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Perform `np.matmul` according to the rules in
|
||||
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
||||
///
|
||||
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
|
||||
/// to handle when the output could be a scalar.
|
||||
///
|
||||
/// `dst_dtype` defines the dtype of the returned ndarray.
|
||||
pub fn matmul<G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a: Self,
|
||||
b: Self,
|
||||
out: NDArrayOut<'ctx>,
|
||||
) -> Self {
|
||||
// Sanity check, but type inference should prevent this.
|
||||
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
||||
|
||||
/*
|
||||
If both arguments are 2-D they are multiplied like conventional matrices.
|
||||
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
|
||||
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
||||
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
||||
*/
|
||||
|
||||
let new_a = if a.ndims == 1 {
|
||||
// Prepend 1 to its dimensions
|
||||
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
|
||||
} else {
|
||||
a
|
||||
};
|
||||
|
||||
let new_b = if b.ndims == 1 {
|
||||
// Append 1 to its dimensions
|
||||
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
|
||||
} else {
|
||||
b
|
||||
};
|
||||
|
||||
// NOTE: `result` will always be a newly allocated ndarray.
|
||||
// Current implementation cannot do in-place matrix muliplication.
|
||||
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
|
||||
|
||||
// Postprocessing on the result to remove prepended/appended axes.
|
||||
let mut postindices = vec![];
|
||||
let zero = Int(Int32).const_0(generator, ctx.ctx);
|
||||
|
||||
if a.ndims == 1 {
|
||||
// Remove the prepended 1
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if b.ndims == 1 {
|
||||
// Remove the appended 1
|
||||
postindices.push(RustNDIndex::Ellipsis);
|
||||
postindices.push(RustNDIndex::SingleElement(zero));
|
||||
}
|
||||
|
||||
if !postindices.is_empty() {
|
||||
result = result.index(generator, ctx, &postindices);
|
||||
}
|
||||
|
||||
match out {
|
||||
NDArrayOut::NewNDArray { .. } => result,
|
||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
|
||||
out_ndarray.assert_can_be_written_by_out(
|
||||
generator,
|
||||
ctx,
|
||||
result.ndims,
|
||||
result_shape,
|
||||
);
|
||||
|
||||
out_ndarray.copy_data_from(generator, ctx, result);
|
||||
out_ndarray
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,671 +0,0 @@
|
|||
pub mod array;
|
||||
pub mod broadcast;
|
||||
pub mod contiguous;
|
||||
pub mod factory;
|
||||
pub mod indexing;
|
||||
pub mod map;
|
||||
pub mod matmul;
|
||||
pub mod nditer;
|
||||
pub mod shape_util;
|
||||
pub mod view;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::BasicType,
|
||||
values::{BasicValue, BasicValueEnum, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
||||
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
|
||||
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
||||
call_nac3_ndarray_util_assert_output_shape_same,
|
||||
},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::{
|
||||
helper::{create_ndims, extract_ndims},
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||
},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::{any::AnyObject, tuple::TupleObject};
|
||||
|
||||
/// Fields of [`NDArray`]
|
||||
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub data: F::Out<Ptr<Int<Byte>>>,
|
||||
pub itemsize: F::Out<Int<SizeT>>,
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
/// A strided ndarray in NAC3.
|
||||
///
|
||||
/// See IRRT implementation for details about its fields.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct NDArray;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDArray {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
data: traversal.add_auto("data"),
|
||||
itemsize: traversal.add_auto("itemsize"),
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
strides: traversal.add_auto("strides"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A NAC3 Python ndarray object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDArrayObject<'ctx> {
|
||||
pub dtype: Type,
|
||||
pub ndims: u64,
|
||||
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||
}
|
||||
|
||||
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||
/// `dtype` and `ndims`.
|
||||
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: V,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
|
||||
NDArrayObject { dtype, ndims, instance: value }
|
||||
}
|
||||
|
||||
/// Get this ndarray's `ndims` as an LLVM constant.
|
||||
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
Int(SizeT).const_int(generator, ctx, self.ndims)
|
||||
}
|
||||
|
||||
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
||||
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
||||
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
||||
}
|
||||
|
||||
/// Forget that this is an ndarray and convert into an [`AnyObject`].
|
||||
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||
let ty = self.get_type(ctx);
|
||||
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
||||
}
|
||||
|
||||
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
||||
///
|
||||
/// `shape` and `strides` will be automatically allocated on the stack.
|
||||
//e
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: set to `nullptr`.
|
||||
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let ndarray = Struct(NDArray).alloca(generator, ctx);
|
||||
|
||||
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
|
||||
ndarray.set(ctx, |f| f.data, data);
|
||||
|
||||
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
||||
let itemsize = Int(SizeT).s_extend_or_bit_cast(generator, ctx, itemsize);
|
||||
ndarray.set(ctx, |f| f.itemsize, itemsize);
|
||||
|
||||
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
|
||||
ndarray.set(ctx, |f| f.ndims, ndims_val);
|
||||
|
||||
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||
ndarray.set(ctx, |f| f.shape, shape);
|
||||
|
||||
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
|
||||
ndarray.set(ctx, |f| f.strides, strides);
|
||||
|
||||
NDArrayObject { dtype, ndims, instance: ndarray }
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[u64],
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
|
||||
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[Instance<'ctx, Int<SizeT>>],
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||
///
|
||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||
///
|
||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||
pub fn create_data<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
let nbytes = self.nbytes(generator, ctx);
|
||||
|
||||
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
|
||||
self.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
self.set_strides_contiguous(generator, ctx);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an array.
|
||||
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an array.
|
||||
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
|
||||
self.instance
|
||||
.get(generator, ctx, |f| f.strides)
|
||||
.copy_from(generator, ctx, strides, num_items);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
|
||||
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||
}
|
||||
|
||||
/// Get the `np.size()` of this ndarray.
|
||||
pub fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_size(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `ndarray.nbytes` of this ndarray.
|
||||
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `len()` of this ndarray.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
call_nac3_ndarray_len(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Check if this ndarray is C-contiguous.
|
||||
///
|
||||
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the pointer to the n-th (0-based) element.
|
||||
///
|
||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Instance<'ctx, Int<SizeT>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the n-th (0-based) scalar.
|
||||
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Instance<'ctx, Int<SizeT>>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let ptr = self.get_nth_pelement(generator, ctx, nth);
|
||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||
AnyObject { ty: self.dtype, value }
|
||||
}
|
||||
|
||||
/// Get the pointer to the element indexed by `indices`.
|
||||
///
|
||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the scalar indexed by `indices`.
|
||||
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
|
||||
let value = ctx.builder.build_load(ptr, "").unwrap();
|
||||
AnyObject { ty: self.dtype, value }
|
||||
}
|
||||
|
||||
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||
///
|
||||
/// Update the ndarray's strides to make the ndarray contiguous.
|
||||
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
|
||||
self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
||||
///
|
||||
/// The new ndarray will own its data and will be C-contiguous.
|
||||
#[must_use]
|
||||
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Self {
|
||||
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||
|
||||
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
|
||||
clone.copy_shape_from_array(generator, ctx, shape);
|
||||
clone.create_data(generator, ctx);
|
||||
clone.copy_data_from(generator, ctx, *self);
|
||||
clone
|
||||
}
|
||||
|
||||
/// Copy data from another ndarray.
|
||||
///
|
||||
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||
/// do not matter. The copying order is determined by how their flattened views look.
|
||||
///
|
||||
/// Panics if the `dtype`s of ndarrays are different.
|
||||
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
||||
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
||||
}
|
||||
|
||||
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||
#[must_use]
|
||||
pub fn is_unsized(&self) -> bool {
|
||||
self.ndims == 0
|
||||
}
|
||||
|
||||
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
|
||||
/// Otherwise, do nothing and return the ndarray itself.
|
||||
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
if self.is_unsized() {
|
||||
// NOTE: `np.size(self) == 0` here is never possible.
|
||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
let value = self.get_nth_scalar(generator, ctx, zero).value;
|
||||
|
||||
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
|
||||
} else {
|
||||
ScalarOrNDArray::NDArray(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Fill the ndarray with a scalar.
|
||||
///
|
||||
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
||||
pub fn fill<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Return a tuple of SizeT
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.shape)
|
||||
.get_index_const(generator, ctx, i)
|
||||
.truncate(generator, ctx, Int32);
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::from_objects(generator, ctx, objects)
|
||||
}
|
||||
|
||||
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Return a tuple of SizeT.
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.strides)
|
||||
.get_index_const(generator, ctx, i)
|
||||
.truncate(generator, ctx, Int32);
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::from_objects(generator, ctx, objects)
|
||||
}
|
||||
|
||||
/// Create an unsized ndarray to contain `object`.
|
||||
pub fn make_unsized<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
|
||||
ctx.builder.build_store(data, object.value).unwrap();
|
||||
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
ndarray
|
||||
}
|
||||
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||
///
|
||||
/// Raise an exception if the shapes do not match.
|
||||
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
out_ndims: u64,
|
||||
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) {
|
||||
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
|
||||
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
|
||||
|
||||
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
|
||||
let output_shape = out_shape;
|
||||
|
||||
call_nac3_ndarray_util_assert_output_shape_same(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_ndims,
|
||||
ndarray_shape,
|
||||
output_ndims,
|
||||
output_shape,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum ScalarOrNDArray<'ctx> {
|
||||
Scalar(AnyObject<'ctx>),
|
||||
NDArray(NDArrayObject<'ctx>),
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
||||
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
||||
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Split on `object` either into a scalar or an ndarray.
|
||||
///
|
||||
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
|
||||
///
|
||||
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
|
||||
pub fn split_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
ScalarOrNDArray::NDArray(ndarray)
|
||||
}
|
||||
_ => ScalarOrNDArray::Scalar(object),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
||||
#[must_use]
|
||||
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
||||
/// - If this is an ndarray, the ndarray is returned.
|
||||
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
|
||||
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
|
||||
#[must_use]
|
||||
pub fn get_dtype(&self) -> Type {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An helper enum specifying how a function should produce its output.
|
||||
///
|
||||
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
|
||||
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
|
||||
/// create a new ndarray and store the result in it.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum NDArrayOut<'ctx> {
|
||||
/// Tell a function should create a new ndarray with the expected element type `dtype`.
|
||||
NewNDArray { dtype: Type },
|
||||
/// Tell a function to write the result to `ndarray`.
|
||||
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayOut<'ctx> {
|
||||
/// Get the dtype of this output.
|
||||
#[must_use]
|
||||
pub fn get_dtype(&self) -> Type {
|
||||
match self {
|
||||
NDArrayOut::NewNDArray { dtype } => *dtype,
|
||||
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
|
||||
///
|
||||
/// This function is used generating strides for globally defined contiguous ndarrays.
|
||||
#[must_use]
|
||||
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
|
||||
let mut strides = Vec::with_capacity(ndims as usize);
|
||||
let mut stride_product = 1u64;
|
||||
for i in 0..ndims {
|
||||
let axis = ndims - i - 1;
|
||||
strides[axis as usize] = stride_product * itemsize;
|
||||
stride_product *= shape[axis as usize];
|
||||
}
|
||||
strides
|
||||
}
|
|
@ -1,168 +0,0 @@
|
|||
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
||||
model::*,
|
||||
object::any::AnyObject,
|
||||
stmt::{gen_for_callback, BreakContinueHooks},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`NDIter`]
|
||||
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub ndims: F::Out<Int<SizeT>>,
|
||||
pub shape: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub strides: F::Out<Ptr<Int<SizeT>>>,
|
||||
|
||||
pub indices: F::Out<Ptr<Int<SizeT>>>,
|
||||
pub nth: F::Out<Int<SizeT>>,
|
||||
pub element: F::Out<Ptr<Int<Byte>>>,
|
||||
|
||||
pub size: F::Out<Int<SizeT>>,
|
||||
}
|
||||
|
||||
/// An IRRT helper structure used to iterate through an ndarray.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct NDIter;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDIter {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
ndims: traversal.add_auto("ndims"),
|
||||
shape: traversal.add_auto("shape"),
|
||||
strides: traversal.add_auto("strides"),
|
||||
|
||||
indices: traversal.add_auto("indices"),
|
||||
nth: traversal.add_auto("nth"),
|
||||
element: traversal.add_auto("element"),
|
||||
|
||||
size: traversal.add_auto("size"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A helper structure containing extra details of an [`NDIter`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NDIterHandle<'ctx> {
|
||||
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
|
||||
/// The ndarray this [`NDIter`] to iterating over.
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
/// The current indices of [`NDIter`].
|
||||
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIterHandle<'ctx> {
|
||||
/// Allocate an [`NDIter`] that iterates through an ndarray.
|
||||
pub fn new<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
) -> Self {
|
||||
let nditer = Struct(NDIter).alloca(generator, ctx);
|
||||
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
// The caller has the responsibility to allocate 'indices' for `NDIter`.
|
||||
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
|
||||
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
||||
|
||||
NDIterHandle { ndarray, instance: nditer, indices }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn has_next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Bool>> {
|
||||
call_nac3_nditer_has_next(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
pub fn next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_nditer_next(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
/// Get pointer to the current element.
|
||||
#[must_use]
|
||||
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
||||
|
||||
let p = self.instance.get(generator, ctx, |f| f.element);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the value of the current element.
|
||||
#[must_use]
|
||||
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let p = self.get_pointer(generator, ctx);
|
||||
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||
AnyObject { ty: self.ndarray.dtype, value }
|
||||
}
|
||||
|
||||
/// Get the index of the current element.
|
||||
#[must_use]
|
||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
self.instance.get(generator, ctx, |f| f.nth)
|
||||
}
|
||||
|
||||
/// Get the indices of the current element.
|
||||
#[must_use]
|
||||
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
|
||||
self.indices
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Iterate through every element in the ndarray.
|
||||
///
|
||||
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
|
||||
pub fn foreach<'a, G, F>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
NDIterHandle<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("ndarray_foreach"),
|
||||
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
||||
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|
||||
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
||||
|generator, ctx, nditer| {
|
||||
nditer.next(generator, ctx);
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
}
|
||||
}
|
|
@ -1,105 +0,0 @@
|
|||
use util::gen_for_model;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
model::*,
|
||||
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::TypeEnum,
|
||||
};
|
||||
|
||||
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
||||
///
|
||||
/// * `sequence` - The `sequence` parameter.
|
||||
/// * `sequence_ty` - The typechecker type of `sequence`
|
||||
///
|
||||
/// The `sequence` argument type may only be one of the following:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// All `int32` values will be sign-extended to `SizeT`.
|
||||
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
input_sequence: AnyObject<'ctx>,
|
||||
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
|
||||
let zero = Int(SizeT).const_0(generator, ctx.ctx);
|
||||
let one = Int(SizeT).const_1(generator, ctx.ctx);
|
||||
|
||||
// The result `list` to return.
|
||||
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// Check `input_sequence`
|
||||
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
||||
|
||||
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
|
||||
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
||||
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
||||
// Load the i-th int32 in the input sequence
|
||||
let int = input_sequence
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.items)
|
||||
.get_index(generator, ctx, i.value)
|
||||
.value
|
||||
.into_int_value();
|
||||
|
||||
// Cast to SizeT
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||
|
||||
// Store
|
||||
result.set_index(ctx, i.value, int);
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TTuple { .. } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
||||
|
||||
let len = input_sequence.len(generator, ctx);
|
||||
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
|
||||
for i in 0..input_sequence.num_elements() {
|
||||
// Get the i-th element off of the tuple and load it into `result`.
|
||||
let int = input_sequence.index(ctx, i).value.into_int_value();
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
|
||||
|
||||
result.set_index_const(ctx, i as u64, int);
|
||||
}
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
let input_int = input_sequence.value.into_int_value();
|
||||
|
||||
let len = Int(SizeT).const_1(generator, ctx.ctx);
|
||||
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
|
||||
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
|
||||
|
||||
// Storing into result[0]
|
||||
result.store(ctx, int);
|
||||
|
||||
(len, result)
|
||||
}
|
||||
_ => panic!(
|
||||
"encountered unknown sequence type: {}",
|
||||
ctx.unifier.stringify(input_sequence.ty)
|
||||
),
|
||||
}
|
||||
}
|
|
@ -1,119 +0,0 @@
|
|||
use crate::codegen::{
|
||||
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::{indexing::RustNDIndex, NDArrayObject};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
||||
///
|
||||
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
||||
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
||||
#[must_use]
|
||||
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndmin: u64,
|
||||
) -> Self {
|
||||
if self.ndims < ndmin {
|
||||
// return this_ndarray[np.newaxis, np.newaxis, and more, ...]
|
||||
let mut indices = vec![];
|
||||
for _ in self.ndims..ndmin {
|
||||
indices.push(RustNDIndex::NewAxis);
|
||||
}
|
||||
indices.push(RustNDIndex::Ellipsis);
|
||||
self.index(generator, ctx, &indices)
|
||||
} else {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
||||
///
|
||||
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
||||
///
|
||||
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
||||
///
|
||||
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
||||
/// * `new_shape` - The target shape to do `np.reshape()`.
|
||||
#[must_use]
|
||||
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
new_ndims: u64,
|
||||
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
|
||||
) -> Self {
|
||||
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
||||
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
||||
// without copying data. Look into how numpy does it.
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
|
||||
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
||||
|
||||
// Reolsve negative indices
|
||||
let size = self.size(generator, ctx);
|
||||
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
|
||||
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
|
||||
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
|
||||
generator, ctx, size, dst_ndims, dst_shape,
|
||||
);
|
||||
|
||||
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb: reshape is possible without copying
|
||||
ctx.builder.position_at_end(then_bb);
|
||||
dst_ndarray.set_strides_contiguous(generator, ctx);
|
||||
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb: reshape is impossible without copying
|
||||
ctx.builder.position_at_end(else_bb);
|
||||
dst_ndarray.create_data(generator, ctx);
|
||||
dst_ndarray.copy_data_from(generator, ctx, *self);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
|
||||
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
||||
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
||||
#[must_use]
|
||||
pub fn transpose<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
|
||||
) -> Self {
|
||||
// Define models
|
||||
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
|
||||
|
||||
let num_axes = self.ndims_llvm(generator, ctx.ctx);
|
||||
|
||||
// `axes = nullptr` if `axes` is unspecified.
|
||||
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
|
||||
|
||||
call_nac3_ndarray_transpose(
|
||||
generator,
|
||||
ctx,
|
||||
self.instance,
|
||||
transposed_ndarray.instance,
|
||||
num_axes,
|
||||
axes,
|
||||
);
|
||||
|
||||
transposed_ndarray
|
||||
}
|
||||
}
|
|
@ -1,70 +0,0 @@
|
|||
use crate::codegen::{irrt::call_nac3_range_len_i32, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// A range in NAC3.
|
||||
pub type Range<N> = Array<Len<3>, Int<N>>;
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Ptr<Range<N>>> {
|
||||
/// Get GEP to `range.start`.
|
||||
pub fn start(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 0)
|
||||
}
|
||||
|
||||
/// Get GEP to `range.stop`.
|
||||
pub fn stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 1)
|
||||
}
|
||||
|
||||
/// Get GEP to `range.step`.
|
||||
pub fn step(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
|
||||
self.gep_const(ctx, 2)
|
||||
}
|
||||
|
||||
/// Convenience function to get the load the `(start, stop, step)` of this range.
|
||||
#[allow(clippy::type_complexity)]
|
||||
pub fn destructure<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> (Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>) {
|
||||
let start = self.start(ctx).load(generator, ctx);
|
||||
let stop = self.stop(ctx).load(generator, ctx);
|
||||
let step = self.step(ctx).load(generator, ctx);
|
||||
(start, stop, step)
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: `RangeObject` in the future will have range32, range64
|
||||
|
||||
/// A NAC3 Python range object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct RangeObject<'ctx> {
|
||||
pub instance: Instance<'ctx, Ptr<Range<Int32>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> RangeObject<'ctx> {
|
||||
/// Attempt to convert an [`AnyObject`] into a [`RangeObject`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> RangeObject<'ctx> {
|
||||
assert!(ctx.unifier.unioned(object.ty, ctx.primitives.range));
|
||||
|
||||
let instance = Ptr(Range::default()).check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
RangeObject { instance }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this range.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<Int32>> {
|
||||
let start = self.instance.start(ctx).load(generator, ctx);
|
||||
let stop = self.instance.stop(ctx).load(generator, ctx);
|
||||
let step = self.instance.step(ctx).load(generator, ctx);
|
||||
call_nac3_range_len_i32(generator, ctx, start, stop, step)
|
||||
}
|
||||
}
|
|
@ -1,101 +0,0 @@
|
|||
use inkwell::values::StructValue;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::any::AnyObject;
|
||||
|
||||
/// A NAC3 tuple object.
|
||||
///
|
||||
/// NOTE: This struct has no copy trait.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TupleObject<'ctx> {
|
||||
/// The type of the tuple.
|
||||
pub tys: Vec<Type>,
|
||||
/// The underlying LLVM struct value of this tuple.
|
||||
pub value: StructValue<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> TupleObject<'ctx> {
|
||||
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
||||
// TODO: Keep `is_vararg_ctx` from TTuple?
|
||||
|
||||
assert!(matches!(&*ctx.unifier.get_ty(object.ty), TypeEnum::TTuple { .. }));
|
||||
|
||||
// Sanity check on object type.
|
||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
||||
panic!(
|
||||
"Expected type to be a TypeEnum::TTuple, got {}",
|
||||
ctx.unifier.stringify(object.ty)
|
||||
);
|
||||
};
|
||||
|
||||
// Check number of fields
|
||||
let value = object.value.into_struct_value();
|
||||
let value_num_fields = value.get_type().count_fields() as usize;
|
||||
assert!(
|
||||
value_num_fields == tys.len(),
|
||||
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
||||
tys.len(),
|
||||
value_num_fields
|
||||
);
|
||||
|
||||
TupleObject { tys: tys.clone(), value }
|
||||
}
|
||||
|
||||
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
||||
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
objects: I,
|
||||
) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = AnyObject<'ctx>>,
|
||||
{
|
||||
let (values, tys): (Vec<_>, Vec<_>) =
|
||||
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
||||
|
||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
||||
|
||||
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
||||
for (i, val) in values.into_iter().enumerate() {
|
||||
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
||||
ctx.builder.build_store(pval, val).unwrap();
|
||||
}
|
||||
|
||||
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
|
||||
TupleObject { tys, value }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn num_elements(&self) -> usize {
|
||||
self.tys.len()
|
||||
}
|
||||
|
||||
/// Get the `len()` of this tuple.
|
||||
#[must_use]
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Instance<'ctx, Int<SizeT>> {
|
||||
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
|
||||
}
|
||||
|
||||
/// Get the `i`-th (0-based) object in this tuple.
|
||||
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
|
||||
assert!(
|
||||
i < self.num_elements(),
|
||||
"Tuple object with length {} have index {i}",
|
||||
self.num_elements()
|
||||
);
|
||||
|
||||
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
|
||||
let ty = self.tys[i];
|
||||
AnyObject { ty, value }
|
||||
}
|
||||
}
|
|
@ -1,22 +1,19 @@
|
|||
use super::{
|
||||
super::symbol_resolver::ValueEnum,
|
||||
expr::destructure_range,
|
||||
irrt::{handle_slice_indices, list_slice_assignment},
|
||||
object::{
|
||||
any::AnyObject,
|
||||
list::ListObject,
|
||||
ndarray::{
|
||||
indexing::util::gen_ndarray_subscript_ndindices, NDArrayObject, ScalarOrNDArray,
|
||||
},
|
||||
range::RangeObject,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{classes::ArraySliceValue, expr::gen_binop_expr, gen_in_range_check, model::*},
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
codegen::{
|
||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||
expr::gen_binop_expr,
|
||||
gen_in_range_check,
|
||||
},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, TopLevelDef},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||
typedef::{FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
|
@ -26,10 +23,10 @@ use inkwell::{
|
|||
values::{BasicValue, BasicValueEnum, FunctionValue, IntValue, PointerValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::{izip, Itertools};
|
||||
use nac3parser::ast::{
|
||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||
};
|
||||
use std::convert::TryFrom;
|
||||
|
||||
/// See [`CodeGenerator::gen_var_alloc`].
|
||||
pub fn gen_var<'ctx>(
|
||||
|
@ -100,6 +97,8 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
|||
pattern: &Expr<Option<Type>>,
|
||||
name: Option<&str>,
|
||||
) -> Result<Option<PointerValue<'ctx>>, String> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// very similar to gen_expr, but we don't do an extra load at the end
|
||||
// and we flatten nested tuples
|
||||
Ok(Some(match &pattern.node {
|
||||
|
@ -138,6 +137,65 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
|||
}
|
||||
.unwrap()
|
||||
}
|
||||
ExprKind::Subscript { value, slice, .. } => {
|
||||
match ctx.unifier.get_ty_immutable(value.custom.unwrap()).as_ref() {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::List.id() => {
|
||||
let v = generator
|
||||
.gen_expr(ctx, value)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let v = ListValue::from_ptr_val(v, llvm_usize, None);
|
||||
let len = v.load_size(ctx, Some("len"));
|
||||
let raw_index = generator
|
||||
.gen_expr(ctx, slice)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
||||
.into_int_value();
|
||||
let raw_index = ctx
|
||||
.builder
|
||||
.build_int_s_extend(raw_index, generator.get_size_type(ctx.ctx), "sext")
|
||||
.unwrap();
|
||||
// handle negative index
|
||||
let is_negative = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
raw_index,
|
||||
generator.get_size_type(ctx.ctx).const_zero(),
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
let adjusted = ctx.builder.build_int_add(raw_index, len, "adjusted").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_select(is_negative, adjusted, raw_index, "index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
// unsigned less than is enough, because negative index after adjustment is
|
||||
// bigger than the length (for unsigned cmp)
|
||||
let bound_check = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, index, len, "inbound")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
bound_check,
|
||||
"0:IndexError",
|
||||
"index {0} out of bounds 0:{1}",
|
||||
[Some(raw_index), Some(len), None],
|
||||
slice.location,
|
||||
);
|
||||
v.data().ptr_offset(ctx, generator, &index, name)
|
||||
}
|
||||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
todo!()
|
||||
}
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}))
|
||||
}
|
||||
|
@ -148,20 +206,70 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
|
|||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
// See https://docs.python.org/3/reference/simple_stmts.html#assignment-statements.
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
match &target.node {
|
||||
ExprKind::Subscript { value: target, slice: key, .. } => {
|
||||
// Handle "slicing" or "subscription"
|
||||
generator.gen_setitem(ctx, target, key, value, value_ty)?;
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
let BasicValueEnum::StructValue(v) =
|
||||
value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
for (i, elt) in elts.iter().enumerate() {
|
||||
let v = ctx
|
||||
.builder
|
||||
.build_extract_value(v, u32::try_from(i).unwrap(), "struct_elem")
|
||||
.unwrap();
|
||||
generator.gen_assign(ctx, elt, v.into())?;
|
||||
}
|
||||
ExprKind::Tuple { elts, .. } | ExprKind::List { elts, .. } => {
|
||||
// Fold on `"[" [target_list] "]"` and `"(" [target_list] ")"`
|
||||
generator.gen_assign_target_list(ctx, elts, value, value_ty)?;
|
||||
}
|
||||
ExprKind::Subscript { value: ls, slice, .. }
|
||||
if matches!(&slice.node, ExprKind::Slice { .. }) =>
|
||||
{
|
||||
let ExprKind::Slice { lower, upper, step } = &slice.node else { unreachable!() };
|
||||
|
||||
let ls = generator
|
||||
.gen_expr(ctx, ls)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ls.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let ls = ListValue::from_ptr_val(ls, llvm_usize, None);
|
||||
let Some((start, end, step)) =
|
||||
handle_slice_indices(lower, upper, step, ctx, generator, ls.load_size(ctx, None))?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
let value = value
|
||||
.to_basic_value_enum(ctx, generator, target.custom.unwrap())?
|
||||
.into_pointer_value();
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
let ty = match &*ctx.unifier.get_ty_immutable(target.custom.unwrap()) {
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
|
||||
*params.iter().next().unwrap().1
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
unpack_ndarray_var_tys(&mut ctx.unifier, target.custom.unwrap()).0
|
||||
}
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
let ty = ctx.get_llvm_type(generator, ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
&None,
|
||||
&None,
|
||||
&None,
|
||||
ctx,
|
||||
generator,
|
||||
value.load_size(ctx, None),
|
||||
)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
list_slice_assignment(generator, ctx, ty, ls, (start, end, step), value, src_ind);
|
||||
}
|
||||
_ => {
|
||||
// Handle attribute and direct variable assignments.
|
||||
let name = if let ExprKind::Name { id, .. } = &target.node {
|
||||
format!("{id}.addr")
|
||||
} else {
|
||||
|
@ -185,269 +293,6 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
|
|||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_assign_target_list`].
|
||||
pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
targets: &Vec<Expr<Option<Type>>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
// Deconstruct the tuple `value`
|
||||
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
|
||||
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
|
||||
unreachable!();
|
||||
};
|
||||
|
||||
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
|
||||
|
||||
let tuple = (0..tuple.get_type().count_fields())
|
||||
.map(|i| ctx.builder.build_extract_value(tuple, i, "item").unwrap())
|
||||
.collect_vec();
|
||||
|
||||
// Find the starred target if it exists.
|
||||
let mut starred_target_index: Option<usize> = None; // Index of the "starred" target. If it exists, there may only be one.
|
||||
for (i, target) in targets.iter().enumerate() {
|
||||
if matches!(target.node, ExprKind::Starred { .. }) {
|
||||
assert!(starred_target_index.is_none()); // The typechecker ensures this
|
||||
starred_target_index = Some(i);
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(starred_target_index) = starred_target_index {
|
||||
assert!(tuple_tys.len() >= targets.len() - 1); // The typechecker ensures this
|
||||
|
||||
let a = starred_target_index; // Number of RHS values before the starred target
|
||||
let b = tuple_tys.len() - (targets.len() - 1 - starred_target_index); // Number of RHS values after the starred target
|
||||
// Thus `tuple[a..b]` is assigned to the starred target.
|
||||
|
||||
// Handle assignment before the starred target
|
||||
for (target, val, val_ty) in
|
||||
izip!(&targets[..starred_target_index], &tuple[..a], &tuple_tys[..a])
|
||||
{
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
|
||||
}
|
||||
|
||||
// Handle assignment to the starred target
|
||||
if let ExprKind::Starred { value: target, .. } = &targets[starred_target_index].node {
|
||||
let vals = &tuple[a..b];
|
||||
let val_tys = &tuple_tys[a..b];
|
||||
|
||||
// Create a sub-tuple from `value` for the starred target.
|
||||
let sub_tuple_ty = ctx
|
||||
.ctx
|
||||
.struct_type(&vals.iter().map(BasicValueEnum::get_type).collect_vec(), false);
|
||||
let psub_tuple_val =
|
||||
ctx.builder.build_alloca(sub_tuple_ty, "starred_target_value_ptr").unwrap();
|
||||
for (i, val) in vals.iter().enumerate() {
|
||||
let pitem = ctx
|
||||
.builder
|
||||
.build_struct_gep(psub_tuple_val, i as u32, "starred_target_value_item")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(pitem, *val).unwrap();
|
||||
}
|
||||
let sub_tuple_val =
|
||||
ctx.builder.build_load(psub_tuple_val, "starred_target_value").unwrap();
|
||||
|
||||
// Create the typechecker type of the sub-tuple
|
||||
let sub_tuple_ty =
|
||||
ctx.unifier.add_ty(TypeEnum::TTuple { ty: val_tys.to_vec(), is_vararg_ctx: false });
|
||||
|
||||
// Now assign with that sub-tuple to the starred target.
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
|
||||
} else {
|
||||
unreachable!() // The typechecker ensures this
|
||||
}
|
||||
|
||||
// Handle assignment after the starred target
|
||||
for (target, val, val_ty) in
|
||||
izip!(&targets[starred_target_index + 1..], &tuple[b..], &tuple_tys[b..])
|
||||
{
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(*val), *val_ty)?;
|
||||
}
|
||||
} else {
|
||||
assert_eq!(tuple_tys.len(), targets.len()); // The typechecker ensures this
|
||||
|
||||
for (target, val, val_ty) in izip!(targets, tuple, tuple_tys) {
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(val), *val_ty)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_setitem`].
|
||||
pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target: &Expr<Option<Type>>,
|
||||
key: &Expr<Option<Type>>,
|
||||
value: ValueEnum<'ctx>,
|
||||
value_ty: Type,
|
||||
) -> Result<(), String> {
|
||||
let target_ty = target.custom.unwrap();
|
||||
let key_ty = key.custom.unwrap();
|
||||
|
||||
match &*ctx.unifier.get_ty(target_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle list item assignment
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
|
||||
let target = AnyObject { ty: target_ty, value: target };
|
||||
let target = ListObject::from_object(generator, ctx, target);
|
||||
|
||||
let target_len = target.instance.get(generator, ctx, |f| f.len);
|
||||
let target_item_type_llvm = ctx.get_llvm_type(generator, target.item_type);
|
||||
|
||||
if let ExprKind::Slice { .. } = &key.node {
|
||||
// Handle assigning to a slice
|
||||
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
|
||||
let Some((start, end, step)) =
|
||||
handle_slice_indices(lower, upper, step, ctx, generator, target_len.value)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
|
||||
let value = AnyObject { ty: value_ty, value };
|
||||
let value = ListObject::from_object(generator, ctx, value);
|
||||
|
||||
let value_len = value.instance.get(generator, ctx, |f| f.len);
|
||||
|
||||
let Some(src_ind) =
|
||||
handle_slice_indices(&None, &None, &None, ctx, generator, value_len.value)?
|
||||
else {
|
||||
return Ok(());
|
||||
};
|
||||
list_slice_assignment(
|
||||
generator,
|
||||
ctx,
|
||||
target_item_type_llvm,
|
||||
target.instance,
|
||||
(start, end, step),
|
||||
value.instance,
|
||||
src_ind,
|
||||
);
|
||||
} else {
|
||||
// Handle assigning to an index
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
let value =
|
||||
Any(target_item_type_llvm).check_value(generator, ctx.ctx, value).unwrap();
|
||||
|
||||
let index = generator
|
||||
.gen_expr(ctx, key)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, key_ty)?
|
||||
.into_int_value();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_int_s_extend(index, generator.get_size_type(ctx.ctx), "sext")
|
||||
.unwrap();
|
||||
|
||||
// handle negative index
|
||||
let is_negative = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SLT,
|
||||
index,
|
||||
generator.get_size_type(ctx.ctx).const_zero(),
|
||||
"is_neg",
|
||||
)
|
||||
.unwrap();
|
||||
let adjusted =
|
||||
ctx.builder.build_int_add(index, target_len.value, "adjusted").unwrap();
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_select(is_negative, adjusted, index, "index")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
// unsigned less than is enough, because negative index after adjustment is
|
||||
// bigger than the length (for unsigned cmp)
|
||||
let bound_check = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::ULT, index, target_len.value, "inbound")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
bound_check,
|
||||
"0:IndexError",
|
||||
"index {0} out of bounds 0:{1}",
|
||||
[Some(index), Some(target_len.value), None],
|
||||
key.location,
|
||||
);
|
||||
|
||||
// Write value to index on list
|
||||
target
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.items)
|
||||
.offset(ctx, index)
|
||||
.store(ctx, value);
|
||||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle NDArray item assignment
|
||||
// Process target
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
let target = AnyObject { value: target, ty: target_ty };
|
||||
|
||||
// Process key
|
||||
let key = gen_ndarray_subscript_ndindices(generator, ctx, key)?;
|
||||
|
||||
// Process value
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
let value = AnyObject { value, ty: value_ty };
|
||||
|
||||
/*
|
||||
Reference code:
|
||||
```python
|
||||
target = target[key]
|
||||
value = np.asarray(value)
|
||||
|
||||
shape = np.broadcast_shape((target, value))
|
||||
|
||||
target = np.broadcast_to(target, shape)
|
||||
value = np.broadcast_to(value, shape)
|
||||
|
||||
...and finally copy 1-1 from value to target.
|
||||
```
|
||||
*/
|
||||
|
||||
let target = NDArrayObject::from_object(generator, ctx, target);
|
||||
let target = target.index(generator, ctx, &key);
|
||||
|
||||
let value =
|
||||
ScalarOrNDArray::split_object(generator, ctx, value).to_ndarray(generator, ctx);
|
||||
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
||||
|
||||
let target = broadcast_result.ndarrays[0];
|
||||
let value = broadcast_result.ndarrays[1];
|
||||
|
||||
target.copy_data_from(generator, ctx, value);
|
||||
}
|
||||
_ => {
|
||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_for`].
|
||||
pub fn gen_for<G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
|
@ -470,6 +315,9 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
let orelse_bb =
|
||||
if orelse.is_empty() { cont_bb } else { ctx.ctx.append_basic_block(current, "for.orelse") };
|
||||
|
||||
// Whether the iterable is a range() expression
|
||||
let is_iterable_range_expr = ctx.unifier.unioned(iter.custom.unwrap(), ctx.primitives.range);
|
||||
|
||||
// The BB containing the increment expression
|
||||
let incr_bb = ctx.ctx.append_basic_block(current, "for.incr");
|
||||
// The BB containing the loop condition check
|
||||
|
@ -478,41 +326,27 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
// store loop bb information and restore it later
|
||||
let loop_bb = ctx.loop_target.replace((incr_bb, cont_bb));
|
||||
|
||||
let iter_ty = iter.custom.unwrap();
|
||||
let iter_val = if let Some(v) = generator.gen_expr(ctx, iter)? {
|
||||
v.to_basic_value_enum(ctx, generator, iter_ty)?
|
||||
v.to_basic_value_enum(ctx, generator, iter.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
match &*ctx.unifier.get_ty(iter_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let range = AnyObject { value: iter_val, ty: iter_ty };
|
||||
let range = RangeObject::from_object(generator, ctx, range);
|
||||
|
||||
let (start, stop, step) = range.instance.destructure(generator, ctx);
|
||||
let start = start.value;
|
||||
let stop = stop.value;
|
||||
let step = step.value;
|
||||
|
||||
if is_iterable_range_expr {
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
let Some(target_i) =
|
||||
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
|
||||
let Some(target_i) = generator.gen_store_target(ctx, target, Some("for.target.addr"))?
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
|
||||
ctx.builder.build_store(i, start).unwrap();
|
||||
|
||||
// Check "If step is zero, ValueError is raised."
|
||||
let rangenez = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "")
|
||||
.unwrap();
|
||||
let rangenez =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
rangenez,
|
||||
|
@ -529,10 +363,7 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
.build_conditional_branch(
|
||||
gen_in_range_check(
|
||||
ctx,
|
||||
ctx.builder
|
||||
.build_load(i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap(),
|
||||
ctx.builder.build_load(i, "").map(BasicValueEnum::into_int_value).unwrap(),
|
||||
stop,
|
||||
step,
|
||||
),
|
||||
|
@ -562,10 +393,7 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
)
|
||||
.unwrap();
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
}
|
||||
TypeEnum::TObj { obj_id, params: list_params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
} else {
|
||||
let index_addr = generator.gen_var_alloc(ctx, size_t.into(), Some("for.index.addr"))?;
|
||||
ctx.builder.build_store(index_addr, size_t.const_zero()).unwrap();
|
||||
let len = ctx
|
||||
|
@ -603,14 +431,9 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let val = ctx.build_gep_and_load(arr_ptr, &[index], Some("val"));
|
||||
let val_ty = iter_type_vars(list_params).next().unwrap().ty;
|
||||
generator.gen_assign(ctx, target, val.into(), val_ty)?;
|
||||
generator.gen_assign(ctx, target, val.into())?;
|
||||
generator.gen_block(ctx, body.iter())?;
|
||||
}
|
||||
_ => {
|
||||
panic!("unsupported for loop iterator type: {}", ctx.unifier.stringify(iter_ty));
|
||||
}
|
||||
}
|
||||
|
||||
for (k, (_, _, counter)) in &var_assignment {
|
||||
let (_, static_val, counter2) = ctx.var_assignment.get_mut(k).unwrap();
|
||||
|
@ -671,7 +494,6 @@ pub struct BreakContinueHooks<'ctx> {
|
|||
pub fn gen_for_callback<'ctx, 'a, G, I, InitFn, CondFn, BodyFn, UpdateFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
label: Option<&str>,
|
||||
init: InitFn,
|
||||
cond: CondFn,
|
||||
body: BodyFn,
|
||||
|
@ -682,24 +504,18 @@ where
|
|||
I: Clone,
|
||||
InitFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<I, String>,
|
||||
CondFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<IntValue<'ctx>, String>,
|
||||
BodyFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
I,
|
||||
) -> Result<(), String>,
|
||||
BodyFn:
|
||||
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, BreakContinueHooks, I) -> Result<(), String>,
|
||||
UpdateFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, I) -> Result<(), String>,
|
||||
{
|
||||
let label = label.unwrap_or("for");
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let init_bb = ctx.ctx.insert_basic_block_after(current_bb, &format!("{label}.init"));
|
||||
let init_bb = ctx.ctx.insert_basic_block_after(current_bb, "for.init");
|
||||
// The BB containing the loop condition check
|
||||
let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, &format!("{label}.cond"));
|
||||
let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, &format!("{label}.body"));
|
||||
let cond_bb = ctx.ctx.insert_basic_block_after(init_bb, "for.cond");
|
||||
let body_bb = ctx.ctx.insert_basic_block_after(cond_bb, "for.body");
|
||||
// The BB containing the increment expression
|
||||
let update_bb = ctx.ctx.insert_basic_block_after(body_bb, &format!("{label}.update"));
|
||||
let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, &format!("{label}.end"));
|
||||
let update_bb = ctx.ctx.insert_basic_block_after(body_bb, "for.update");
|
||||
let cont_bb = ctx.ctx.insert_basic_block_after(update_bb, "for.end");
|
||||
|
||||
// store loop bb information and restore it later
|
||||
let loop_bb = ctx.loop_target.replace((update_bb, cont_bb));
|
||||
|
@ -756,7 +572,6 @@ where
|
|||
pub fn gen_for_callback_incrementing<'ctx, 'a, G, BodyFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
label: Option<&str>,
|
||||
init_val: IntValue<'ctx>,
|
||||
max_val: (IntValue<'ctx>, bool),
|
||||
body: BodyFn,
|
||||
|
@ -767,7 +582,7 @@ where
|
|||
BodyFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
BreakContinueHooks,
|
||||
IntValue<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
|
@ -776,7 +591,6 @@ where
|
|||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
label,
|
||||
|generator, ctx| {
|
||||
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
|
||||
ctx.builder.build_store(i_addr, init_val).unwrap();
|
||||
|
@ -828,11 +642,9 @@ where
|
|||
/// - `step_fn`: A lambda of IR statements that retrieves the `step` value of the `range`-like
|
||||
/// iterable. This value will be extended to the size of `start`.
|
||||
/// - `body_fn`: A lambda of IR statements within the loop body.
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn gen_for_range_callback<'ctx, 'a, G, StartFn, StopFn, StepFn, BodyFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
label: Option<&str>,
|
||||
is_unsigned: bool,
|
||||
start_fn: StartFn,
|
||||
(stop_fn, stop_inclusive): (StopFn, bool),
|
||||
|
@ -844,19 +656,13 @@ where
|
|||
StartFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
|
||||
StopFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
|
||||
StepFn: Fn(&mut G, &mut CodeGenContext<'ctx, 'a>) -> Result<IntValue<'ctx>, String>,
|
||||
BodyFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
IntValue<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
BodyFn: FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<(), String>,
|
||||
{
|
||||
let init_val_t = start_fn(generator, ctx).map(IntValue::get_type).unwrap();
|
||||
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
label,
|
||||
|generator, ctx| {
|
||||
let i_addr = generator.gen_var_alloc(ctx, init_val_t.into(), None)?;
|
||||
|
||||
|
@ -914,10 +720,10 @@ where
|
|||
|
||||
Ok(cond)
|
||||
},
|
||||
|generator, ctx, hooks, (i_addr, _)| {
|
||||
|generator, ctx, _, (i_addr, _)| {
|
||||
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
|
||||
|
||||
body_fn(generator, ctx, hooks, i)
|
||||
body_fn(generator, ctx, i)
|
||||
},
|
||||
|generator, ctx, (i_addr, _)| {
|
||||
let i = ctx.builder.build_load(i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
|
||||
|
@ -1769,14 +1575,14 @@ pub fn gen_stmt<G: CodeGenerator>(
|
|||
}
|
||||
StmtKind::AnnAssign { target, value, .. } => {
|
||||
if let Some(value) = value {
|
||||
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
|
||||
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
generator.gen_assign(ctx, target, value)?;
|
||||
}
|
||||
}
|
||||
StmtKind::Assign { targets, value, .. } => {
|
||||
let Some(value_enum) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
let Some(value) = generator.gen_expr(ctx, value)? else { return Ok(()) };
|
||||
for target in targets {
|
||||
generator.gen_assign(ctx, target, value_enum.clone(), value.custom.unwrap())?;
|
||||
generator.gen_assign(ctx, target, value.clone())?;
|
||||
}
|
||||
}
|
||||
StmtKind::Continue { .. } => {
|
||||
|
@ -1790,16 +1596,15 @@ pub fn gen_stmt<G: CodeGenerator>(
|
|||
StmtKind::For { .. } => generator.gen_for(ctx, stmt)?,
|
||||
StmtKind::With { .. } => generator.gen_with(ctx, stmt)?,
|
||||
StmtKind::AugAssign { target, op, value, .. } => {
|
||||
let value_enum = gen_binop_expr(
|
||||
let value = gen_binop_expr(
|
||||
generator,
|
||||
ctx,
|
||||
target,
|
||||
Binop::aug_assign(*op),
|
||||
value,
|
||||
stmt.location,
|
||||
)?
|
||||
.unwrap();
|
||||
generator.gen_assign(ctx, target, value_enum, value.custom.unwrap())?;
|
||||
)?;
|
||||
generator.gen_assign(ctx, target, value.unwrap())?;
|
||||
}
|
||||
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
|
||||
StmtKind::Raise { exc, .. } => {
|
||||
|
@ -1828,11 +1633,11 @@ pub fn gen_stmt<G: CodeGenerator>(
|
|||
return Ok(());
|
||||
}
|
||||
}
|
||||
None => ctx.gen_string(generator, "").into(),
|
||||
None => ctx.gen_string(generator, ""),
|
||||
};
|
||||
ctx.make_assert_impl(
|
||||
generator,
|
||||
generator.bool_to_i1(ctx, test.into_int_value()),
|
||||
test.into_int_value(),
|
||||
"0:AssertionError",
|
||||
err_msg,
|
||||
[None, None, None],
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
use crate::{
|
||||
codegen::{
|
||||
concrete_type::ConcreteTypeStore, CodeGenContext, CodeGenLLVMOptions,
|
||||
CodeGenTargetMachineOptions, CodeGenTask, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
classes::{ListType, NDArrayType, ProxyType, RangeType},
|
||||
concrete_type::ConcreteTypeStore,
|
||||
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
|
||||
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
|
||||
},
|
||||
symbol_resolver::{SymbolResolver, ValueEnum},
|
||||
toplevel::{
|
||||
|
@ -92,7 +94,7 @@ fn test_primitives() {
|
|||
"};
|
||||
let statements = parse_program(source, FileName::default()).unwrap();
|
||||
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
|
@ -107,18 +109,8 @@ fn test_primitives() {
|
|||
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
|
||||
let signature = FunSignature {
|
||||
args: vec![
|
||||
FuncArg {
|
||||
name: "a".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "b".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None },
|
||||
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None },
|
||||
],
|
||||
ret: primitives.int32,
|
||||
vars: VarMap::new(),
|
||||
|
@ -197,8 +189,6 @@ fn test_primitives() {
|
|||
let expected = indoc! {"
|
||||
; ModuleID = 'test'
|
||||
source_filename = \"test\"
|
||||
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
|
||||
target triple = \"x86_64-unknown-linux-gnu\"
|
||||
|
||||
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
|
||||
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
|
||||
|
@ -256,19 +246,14 @@ fn test_simple_call() {
|
|||
"};
|
||||
let statements_2 = parse_program(source_2, FileName::default()).unwrap();
|
||||
|
||||
let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0;
|
||||
let mut unifier = composer.unifier.clone();
|
||||
let primitives = composer.primitives_ty;
|
||||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
unifier.top_level = Some(top_level.clone());
|
||||
|
||||
let signature = FunSignature {
|
||||
args: vec![FuncArg {
|
||||
name: "a".into(),
|
||||
ty: primitives.int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }],
|
||||
ret: primitives.int32,
|
||||
vars: VarMap::new(),
|
||||
};
|
||||
|
@ -383,8 +368,6 @@ fn test_simple_call() {
|
|||
let expected = indoc! {"
|
||||
; ModuleID = 'test'
|
||||
source_filename = \"test\"
|
||||
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
|
||||
target triple = \"x86_64-unknown-linux-gnu\"
|
||||
|
||||
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
|
||||
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
|
||||
|
@ -434,3 +417,35 @@ fn test_simple_call() {
|
|||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_list_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_range_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
|
||||
let llvm_range = RangeType::new(&ctx);
|
||||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
|
|
|
@ -23,3 +23,4 @@ pub mod codegen;
|
|||
pub mod symbol_resolver;
|
||||
pub mod toplevel;
|
||||
pub mod typecheck;
|
||||
pub mod util;
|
|
@ -78,14 +78,14 @@ impl SymbolValue {
|
|||
}
|
||||
Constant::Tuple(t) => {
|
||||
let expected_ty = unifier.get_ty(expected_ty);
|
||||
let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
|
||||
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else {
|
||||
return Err(format!(
|
||||
"Expected {:?}, but got Tuple",
|
||||
expected_ty.get_type_name()
|
||||
));
|
||||
};
|
||||
|
||||
assert!(*is_vararg_ctx || ty.len() == t.len());
|
||||
assert_eq!(ty.len(), t.len());
|
||||
|
||||
let elems = t
|
||||
.iter()
|
||||
|
@ -155,7 +155,7 @@ impl SymbolValue {
|
|||
SymbolValue::Bool(_) => primitives.bool,
|
||||
SymbolValue::Tuple(vs) => {
|
||||
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
|
||||
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
|
||||
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys })
|
||||
}
|
||||
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
|
||||
}
|
||||
|
@ -482,7 +482,7 @@ pub fn parse_type_annotation<T>(
|
|||
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
|
||||
} else {
|
||||
Err(HashSet::from(["Expected multiple elements for tuple".into()]))
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -44,27 +44,12 @@ pub struct TopLevelComposer {
|
|||
pub size_t: u32,
|
||||
}
|
||||
|
||||
/// The specification for a builtin function, consisting of the function name, the function
|
||||
/// signature, and a [code generation callback][`GenCall`].
|
||||
pub type BuiltinFuncSpec = (StrRef, FunSignature, Arc<GenCall>);
|
||||
|
||||
/// A function that creates a [`BuiltinFuncSpec`] using the provided [`PrimitiveStore`] and
|
||||
/// [`Unifier`].
|
||||
pub type BuiltinFuncCreator = dyn Fn(&PrimitiveStore, &mut Unifier) -> BuiltinFuncSpec;
|
||||
|
||||
impl TopLevelComposer {
|
||||
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol
|
||||
/// resolver can later figure out primitive tye definitions when passed a primitive type name
|
||||
///
|
||||
/// `lateinit_builtins` are specifically for the ARTIQ module. Since the [`Unifier`] instance
|
||||
/// used to create builtin functions do not persist until method compilation, any types
|
||||
/// created (e.g. [`TypeEnum::TVar`]) also do not persist. Those functions should be instead put
|
||||
/// in `lateinit_builtins`, where they will be instantiated with the [`Unifier`] instance used
|
||||
/// for method compilation.
|
||||
/// resolver can later figure out primitive type definitions when passed a primitive type name
|
||||
#[must_use]
|
||||
pub fn new(
|
||||
builtins: Vec<BuiltinFuncSpec>,
|
||||
lateinit_builtins: Vec<Box<BuiltinFuncCreator>>,
|
||||
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>,
|
||||
core_config: ComposerConfig,
|
||||
size_t: u32,
|
||||
) -> (Self, HashMap<StrRef, DefinitionId>, HashMap<StrRef, Type>) {
|
||||
|
@ -134,13 +119,7 @@ impl TopLevelComposer {
|
|||
}
|
||||
}
|
||||
|
||||
// Materialize lateinit_builtins, now that the unifier is ready
|
||||
let lateinit_builtins = lateinit_builtins
|
||||
.into_iter()
|
||||
.map(|builtin| builtin(&primitives_ty, &mut unifier))
|
||||
.collect_vec();
|
||||
|
||||
for (name, sig, codegen_callback) in builtins.into_iter().chain(lateinit_builtins) {
|
||||
for (name, sig, codegen_callback) in builtins {
|
||||
let fun_sig = unifier.add_ty(TypeEnum::TFunc(sig));
|
||||
builtin_ty.insert(name, fun_sig);
|
||||
builtin_id.insert(name, DefinitionId(definition_ast_list.len()));
|
||||
|
@ -787,7 +766,6 @@ impl TopLevelComposer {
|
|||
let target_ty = get_type_from_type_annotation_kinds(
|
||||
&temp_def_list,
|
||||
unifier,
|
||||
primitives,
|
||||
&def,
|
||||
&mut subst_list,
|
||||
)?;
|
||||
|
@ -881,73 +859,7 @@ impl TopLevelComposer {
|
|||
let resolver = &**resolver;
|
||||
|
||||
let mut function_var_map = VarMap::new();
|
||||
|
||||
let vararg = args
|
||||
.vararg
|
||||
.as_ref()
|
||||
.map(|vararg| -> Result<_, HashSet<String>> {
|
||||
let vararg = vararg.as_ref();
|
||||
|
||||
let annotation = vararg
|
||||
.node
|
||||
.annotation
|
||||
.as_ref()
|
||||
.ok_or_else(|| {
|
||||
HashSet::from([format!(
|
||||
"function parameter `{}` needs type annotation at {}",
|
||||
vararg.node.arg, vararg.location
|
||||
)])
|
||||
})?
|
||||
.as_ref();
|
||||
|
||||
let type_annotation = parse_ast_to_type_annotation_kinds(
|
||||
resolver,
|
||||
temp_def_list.as_slice(),
|
||||
unifier,
|
||||
primitives_store,
|
||||
annotation,
|
||||
// NOTE: since only class need this, for function
|
||||
// it should be fine to be empty map
|
||||
HashMap::new(),
|
||||
)?;
|
||||
|
||||
let type_vars_within =
|
||||
get_type_var_contained_in_type_annotation(&type_annotation)
|
||||
.into_iter()
|
||||
.map(|x| -> Result<TypeVar, HashSet<String>> {
|
||||
let TypeAnnotation::TypeVar(ty) = x else {
|
||||
unreachable!("must be type var annotation kind")
|
||||
};
|
||||
|
||||
let id = Self::get_var_id(ty, unifier)?;
|
||||
Ok(TypeVar { id, ty })
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
for var in type_vars_within {
|
||||
if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) {
|
||||
// if already have the type inserted, make sure they are the same thing
|
||||
assert_eq!(prev_ty, var.ty);
|
||||
}
|
||||
}
|
||||
|
||||
let ty = get_type_from_type_annotation_kinds(
|
||||
temp_def_list.as_ref(),
|
||||
unifier,
|
||||
primitives_store,
|
||||
&type_annotation,
|
||||
&mut None,
|
||||
)?;
|
||||
|
||||
Ok(FuncArg {
|
||||
name: vararg.node.arg,
|
||||
ty,
|
||||
default_value: Some(SymbolValue::Tuple(Vec::default())),
|
||||
is_vararg: true,
|
||||
})
|
||||
})
|
||||
.transpose()?;
|
||||
|
||||
let mut arg_types = {
|
||||
let arg_types = {
|
||||
// make sure no duplicate parameter
|
||||
let mut defined_parameter_name: HashSet<_> = HashSet::new();
|
||||
for x in &args.args {
|
||||
|
@ -1024,7 +936,6 @@ impl TopLevelComposer {
|
|||
let ty = get_type_from_type_annotation_kinds(
|
||||
temp_def_list.as_ref(),
|
||||
unifier,
|
||||
primitives_store,
|
||||
&type_annotation,
|
||||
&mut None,
|
||||
)?;
|
||||
|
@ -1048,18 +959,11 @@ impl TopLevelComposer {
|
|||
v
|
||||
}),
|
||||
},
|
||||
is_vararg: false,
|
||||
})
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?
|
||||
};
|
||||
|
||||
if let Some(vararg) = vararg {
|
||||
arg_types.push(vararg);
|
||||
};
|
||||
|
||||
let arg_types = arg_types;
|
||||
|
||||
let return_ty = {
|
||||
if let Some(returns) = returns {
|
||||
let return_ty_annotation = {
|
||||
|
@ -1098,7 +1002,6 @@ impl TopLevelComposer {
|
|||
get_type_from_type_annotation_kinds(
|
||||
&temp_def_list,
|
||||
unifier,
|
||||
primitives_store,
|
||||
&return_ty_annotation,
|
||||
&mut None,
|
||||
)?
|
||||
|
@ -1311,7 +1214,6 @@ impl TopLevelComposer {
|
|||
})
|
||||
}
|
||||
},
|
||||
is_vararg: false,
|
||||
};
|
||||
// push the dummy type and the type annotation
|
||||
// into the list for later unification
|
||||
|
@ -1720,7 +1622,6 @@ impl TopLevelComposer {
|
|||
let self_type = get_type_from_type_annotation_kinds(
|
||||
&def_list,
|
||||
unifier,
|
||||
primitives_ty,
|
||||
&make_self_type_annotation(type_vars, *object_id),
|
||||
&mut None,
|
||||
)?;
|
||||
|
@ -1737,25 +1638,21 @@ impl TopLevelComposer {
|
|||
name: "msg".into(),
|
||||
ty: string,
|
||||
default_value: Some(SymbolValue::Str(String::new())),
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "param0".into(),
|
||||
ty: int64,
|
||||
default_value: Some(SymbolValue::I64(0)),
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "param1".into(),
|
||||
ty: int64,
|
||||
default_value: Some(SymbolValue::I64(0)),
|
||||
is_vararg: false,
|
||||
},
|
||||
FuncArg {
|
||||
name: "param2".into(),
|
||||
ty: int64,
|
||||
default_value: Some(SymbolValue::I64(0)),
|
||||
is_vararg: false,
|
||||
},
|
||||
],
|
||||
ret: self_type,
|
||||
|
@ -1906,11 +1803,7 @@ impl TopLevelComposer {
|
|||
|
||||
let ty_ann = make_self_type_annotation(type_vars, *class_id);
|
||||
let self_ty = get_type_from_type_annotation_kinds(
|
||||
&def_list,
|
||||
unifier,
|
||||
primitives_ty,
|
||||
&ty_ann,
|
||||
&mut None,
|
||||
&def_list, unifier, &ty_ann, &mut None,
|
||||
)?;
|
||||
vars.extend(type_vars.iter().map(|ty| {
|
||||
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
|
||||
|
@ -1965,7 +1858,6 @@ impl TopLevelComposer {
|
|||
name: a.name,
|
||||
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
|
||||
default_value: a.default_value.clone(),
|
||||
is_vararg: false,
|
||||
})
|
||||
.collect_vec()
|
||||
};
|
||||
|
|
|
@ -27,22 +27,17 @@ pub enum PrimDef {
|
|||
List,
|
||||
NDArray,
|
||||
|
||||
// Option methods
|
||||
FunOptionIsSome,
|
||||
FunOptionIsNone,
|
||||
FunOptionUnwrap,
|
||||
|
||||
// Option-related functions
|
||||
FunSome,
|
||||
|
||||
// NDArray methods
|
||||
FunNDArrayCopy,
|
||||
FunNDArrayFill,
|
||||
|
||||
// Range methods
|
||||
FunRangeInit,
|
||||
|
||||
// NumPy factory functions
|
||||
// Member Functions
|
||||
OptionIsSome,
|
||||
OptionIsNone,
|
||||
OptionUnwrap,
|
||||
NDArrayCopy,
|
||||
NDArrayFill,
|
||||
FunInt32,
|
||||
FunInt64,
|
||||
FunUInt32,
|
||||
FunUInt64,
|
||||
FunFloat,
|
||||
FunNpNDArray,
|
||||
FunNpEmpty,
|
||||
FunNpZeros,
|
||||
|
@ -51,27 +46,26 @@ pub enum PrimDef {
|
|||
FunNpArray,
|
||||
FunNpEye,
|
||||
FunNpIdentity,
|
||||
|
||||
// NumPy ndarray property getters
|
||||
FunNpSize,
|
||||
FunNpShape,
|
||||
FunNpStrides,
|
||||
|
||||
// NumPy ndarray view functions
|
||||
FunNpBroadcastTo,
|
||||
FunNpTranspose,
|
||||
FunNpReshape,
|
||||
|
||||
// Miscellaneous NumPy & SciPy functions
|
||||
FunRound,
|
||||
FunRound64,
|
||||
FunNpRound,
|
||||
FunRangeInit,
|
||||
FunStr,
|
||||
FunBool,
|
||||
FunFloor,
|
||||
FunFloor64,
|
||||
FunNpFloor,
|
||||
FunCeil,
|
||||
FunCeil64,
|
||||
FunNpCeil,
|
||||
FunLen,
|
||||
FunMin,
|
||||
FunNpMin,
|
||||
FunNpMinimum,
|
||||
FunNpArgmin,
|
||||
FunMax,
|
||||
FunNpMax,
|
||||
FunNpMaximum,
|
||||
FunNpArgmax,
|
||||
FunAbs,
|
||||
FunNpIsNan,
|
||||
FunNpIsInf,
|
||||
FunNpSin,
|
||||
|
@ -110,43 +104,14 @@ pub enum PrimDef {
|
|||
FunNpHypot,
|
||||
FunNpNextAfter,
|
||||
|
||||
// Linalg functions
|
||||
FunNpDot,
|
||||
FunNpLinalgCholesky,
|
||||
FunNpLinalgQr,
|
||||
FunNpLinalgSvd,
|
||||
FunNpLinalgInv,
|
||||
FunNpLinalgPinv,
|
||||
FunNpLinalgMatrixPower,
|
||||
FunNpLinalgDet,
|
||||
FunSpLinalgLu,
|
||||
FunSpLinalgSchur,
|
||||
FunSpLinalgHessenberg,
|
||||
|
||||
// Miscellaneous Python & NAC3 functions
|
||||
FunInt32,
|
||||
FunInt64,
|
||||
FunUInt32,
|
||||
FunUInt64,
|
||||
FunFloat,
|
||||
FunRound,
|
||||
FunRound64,
|
||||
FunStr,
|
||||
FunBool,
|
||||
FunFloor,
|
||||
FunFloor64,
|
||||
FunCeil,
|
||||
FunCeil64,
|
||||
FunLen,
|
||||
FunMin,
|
||||
FunMax,
|
||||
FunAbs,
|
||||
// Top-Level Functions
|
||||
FunSome,
|
||||
}
|
||||
|
||||
/// Associated details of a [`PrimDef`]
|
||||
pub enum PrimDefDetails {
|
||||
PrimFunction { name: &'static str, simple_name: &'static str },
|
||||
PrimClass { name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type },
|
||||
PrimClass { name: &'static str },
|
||||
}
|
||||
|
||||
impl PrimDef {
|
||||
|
@ -188,17 +153,15 @@ impl PrimDef {
|
|||
#[must_use]
|
||||
pub fn name(&self) -> &'static str {
|
||||
match self.details() {
|
||||
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name, .. } => {
|
||||
name
|
||||
}
|
||||
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name } => name,
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the associated details of this [`PrimDef`]
|
||||
#[must_use]
|
||||
pub fn details(self) -> PrimDefDetails {
|
||||
fn class(name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type) -> PrimDefDetails {
|
||||
PrimDefDetails::PrimClass { name, get_ty_fn }
|
||||
fn class(name: &'static str) -> PrimDefDetails {
|
||||
PrimDefDetails::PrimClass { name }
|
||||
}
|
||||
|
||||
fn fun(name: &'static str, simple_name: Option<&'static str>) -> PrimDefDetails {
|
||||
|
@ -206,37 +169,29 @@ impl PrimDef {
|
|||
}
|
||||
|
||||
match self {
|
||||
// Classes
|
||||
PrimDef::Int32 => class("int32", |primitives| primitives.int32),
|
||||
PrimDef::Int64 => class("int64", |primitives| primitives.int64),
|
||||
PrimDef::Float => class("float", |primitives| primitives.float),
|
||||
PrimDef::Bool => class("bool", |primitives| primitives.bool),
|
||||
PrimDef::None => class("none", |primitives| primitives.none),
|
||||
PrimDef::Range => class("range", |primitives| primitives.range),
|
||||
PrimDef::Str => class("str", |primitives| primitives.str),
|
||||
PrimDef::Exception => class("Exception", |primitives| primitives.exception),
|
||||
PrimDef::UInt32 => class("uint32", |primitives| primitives.uint32),
|
||||
PrimDef::UInt64 => class("uint64", |primitives| primitives.uint64),
|
||||
PrimDef::Option => class("Option", |primitives| primitives.option),
|
||||
PrimDef::List => class("list", |primitives| primitives.list),
|
||||
PrimDef::NDArray => class("ndarray", |primitives| primitives.ndarray),
|
||||
|
||||
// Option methods
|
||||
PrimDef::FunOptionIsSome => fun("Option.is_some", Some("is_some")),
|
||||
PrimDef::FunOptionIsNone => fun("Option.is_none", Some("is_none")),
|
||||
PrimDef::FunOptionUnwrap => fun("Option.unwrap", Some("unwrap")),
|
||||
|
||||
// Option-related functions
|
||||
PrimDef::FunSome => fun("Some", None),
|
||||
|
||||
// NDArray methods
|
||||
PrimDef::FunNDArrayCopy => fun("ndarray.copy", Some("copy")),
|
||||
PrimDef::FunNDArrayFill => fun("ndarray.fill", Some("fill")),
|
||||
|
||||
// Range methods
|
||||
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
|
||||
|
||||
// NumPy factory functions
|
||||
PrimDef::Int32 => class("int32"),
|
||||
PrimDef::Int64 => class("int64"),
|
||||
PrimDef::Float => class("float"),
|
||||
PrimDef::Bool => class("bool"),
|
||||
PrimDef::None => class("none"),
|
||||
PrimDef::Range => class("range"),
|
||||
PrimDef::Str => class("str"),
|
||||
PrimDef::Exception => class("Exception"),
|
||||
PrimDef::UInt32 => class("uint32"),
|
||||
PrimDef::UInt64 => class("uint64"),
|
||||
PrimDef::Option => class("Option"),
|
||||
PrimDef::OptionIsSome => fun("Option.is_some", Some("is_some")),
|
||||
PrimDef::OptionIsNone => fun("Option.is_none", Some("is_none")),
|
||||
PrimDef::OptionUnwrap => fun("Option.unwrap", Some("unwrap")),
|
||||
PrimDef::List => class("list"),
|
||||
PrimDef::NDArray => class("ndarray"),
|
||||
PrimDef::NDArrayCopy => fun("ndarray.copy", Some("copy")),
|
||||
PrimDef::NDArrayFill => fun("ndarray.fill", Some("fill")),
|
||||
PrimDef::FunInt32 => fun("int32", None),
|
||||
PrimDef::FunInt64 => fun("int64", None),
|
||||
PrimDef::FunUInt32 => fun("uint32", None),
|
||||
PrimDef::FunUInt64 => fun("uint64", None),
|
||||
PrimDef::FunFloat => fun("float", None),
|
||||
PrimDef::FunNpNDArray => fun("np_ndarray", None),
|
||||
PrimDef::FunNpEmpty => fun("np_empty", None),
|
||||
PrimDef::FunNpZeros => fun("np_zeros", None),
|
||||
|
@ -245,27 +200,26 @@ impl PrimDef {
|
|||
PrimDef::FunNpArray => fun("np_array", None),
|
||||
PrimDef::FunNpEye => fun("np_eye", None),
|
||||
PrimDef::FunNpIdentity => fun("np_identity", None),
|
||||
|
||||
// NumPy NDArray property getters,
|
||||
PrimDef::FunNpSize => fun("np_size", None),
|
||||
PrimDef::FunNpShape => fun("np_shape", None),
|
||||
PrimDef::FunNpStrides => fun("np_strides", None),
|
||||
|
||||
// NumPy NDArray view functions
|
||||
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
|
||||
PrimDef::FunNpTranspose => fun("np_transpose", None),
|
||||
PrimDef::FunNpReshape => fun("np_reshape", None),
|
||||
|
||||
// Miscellaneous NumPy & SciPy functions
|
||||
PrimDef::FunRound => fun("round", None),
|
||||
PrimDef::FunRound64 => fun("round64", None),
|
||||
PrimDef::FunNpRound => fun("np_round", None),
|
||||
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
|
||||
PrimDef::FunStr => fun("str", None),
|
||||
PrimDef::FunBool => fun("bool", None),
|
||||
PrimDef::FunFloor => fun("floor", None),
|
||||
PrimDef::FunFloor64 => fun("floor64", None),
|
||||
PrimDef::FunNpFloor => fun("np_floor", None),
|
||||
PrimDef::FunCeil => fun("ceil", None),
|
||||
PrimDef::FunCeil64 => fun("ceil64", None),
|
||||
PrimDef::FunNpCeil => fun("np_ceil", None),
|
||||
PrimDef::FunLen => fun("len", None),
|
||||
PrimDef::FunMin => fun("min", None),
|
||||
PrimDef::FunNpMin => fun("np_min", None),
|
||||
PrimDef::FunNpMinimum => fun("np_minimum", None),
|
||||
PrimDef::FunNpArgmin => fun("np_argmin", None),
|
||||
PrimDef::FunMax => fun("max", None),
|
||||
PrimDef::FunNpMax => fun("np_max", None),
|
||||
PrimDef::FunNpMaximum => fun("np_maximum", None),
|
||||
PrimDef::FunNpArgmax => fun("np_argmax", None),
|
||||
PrimDef::FunAbs => fun("abs", None),
|
||||
PrimDef::FunNpIsNan => fun("np_isnan", None),
|
||||
PrimDef::FunNpIsInf => fun("np_isinf", None),
|
||||
PrimDef::FunNpSin => fun("np_sin", None),
|
||||
|
@ -303,38 +257,7 @@ impl PrimDef {
|
|||
PrimDef::FunNpLdExp => fun("np_ldexp", None),
|
||||
PrimDef::FunNpHypot => fun("np_hypot", None),
|
||||
PrimDef::FunNpNextAfter => fun("np_nextafter", None),
|
||||
|
||||
// Linalg functions
|
||||
PrimDef::FunNpDot => fun("np_dot", None),
|
||||
PrimDef::FunNpLinalgCholesky => fun("np_linalg_cholesky", None),
|
||||
PrimDef::FunNpLinalgQr => fun("np_linalg_qr", None),
|
||||
PrimDef::FunNpLinalgSvd => fun("np_linalg_svd", None),
|
||||
PrimDef::FunNpLinalgInv => fun("np_linalg_inv", None),
|
||||
PrimDef::FunNpLinalgPinv => fun("np_linalg_pinv", None),
|
||||
PrimDef::FunNpLinalgMatrixPower => fun("np_linalg_matrix_power", None),
|
||||
PrimDef::FunNpLinalgDet => fun("np_linalg_det", None),
|
||||
PrimDef::FunSpLinalgLu => fun("sp_linalg_lu", None),
|
||||
PrimDef::FunSpLinalgSchur => fun("sp_linalg_schur", None),
|
||||
PrimDef::FunSpLinalgHessenberg => fun("sp_linalg_hessenberg", None),
|
||||
|
||||
// Miscellaneous Python & NAC3 functions
|
||||
PrimDef::FunInt32 => fun("int32", None),
|
||||
PrimDef::FunInt64 => fun("int64", None),
|
||||
PrimDef::FunUInt32 => fun("uint32", None),
|
||||
PrimDef::FunUInt64 => fun("uint64", None),
|
||||
PrimDef::FunFloat => fun("float", None),
|
||||
PrimDef::FunRound => fun("round", None),
|
||||
PrimDef::FunRound64 => fun("round64", None),
|
||||
PrimDef::FunStr => fun("str", None),
|
||||
PrimDef::FunBool => fun("bool", None),
|
||||
PrimDef::FunFloor => fun("floor", None),
|
||||
PrimDef::FunFloor64 => fun("floor64", None),
|
||||
PrimDef::FunCeil => fun("ceil", None),
|
||||
PrimDef::FunCeil64 => fun("ceil64", None),
|
||||
PrimDef::FunLen => fun("len", None),
|
||||
PrimDef::FunMin => fun("min", None),
|
||||
PrimDef::FunMax => fun("max", None),
|
||||
PrimDef::FunAbs => fun("abs", None),
|
||||
PrimDef::FunSome => fun("Some", None),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -485,9 +408,9 @@ impl TopLevelComposer {
|
|||
let option = unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: PrimDef::Option.id(),
|
||||
fields: vec![
|
||||
(PrimDef::FunOptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
|
||||
(PrimDef::FunOptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
|
||||
(PrimDef::FunOptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
|
||||
(PrimDef::OptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
|
||||
(PrimDef::OptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
|
||||
(PrimDef::OptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
|
||||
]
|
||||
.into_iter()
|
||||
.collect::<HashMap<_, _>>(),
|
||||
|
@ -521,7 +444,6 @@ impl TopLevelComposer {
|
|||
name: "value".into(),
|
||||
ty: ndarray_dtype_tvar.ty,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
ret: none,
|
||||
vars: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
|
||||
|
@ -529,8 +451,8 @@ impl TopLevelComposer {
|
|||
let ndarray = unifier.add_ty(TypeEnum::TObj {
|
||||
obj_id: PrimDef::NDArray.id(),
|
||||
fields: Mapping::from([
|
||||
(PrimDef::FunNDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
|
||||
(PrimDef::FunNDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
|
||||
(PrimDef::NDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
|
||||
(PrimDef::NDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
|
||||
]),
|
||||
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
|
||||
});
|
||||
|
@ -1016,23 +938,3 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
|
|||
_ => 0,
|
||||
}
|
||||
}
|
||||
|
||||
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
|
||||
/// The `ndims` must only contain 1 value.
|
||||
#[must_use]
|
||||
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
|
||||
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
|
||||
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
|
||||
panic!("ndims_ty should be a TLiteral");
|
||||
};
|
||||
|
||||
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
|
||||
|
||||
let ndims = values[0].clone();
|
||||
u64::try_from(ndims).unwrap()
|
||||
}
|
||||
|
||||
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
|
||||
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
|
||||
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
|
||||
}
|
||||
|
|
|
@ -5,7 +5,7 @@ expression: res_vec
|
|||
[
|
||||
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
|
||||
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(241)]\n}\n",
|
||||
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(245)]\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
|
||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",
|
||||
|
|
|
@ -7,7 +7,7 @@ expression: res_vec
|
|||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B[typevar230]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar230\"]\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B[typevar234]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar234\"]\n}\n",
|
||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",
|
||||
|
|
|
@ -5,8 +5,8 @@ expression: res_vec
|
|||
[
|
||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
|
||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(243)]\n}\n",
|
||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(248)]\n}\n",
|
||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(247)]\n}\n",
|
||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(252)]\n}\n",
|
||||
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
|
||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
|
|
|
@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
|
|||
expression: res_vec
|
||||
---
|
||||
[
|
||||
"Class {\nname: \"A\",\nancestors: [\"A[typevar229, typevar230]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar229\", \"typevar230\"]\n}\n",
|
||||
"Class {\nname: \"A\",\nancestors: [\"A[typevar233, typevar234]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar233\", \"typevar234\"]\n}\n",
|
||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",
|
||||
|
|
|
@ -6,12 +6,12 @@ expression: res_vec
|
|||
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(249)]\n}\n",
|
||||
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(253)]\n}\n",
|
||||
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
|
||||
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
|
||||
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
|
||||
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(261)]\n}\n",
|
||||
]
|
||||
|
|
|
@ -117,8 +117,7 @@ impl SymbolResolver for Resolver {
|
|||
"register"
|
||||
)]
|
||||
fn test_simple_register(source: Vec<&str>) {
|
||||
let mut composer =
|
||||
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
|
||||
|
||||
for s in source {
|
||||
let ast = parse_program(s, FileName::default()).unwrap();
|
||||
|
@ -138,8 +137,7 @@ fn test_simple_register(source: Vec<&str>) {
|
|||
"register"
|
||||
)]
|
||||
fn test_simple_register_without_constructor(source: &str) {
|
||||
let mut composer =
|
||||
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let ast = parse_program(source, FileName::default()).unwrap();
|
||||
let ast = ast[0].clone();
|
||||
composer.register_top_level(ast, None, "", true).unwrap();
|
||||
|
@ -173,8 +171,7 @@ fn test_simple_register_without_constructor(source: &str) {
|
|||
"function compose"
|
||||
)]
|
||||
fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
|
||||
let mut composer =
|
||||
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
|
||||
|
||||
let internal_resolver = Arc::new(ResolverInternal {
|
||||
id_to_def: Mutex::default(),
|
||||
|
@ -522,8 +519,7 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
|
|||
)]
|
||||
fn test_analyze(source: &[&str], res: &[&str]) {
|
||||
let print = false;
|
||||
let mut composer =
|
||||
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
|
||||
|
||||
let internal_resolver = make_internal_resolver_with_tvar(
|
||||
vec![
|
||||
|
@ -700,8 +696,7 @@ fn test_analyze(source: &[&str], res: &[&str]) {
|
|||
)]
|
||||
fn test_inference(source: Vec<&str>, res: &[&str]) {
|
||||
let print = true;
|
||||
let mut composer =
|
||||
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
|
||||
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0;
|
||||
|
||||
let internal_resolver = make_internal_resolver_with_tvar(
|
||||
vec![
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
use super::*;
|
||||
use crate::symbol_resolver::SymbolValue;
|
||||
use crate::toplevel::helper::{PrimDef, PrimDefDetails};
|
||||
use crate::toplevel::helper::PrimDef;
|
||||
use crate::typecheck::typedef::VarMap;
|
||||
use nac3parser::ast::Constant;
|
||||
use strum::IntoEnumIterator;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum TypeAnnotation {
|
||||
|
@ -358,7 +357,6 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
|
|||
pub fn get_type_from_type_annotation_kinds(
|
||||
top_level_defs: &[Arc<RwLock<TopLevelDef>>],
|
||||
unifier: &mut Unifier,
|
||||
primitives: &PrimitiveStore,
|
||||
ann: &TypeAnnotation,
|
||||
subst_list: &mut Option<Vec<Type>>,
|
||||
) -> Result<Type, HashSet<String>> {
|
||||
|
@ -381,43 +379,10 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
let param_ty = params
|
||||
.iter()
|
||||
.map(|x| {
|
||||
get_type_from_type_annotation_kinds(
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
subst_list,
|
||||
)
|
||||
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
|
||||
// Primitive TopLevelDefs do not contain all fields that are present in their Type
|
||||
// counterparts, so directly perform subst on the Type instead.
|
||||
|
||||
let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
let base_ty = get_ty_fn(primitives);
|
||||
let params =
|
||||
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
|
||||
params.clone()
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
unifier
|
||||
.subst(
|
||||
get_ty_fn(primitives),
|
||||
¶ms
|
||||
.iter()
|
||||
.zip(param_ty)
|
||||
.map(|(obj_tv, param)| (*obj_tv.0, param))
|
||||
.collect(),
|
||||
)
|
||||
.unwrap_or(base_ty)
|
||||
} else {
|
||||
let subst = {
|
||||
// check for compatible range
|
||||
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
|
||||
|
@ -459,15 +424,12 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
}
|
||||
}
|
||||
|
||||
TypeEnum::TVar {
|
||||
id, range, name, loc, is_const_generic: true, ..
|
||||
} => {
|
||||
TypeEnum::TVar { id, range, name, loc, is_const_generic: true, .. } => {
|
||||
let ty = range[0];
|
||||
let ok: bool = {
|
||||
// create a temp type var and unify to check compatibility
|
||||
p == *tvar || {
|
||||
let temp =
|
||||
unifier.get_fresh_const_generic_var(ty, *name, *loc);
|
||||
let temp = unifier.get_fresh_const_generic_var(ty, *name, *loc);
|
||||
unifier.unify(temp.ty, p).is_ok()
|
||||
}
|
||||
};
|
||||
|
@ -506,16 +468,11 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
fields: tobj_fields,
|
||||
params: subst,
|
||||
});
|
||||
|
||||
if need_subst {
|
||||
if let Some(wl) = subst_list.as_mut() {
|
||||
wl.push(ty);
|
||||
}
|
||||
}
|
||||
|
||||
ty
|
||||
};
|
||||
|
||||
Ok(ty)
|
||||
}
|
||||
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
|
||||
|
@ -533,7 +490,6 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
let ty = get_type_from_type_annotation_kinds(
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
ty.as_ref(),
|
||||
subst_list,
|
||||
)?;
|
||||
|
@ -543,16 +499,10 @@ pub fn get_type_from_type_annotation_kinds(
|
|||
let tys = tys
|
||||
.iter()
|
||||
.map(|x| {
|
||||
get_type_from_type_annotation_kinds(
|
||||
top_level_defs,
|
||||
unifier,
|
||||
primitives,
|
||||
x,
|
||||
subst_list,
|
||||
)
|
||||
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list)
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false }))
|
||||
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys }))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -34,18 +34,13 @@ impl<'a> Inferencer<'a> {
|
|||
self.should_have_value(pattern)?;
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
for elt in elts {
|
||||
self.check_pattern(elt, defined_identifiers)?;
|
||||
self.should_have_value(elt)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::Starred { value, .. } => {
|
||||
self.check_pattern(value, defined_identifiers)?;
|
||||
self.should_have_value(value)?;
|
||||
Ok(())
|
||||
}
|
||||
ExprKind::Subscript { value, slice, .. } => {
|
||||
self.check_expr(value, defined_identifiers)?;
|
||||
self.should_have_value(value)?;
|
||||
|
@ -212,9 +207,6 @@ impl<'a> Inferencer<'a> {
|
|||
/// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
|
||||
/// is freed when the function returns.
|
||||
fn check_return_value_ty(&mut self, ret_ty: Type) -> bool {
|
||||
if cfg!(feature = "no-escape-analysis") {
|
||||
true
|
||||
} else {
|
||||
match &*self.unifier.get_ty_immutable(ret_ty) {
|
||||
TypeEnum::TObj { .. } => [
|
||||
self.primitives.int32,
|
||||
|
@ -226,11 +218,10 @@ impl<'a> Inferencer<'a> {
|
|||
]
|
||||
.iter()
|
||||
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
|
||||
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
|
||||
TypeEnum::TTuple { ty } => ty.iter().all(|t| self.check_return_value_ty(*t)),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check statements for proper identifier def-use and return on all paths
|
||||
fn check_stmt(
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
use crate::symbol_resolver::SymbolValue;
|
||||
use crate::toplevel::helper::{extract_ndims, PrimDef};
|
||||
use crate::toplevel::helper::PrimDef;
|
||||
use crate::toplevel::numpy::{make_ndarray_ty, unpack_ndarray_var_tys};
|
||||
use crate::typecheck::{
|
||||
type_inferencer::*,
|
||||
|
@ -197,7 +197,6 @@ pub fn impl_binop(
|
|||
ty: other_ty,
|
||||
default_value: None,
|
||||
name: "other".into(),
|
||||
is_vararg: false,
|
||||
}],
|
||||
})),
|
||||
false,
|
||||
|
@ -262,7 +261,6 @@ pub fn impl_cmpop(
|
|||
ty: other_ty,
|
||||
default_value: None,
|
||||
name: "other".into(),
|
||||
is_vararg: false,
|
||||
}],
|
||||
})),
|
||||
false,
|
||||
|
@ -520,41 +518,36 @@ pub fn typeof_binop(
|
|||
}
|
||||
|
||||
Operator::MatMult => {
|
||||
let (lhs_dtype, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||
let lhs_ndims = extract_ndims(unifier, lhs_ndims);
|
||||
|
||||
let (rhs_dtype, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||
let rhs_ndims = extract_ndims(unifier, rhs_ndims);
|
||||
|
||||
if !(unifier.unioned(lhs_dtype, primitives.float)
|
||||
&& unifier.unioned(rhs_dtype, primitives.float))
|
||||
{
|
||||
return Err(format!(
|
||||
"ndarray.__matmul__ only supports float64 operations, but LHS has type {} and RHS has type {}",
|
||||
unifier.stringify(lhs),
|
||||
unifier.stringify(rhs)
|
||||
));
|
||||
let (_, lhs_ndims) = unpack_ndarray_var_tys(unifier, lhs);
|
||||
let lhs_ndims = match &*unifier.get_ty_immutable(lhs_ndims) {
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
assert_eq!(values.len(), 1);
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
}
|
||||
|
||||
let result_ndims = match (lhs_ndims, rhs_ndims) {
|
||||
(0, _) | (_, 0) => {
|
||||
return Err(
|
||||
"ndarray.__matmul__ does not allow unsized ndarray input".to_string()
|
||||
)
|
||||
_ => unreachable!(),
|
||||
};
|
||||
let (_, rhs_ndims) = unpack_ndarray_var_tys(unifier, rhs);
|
||||
let rhs_ndims = match &*unifier.get_ty_immutable(rhs_ndims) {
|
||||
TypeEnum::TLiteral { values, .. } => {
|
||||
assert_eq!(values.len(), 1);
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
}
|
||||
(1, 1) => 0,
|
||||
(1, _) => rhs_ndims - 1,
|
||||
(_, 1) => lhs_ndims - 1,
|
||||
(m, n) => max(m, n),
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
if result_ndims == 0 {
|
||||
// If the result is unsized, NumPy returns a scalar.
|
||||
primitives.float
|
||||
} else {
|
||||
let result_ndims_ty =
|
||||
unifier.get_fresh_literal(vec![SymbolValue::U64(result_ndims)], None);
|
||||
make_ndarray_ty(unifier, primitives, Some(primitives.float), Some(result_ndims_ty))
|
||||
match (lhs_ndims, rhs_ndims) {
|
||||
(2, 2) => typeof_ndarray_broadcast(unifier, primitives, lhs, rhs)?,
|
||||
(lhs, rhs) if lhs == 0 || rhs == 0 => {
|
||||
return Err(format!(
|
||||
"Input operand {} does not have enough dimensions (has {lhs}, requires {rhs})",
|
||||
u8::from(rhs == 0)
|
||||
))
|
||||
}
|
||||
(lhs, rhs) => {
|
||||
return Err(format!(
|
||||
"ndarray.__matmul__ on {lhs}D and {rhs}D operands not supported"
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -685,7 +678,6 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
|||
bool: bool_t,
|
||||
uint32: uint32_t,
|
||||
uint64: uint64_t,
|
||||
str: str_t,
|
||||
list: list_t,
|
||||
ndarray: ndarray_t,
|
||||
..
|
||||
|
@ -731,9 +723,6 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
|||
impl_sign(unifier, store, bool_t, Some(int32_t));
|
||||
impl_eq(unifier, store, bool_t, &[bool_t, ndarray_bool_t], None);
|
||||
|
||||
/* str ========= */
|
||||
impl_cmpop(unifier, store, str_t, &[str_t], &[Cmpop::Eq, Cmpop::NotEq], Some(bool_t));
|
||||
|
||||
/* list ======== */
|
||||
impl_binop(unifier, store, list_t, &[list_t], Some(list_t), &[Operator::Add]);
|
||||
impl_binop(unifier, store, list_t, &[int32_t, int64_t], Some(list_t), &[Operator::Mult]);
|
||||
|
@ -757,7 +746,7 @@ pub fn set_primitives_magic_methods(store: &PrimitiveStore, unifier: &mut Unifie
|
|||
impl_div(unifier, store, ndarray_t, &[ndarray_t, ndarray_dtype_t], None);
|
||||
impl_floordiv(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
impl_mod(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_unsized_t], None);
|
||||
impl_matmul(unifier, store, ndarray_t, &[ndarray_t], Some(ndarray_t));
|
||||
impl_sign(unifier, store, ndarray_t, Some(ndarray_t));
|
||||
impl_invert(unifier, store, ndarray_t, Some(ndarray_t));
|
||||
impl_eq(unifier, store, ndarray_t, &[ndarray_unsized_t, ndarray_unsized_dtype_t], None);
|
||||
|
|
|
@ -183,10 +183,9 @@ impl<'a> Display for DisplayTypeError<'a> {
|
|||
}
|
||||
result
|
||||
}
|
||||
(
|
||||
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
|
||||
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
|
||||
) if !is_vararg1 && !is_vararg2 && ty1.len() != ty2.len() => {
|
||||
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 })
|
||||
if ty1.len() != ty2.len() =>
|
||||
{
|
||||
let t1 = self.unifier.stringify_with_notes(*t1, &mut notes);
|
||||
let t2 = self.unifier.stringify_with_notes(*t2, &mut notes);
|
||||
write!(f, "Tuple length mismatch: got {t1} and {t2}")
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -83,12 +83,7 @@ impl TestEnvironment {
|
|||
});
|
||||
with_fields(&mut unifier, int32, |unifier, fields| {
|
||||
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
args: vec![FuncArg {
|
||||
name: "other".into(),
|
||||
ty: int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
|
||||
ret: int32,
|
||||
vars: VarMap::new(),
|
||||
}));
|
||||
|
@ -229,12 +224,7 @@ impl TestEnvironment {
|
|||
});
|
||||
with_fields(&mut unifier, int32, |unifier, fields| {
|
||||
let add_ty = unifier.add_ty(TypeEnum::TFunc(FunSignature {
|
||||
args: vec![FuncArg {
|
||||
name: "other".into(),
|
||||
ty: int32,
|
||||
default_value: None,
|
||||
is_vararg: false,
|
||||
}],
|
||||
args: vec![FuncArg { name: "other".into(), ty: int32, default_value: None }],
|
||||
ret: int32,
|
||||
vars: VarMap::new(),
|
||||
}));
|
||||
|
|
|
@ -1,4 +1,16 @@
|
|||
use super::magic_methods::{Binop, HasOpInfo};
|
||||
use indexmap::IndexMap;
|
||||
use itertools::Itertools;
|
||||
use std::cell::RefCell;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::{self, Display};
|
||||
use std::iter::zip;
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::{borrow::Cow, collections::HashSet};
|
||||
|
||||
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
|
||||
|
||||
use super::magic_methods::Binop;
|
||||
use super::type_error::{TypeError, TypeErrorKind};
|
||||
use super::unification_table::{UnificationKey, UnificationTable};
|
||||
use crate::symbol_resolver::SymbolValue;
|
||||
|
@ -6,16 +18,6 @@ use crate::toplevel::helper::PrimDef;
|
|||
use crate::toplevel::{DefinitionId, TopLevelContext, TopLevelDef};
|
||||
use crate::typecheck::magic_methods::OpInfo;
|
||||
use crate::typecheck::type_inferencer::PrimitiveStore;
|
||||
use indexmap::IndexMap;
|
||||
use itertools::{repeat_n, Itertools};
|
||||
use nac3parser::ast::{Cmpop, Location, StrRef, Unaryop};
|
||||
use std::cell::RefCell;
|
||||
use std::collections::HashMap;
|
||||
use std::fmt::{self, Display};
|
||||
use std::iter::{repeat, zip};
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::{borrow::Cow, collections::HashSet};
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
@ -113,7 +115,6 @@ pub struct FuncArg {
|
|||
pub name: StrRef,
|
||||
pub ty: Type,
|
||||
pub default_value: Option<SymbolValue>,
|
||||
pub is_vararg: bool,
|
||||
}
|
||||
|
||||
impl FuncArg {
|
||||
|
@ -232,12 +233,6 @@ pub enum TypeEnum {
|
|||
TTuple {
|
||||
/// The types of elements present in this tuple.
|
||||
ty: Vec<Type>,
|
||||
|
||||
/// Whether this tuple is used in a vararg context.
|
||||
///
|
||||
/// If `true`, `ty` must only contain one type, and the tuple is assumed to contain any
|
||||
/// number of `ty`-typed values.
|
||||
is_vararg_ctx: bool,
|
||||
},
|
||||
|
||||
/// An object type.
|
||||
|
@ -532,7 +527,7 @@ impl Unifier {
|
|||
TypeEnum::TVirtual { ty } => self.get_instantiations(*ty).map(|ty| {
|
||||
ty.iter().map(|&ty| self.add_ty(TypeEnum::TVirtual { ty })).collect_vec()
|
||||
}),
|
||||
TypeEnum::TTuple { ty, is_vararg_ctx } => {
|
||||
TypeEnum::TTuple { ty } => {
|
||||
let tuples = ty
|
||||
.iter()
|
||||
.map(|ty| self.get_instantiations(*ty).unwrap_or_else(|| vec![*ty]))
|
||||
|
@ -542,12 +537,7 @@ impl Unifier {
|
|||
None
|
||||
} else {
|
||||
Some(
|
||||
tuples
|
||||
.into_iter()
|
||||
.map(|ty| {
|
||||
self.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: *is_vararg_ctx })
|
||||
})
|
||||
.collect(),
|
||||
tuples.into_iter().map(|ty| self.add_ty(TypeEnum::TTuple { ty })).collect(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
@ -591,7 +581,7 @@ impl Unifier {
|
|||
TVar { .. } => allowed_typevars.iter().any(|b| self.unification_table.unioned(a, *b)),
|
||||
TCall { .. } => false,
|
||||
TVirtual { ty } => self.is_concrete(*ty, allowed_typevars),
|
||||
TTuple { ty, .. } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
|
||||
TTuple { ty } => ty.iter().all(|ty| self.is_concrete(*ty, allowed_typevars)),
|
||||
TObj { params: vars, .. } => {
|
||||
vars.values().all(|ty| self.is_concrete(*ty, allowed_typevars))
|
||||
}
|
||||
|
@ -659,7 +649,6 @@ impl Unifier {
|
|||
|
||||
// Get details about the function signature/parameters.
|
||||
let num_params = signature.args.len();
|
||||
let is_vararg = signature.args.iter().any(|arg| arg.is_vararg);
|
||||
|
||||
// Force the type vars in `b` and `signature' to be up-to-date.
|
||||
let b = self.instantiate_fun(b, signature);
|
||||
|
@ -748,7 +737,7 @@ impl Unifier {
|
|||
};
|
||||
|
||||
// Check for "too many arguments"
|
||||
if !is_vararg && num_params < posargs.len() {
|
||||
if num_params < posargs.len() {
|
||||
let expected_min_count =
|
||||
signature.args.iter().filter(|param| param.is_required()).count();
|
||||
let expected_max_count = num_params;
|
||||
|
@ -781,19 +770,6 @@ impl Unifier {
|
|||
type_check_arg(param.name, param.ty, arg_ty)?;
|
||||
}
|
||||
|
||||
if is_vararg {
|
||||
debug_assert!(!signature.args.is_empty());
|
||||
|
||||
let vararg_args = posargs.iter().skip(signature.args.len());
|
||||
let vararg_param = signature.args.last().unwrap();
|
||||
|
||||
for (&arg_ty, param) in zip(vararg_args, repeat(vararg_param)) {
|
||||
// `param_info` for this argument would've already been marked as supplied
|
||||
// during non-vararg posarg typecheck
|
||||
type_check_arg(param.name, param.ty, arg_ty)?;
|
||||
}
|
||||
}
|
||||
|
||||
// Now consume all keyword arguments and typecheck them.
|
||||
for (¶m_name, &arg_ty) in kwargs {
|
||||
// We will also use this opportunity to check if this keyword argument is "legal".
|
||||
|
@ -983,10 +959,7 @@ impl Unifier {
|
|||
self.unify_impl(x, b, false)?;
|
||||
self.set_a_to_b(a, x);
|
||||
}
|
||||
(
|
||||
TVar { fields: Some(fields), range, is_const_generic: false, .. },
|
||||
TTuple { ty, .. },
|
||||
) => {
|
||||
(TVar { fields: Some(fields), range, is_const_generic: false, .. }, TTuple { ty }) => {
|
||||
let len = i32::try_from(ty.len()).unwrap();
|
||||
for (k, v) in fields {
|
||||
match *k {
|
||||
|
@ -1007,18 +980,8 @@ impl Unifier {
|
|||
self.unify_impl(v.ty, ty[ind as usize], false)
|
||||
.map_err(|e| e.at(v.loc))?;
|
||||
}
|
||||
RecordKey::Str(s) => {
|
||||
let tuple_fns = [
|
||||
Cmpop::Eq.op_info().method_name,
|
||||
Cmpop::NotEq.op_info().method_name,
|
||||
];
|
||||
|
||||
if !tuple_fns.into_iter().any(|op| s.to_string() == op) {
|
||||
return Err(TypeError::new(
|
||||
TypeErrorKind::NoSuchField(*k, b),
|
||||
v.loc,
|
||||
));
|
||||
}
|
||||
RecordKey::Str(_) => {
|
||||
return Err(TypeError::new(TypeErrorKind::NoSuchField(*k, b), v.loc))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1093,47 +1056,15 @@ impl Unifier {
|
|||
self.set_a_to_b(a, b);
|
||||
}
|
||||
|
||||
(
|
||||
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
|
||||
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
|
||||
) => {
|
||||
// Rules for Tuples:
|
||||
// - ty1: is_vararg && ty2: is_vararg -> ty1[0] == ty2[0]
|
||||
// - ty1: is_vararg && ty2: !is_vararg -> type error (not enough info to infer the correct number of arguments)
|
||||
// - ty1: !is_vararg && ty2: is_vararg -> ty1[..] == ty2[0]
|
||||
// - ty1: !is_vararg && ty2: !is_vararg -> ty1.len() == ty2.len() && ty1[i] == ty2[i]
|
||||
|
||||
debug_assert!(!is_vararg1 || ty1.len() == 1);
|
||||
debug_assert!(!is_vararg2 || ty2.len() == 1);
|
||||
|
||||
match (*is_vararg1, *is_vararg2) {
|
||||
(true, true) => {
|
||||
if self.unify_impl(ty1[0], ty2[0], false).is_err() {
|
||||
return Self::incompatible_types(a, b);
|
||||
}
|
||||
}
|
||||
(true, false) => return Self::incompatible_types(a, b),
|
||||
|
||||
(false, true) => {
|
||||
for y in ty2 {
|
||||
if self.unify_impl(ty1[0], *y, false).is_err() {
|
||||
return Self::incompatible_types(a, b);
|
||||
}
|
||||
}
|
||||
}
|
||||
(false, false) => {
|
||||
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) => {
|
||||
if ty1.len() != ty2.len() {
|
||||
return Self::incompatible_types(a, b);
|
||||
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
|
||||
}
|
||||
|
||||
for (x, y) in ty1.iter().zip(ty2.iter()) {
|
||||
if self.unify_impl(*x, *y, false).is_err() {
|
||||
return Self::incompatible_types(a, b);
|
||||
return Err(TypeError::new(TypeErrorKind::IncompatibleTypes(a, b), None));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
self.set_a_to_b(a, b);
|
||||
}
|
||||
(TVar { fields: Some(map), range, .. }, TObj { obj_id, fields, params }) => {
|
||||
|
@ -1376,23 +1307,11 @@ impl Unifier {
|
|||
TypeEnum::TLiteral { values, .. } => {
|
||||
format!("const({})", values.iter().map(|v| format!("{v:?}")).join(", "))
|
||||
}
|
||||
TypeEnum::TTuple { ty, is_vararg_ctx } => {
|
||||
if *is_vararg_ctx {
|
||||
debug_assert_eq!(ty.len(), 1);
|
||||
let field = self.internal_stringify(
|
||||
*ty.iter().next().unwrap(),
|
||||
obj_to_name,
|
||||
var_to_name,
|
||||
notes,
|
||||
);
|
||||
format!("tuple[*{field}]")
|
||||
} else {
|
||||
let mut fields = ty
|
||||
.iter()
|
||||
.map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
|
||||
TypeEnum::TTuple { ty } => {
|
||||
let mut fields =
|
||||
ty.iter().map(|v| self.internal_stringify(*v, obj_to_name, var_to_name, notes));
|
||||
format!("tuple[{}]", fields.join(", "))
|
||||
}
|
||||
}
|
||||
TypeEnum::TVirtual { ty } => {
|
||||
format!(
|
||||
"virtual[{}]",
|
||||
|
@ -1416,21 +1335,17 @@ impl Unifier {
|
|||
.args
|
||||
.iter()
|
||||
.map(|arg| {
|
||||
let vararg_prefix = if arg.is_vararg { "*" } else { "" };
|
||||
|
||||
if let Some(dv) = &arg.default_value {
|
||||
format!(
|
||||
"{}:{}{}={}",
|
||||
"{}:{}={}",
|
||||
arg.name,
|
||||
vararg_prefix,
|
||||
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes),
|
||||
dv
|
||||
)
|
||||
} else {
|
||||
format!(
|
||||
"{}:{}{}",
|
||||
"{}:{}",
|
||||
arg.name,
|
||||
vararg_prefix,
|
||||
self.internal_stringify(arg.ty, obj_to_name, var_to_name, notes)
|
||||
)
|
||||
}
|
||||
|
@ -1516,7 +1431,7 @@ impl Unifier {
|
|||
match &*ty {
|
||||
TypeEnum::TRigidVar { .. } | TypeEnum::TLiteral { .. } => None,
|
||||
TypeEnum::TVar { id, .. } => mapping.get(id).copied(),
|
||||
TypeEnum::TTuple { ty, is_vararg_ctx } => {
|
||||
TypeEnum::TTuple { ty } => {
|
||||
let mut new_ty = Cow::from(ty);
|
||||
for (i, t) in ty.iter().enumerate() {
|
||||
if let Some(t1) = self.subst_impl(*t, mapping, cache) {
|
||||
|
@ -1524,10 +1439,7 @@ impl Unifier {
|
|||
}
|
||||
}
|
||||
if matches!(new_ty, Cow::Owned(_)) {
|
||||
Some(self.add_ty(TypeEnum::TTuple {
|
||||
ty: new_ty.into_owned(),
|
||||
is_vararg_ctx: *is_vararg_ctx,
|
||||
}))
|
||||
Some(self.add_ty(TypeEnum::TTuple { ty: new_ty.into_owned() }))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
|
@ -1687,37 +1599,16 @@ impl Unifier {
|
|||
}
|
||||
}
|
||||
(TVar { range, .. }, _) => self.check_var_compatibility(b, range).or(Err(())),
|
||||
(
|
||||
TTuple { ty: ty1, is_vararg_ctx: is_vararg1 },
|
||||
TTuple { ty: ty2, is_vararg_ctx: is_vararg2 },
|
||||
) => {
|
||||
if *is_vararg1 && *is_vararg2 {
|
||||
let isect_ty = self.get_intersection(ty1[0], ty2[0])?;
|
||||
Ok(isect_ty.map(|ty| self.add_ty(TTuple { ty: vec![ty], is_vararg_ctx: true })))
|
||||
} else {
|
||||
let zip_iter: Box<dyn Iterator<Item = (&Type, &Type)>> =
|
||||
match (*is_vararg1, *is_vararg2) {
|
||||
(true, _) => Box::new(repeat_n(&ty1[0], ty2.len()).zip(ty2.iter())),
|
||||
(_, false) => Box::new(ty1.iter().zip(repeat_n(&ty2[0], ty1.len()))),
|
||||
_ => {
|
||||
if ty1.len() != ty2.len() {
|
||||
return Err(());
|
||||
}
|
||||
|
||||
Box::new(ty1.iter().zip(ty2.iter()))
|
||||
}
|
||||
};
|
||||
|
||||
let ty: Vec<_> =
|
||||
zip_iter.map(|(a, b)| self.get_intersection(*a, *b)).try_collect()?;
|
||||
Ok(if ty.iter().any(Option::is_some) {
|
||||
Some(self.add_ty(TTuple {
|
||||
(TTuple { ty: ty1 }, TTuple { ty: ty2 }) if ty1.len() == ty2.len() => {
|
||||
let ty: Vec<_> = zip(ty1.iter(), ty2.iter())
|
||||
.map(|(a, b)| self.get_intersection(*a, *b))
|
||||
.try_collect()?;
|
||||
if ty.iter().any(Option::is_some) {
|
||||
Ok(Some(self.add_ty(TTuple {
|
||||
ty: zip(ty, ty1.iter()).map(|(a, b)| a.unwrap_or(*b)).collect(),
|
||||
is_vararg_ctx: false,
|
||||
}))
|
||||
})))
|
||||
} else {
|
||||
None
|
||||
})
|
||||
Ok(None)
|
||||
}
|
||||
}
|
||||
// TODO(Derppening): #444
|
||||
|
|
|
@ -28,10 +28,7 @@ impl Unifier {
|
|||
TypeEnum::TVar { fields: Some(map1), .. },
|
||||
TypeEnum::TVar { fields: Some(map2), .. },
|
||||
) => self.map_eq2(map1, map2),
|
||||
(
|
||||
TypeEnum::TTuple { ty: ty1, is_vararg_ctx: false },
|
||||
TypeEnum::TTuple { ty: ty2, is_vararg_ctx: false },
|
||||
) => {
|
||||
(TypeEnum::TTuple { ty: ty1 }, TypeEnum::TTuple { ty: ty2 }) => {
|
||||
ty1.len() == ty2.len()
|
||||
&& ty1.iter().zip(ty2.iter()).all(|(t1, t2)| self.eq(*t1, *t2))
|
||||
}
|
||||
|
@ -181,7 +178,7 @@ impl TestEnvironment {
|
|||
ty.push(result.0);
|
||||
s = result.1;
|
||||
}
|
||||
(self.unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }), &s[1..])
|
||||
(self.unifier.add_ty(TypeEnum::TTuple { ty }), &s[1..])
|
||||
}
|
||||
"Record" => {
|
||||
let mut s = &typ[end..];
|
||||
|
@ -611,7 +608,7 @@ fn test_instantiation() {
|
|||
let v1 = env.unifier.get_fresh_var_with_range(&[list_v, int], None, None).ty;
|
||||
let v2 = env.unifier.get_fresh_var_with_range(&[list_int, float], None, None).ty;
|
||||
let t = env.unifier.get_dummy_var().ty;
|
||||
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2], is_vararg_ctx: false });
|
||||
let tuple = env.unifier.add_ty(TypeEnum::TTuple { ty: vec![v, v1, v2] });
|
||||
let v3 = env.unifier.get_fresh_var_with_range(&[tuple, t], None, None).ty;
|
||||
// t = TypeVar('t')
|
||||
// v = TypeVar('v', int, bool)
|
||||
|
|
|
@ -238,7 +238,7 @@ impl<'a> EH_Frame<'a> {
|
|||
/// From the [specification](https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html):
|
||||
///
|
||||
/// > Each CFI record contains a Common Information Entry (CIE) record followed by 1 or more Frame
|
||||
/// > Description Entry (FDE) records.
|
||||
/// Description Entry (FDE) records.
|
||||
pub struct CFI_Record<'a> {
|
||||
// It refers to the augmentation data that corresponds to 'R' in the augmentation string
|
||||
fde_pointer_encoding: u8,
|
||||
|
|
|
@ -4,9 +4,6 @@ version = "0.1.0"
|
|||
authors = ["M-Labs"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
||||
|
||||
[dependencies]
|
||||
parking_lot = "0.12"
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue