forked from M-Labs/nac3
Compare commits
129 Commits
ndstrides-
...
master
Author | SHA1 | Date |
---|---|---|
occheung | 015714eee1 | |
occheung | 71dec251e3 | |
occheung | fce61f7b8c | |
abdul124 | babc081dbd | |
abdul124 | 5337dbe23b | |
abdul124 | f862c01412 | |
David Mak | 0c9705f5f1 | |
David Mak | 5f940f86d9 | |
Sebastien Bourdeauducq | 5651e00688 | |
Sebastien Bourdeauducq | f6745b987f | |
mwojcik | e0dedc6580 | |
David Mak | 28f574282c | |
David Mak | 144f0922db | |
David Mak | c58ce9c3a9 | |
David Mak | f7e296da53 | |
David Mak | b58c99369e | |
David Mak | 1a535db558 | |
David Mak | 1ba2e287a6 | |
lyken | f95f979ad3 | |
lyken | 48e2148c0f | |
David Mak | 88e57f7120 | |
David Mak | d7633c42bc | |
David Mak | a4f53b6e6b | |
David Mak | 9d9ead211e | |
David Mak | 26a1b85206 | |
David Mak | 2822074b2d | |
David Mak | fe67ed076c | |
David Mak | 94e2414df0 | |
Sebastien Bourdeauducq | 2cee760404 | |
Sebastien Bourdeauducq | 230982dc84 | |
occheung | 2bd3f63991 | |
occheung | b53266e9e6 | |
occheung | 86eb22bbf3 | |
occheung | beaa38047d | |
occheung | 705dc4ff1c | |
occheung | 979209a526 | |
David Mak | c3927d0ef6 | |
David Mak | 202a902cd0 | |
David Mak | b6e2644391 | |
David Mak | 45cd01556b | |
David Mak | b6cd2a6993 | |
David Mak | a98f33e6d1 | |
David Mak | 5839badadd | |
David Mak | 56c845aac4 | |
David Mak | 65a12d9ab3 | |
David Mak | 9c6685fa8f | |
David Mak | 2bb788e4bb | |
David Mak | 42a2f243b5 | |
David Mak | 3ce2eddcdc | |
David Mak | 51bf126a32 | |
David Mak | 1a197c67f6 | |
David Mak | 581b2f7bb2 | |
David Mak | 746329ec5d | |
David Mak | e60e8e837f | |
David Mak | 9fdbe9695d | |
David Mak | 8065e73598 | |
David Mak | 192290889b | |
David Mak | 1407553a2f | |
David Mak | c7697606e1 | |
David Mak | 88d0ccbf69 | |
David Mak | a43b59539c | |
David Mak | fe06b2806f | |
David Mak | 7f6c9a25ac | |
Sébastien Bourdeauducq | 6c8382219f | |
Sebastien Bourdeauducq | 9274a7b96b | |
Sébastien Bourdeauducq | d1c0fe2900 | |
mwojcik | f2c047ba57 | |
David Mak | 5e2e77a500 | |
David Mak | f3cc4702b9 | |
David Mak | 3e92c491f5 | |
lyken | 7f629f1579 | |
lyken | 5640a793e2 | |
David Mak | abbaa506ad | |
David Mak | f3dc02d646 | |
David Mak | ea217eaea1 | |
Sébastien Bourdeauducq | 5a34551905 | |
Sebastien Bourdeauducq | 6098b1b853 | |
Sebastien Bourdeauducq | 668ccb1c95 | |
Sebastien Bourdeauducq | a3c624d69d | |
Sébastien Bourdeauducq | bd06155f34 | |
David Mak | 9c33c4209c | |
Sebastien Bourdeauducq | 122983f11c | |
David Mak | 71c3a65a31 | |
David Mak | 8c540d1033 | |
David Mak | 0cc60a3d33 | |
David Mak | a59c26aa99 | |
David Mak | 02d93b11d1 | |
lyken | 59cad5bfe1 | |
lyken | 4318f8de84 | |
David Mak | 15ac00708a | |
lyken | c8dfdcfdea | |
Sébastien Bourdeauducq | 600a5c8679 | |
lyken | 22c4d25802 | |
lyken | 308edb8237 | |
lyken | 9848795dcc | |
lyken | 58222feed4 | |
lyken | 518f21d174 | |
lyken | e8e49684bf | |
lyken | b2900b4883 | |
lyken | c6dade1394 | |
lyken | 7e3fcc0845 | |
lyken | d3b4c60d7f | |
abdul124 | 5b2b6db7ed | |
abdul124 | 15e62f467e | |
abdul124 | 2c88924ff7 | |
abdul124 | a744b139ba | |
David Mak | 2b2b2dbf8f | |
David Mak | d9f96dab33 | |
David Mak | c5ae0e7c36 | |
David Mak | b8dab6cf7c | |
David Mak | 4d80ba38b7 | |
David Mak | 33929bda24 | |
David Mak | a8e92212c0 | |
David Mak | 908271014a | |
David Mak | c407622f5c | |
David Mak | d7952d0629 | |
David Mak | ca1395aed6 | |
David Mak | 7799aa4987 | |
David Mak | 76016a26ad | |
lyken | 8532bf5206 | |
lyken | 2cf64d8608 | |
lyken | 706759adb2 | |
lyken | b90cf2300b | |
Sebastien Bourdeauducq | 0fc26df29e | |
David Mak | 0b074c2cf2 | |
Sébastien Bourdeauducq | a0f6961e0e | |
David Mak | b1c5c2e1d4 | |
David Mak | 69320a6cf1 | |
David Mak | 9e0601837a |
|
@ -1,3 +1,32 @@
|
|||
BasedOnStyle: Google
|
||||
BasedOnStyle: LLVM
|
||||
|
||||
Language: Cpp
|
||||
Standard: Cpp11
|
||||
|
||||
AccessModifierOffset: -1
|
||||
AlignEscapedNewlines: Left
|
||||
AlwaysBreakAfterReturnType: None
|
||||
AlwaysBreakTemplateDeclarations: Yes
|
||||
AllowAllParametersOfDeclarationOnNextLine: false
|
||||
AllowShortFunctionsOnASingleLine: Inline
|
||||
BinPackParameters: false
|
||||
BreakBeforeBinaryOperators: NonAssignment
|
||||
BreakBeforeTernaryOperators: true
|
||||
BreakConstructorInitializers: AfterColon
|
||||
BreakInheritanceList: AfterColon
|
||||
ColumnLimit: 120
|
||||
ConstructorInitializerAllOnOneLineOrOnePerLine: true
|
||||
ContinuationIndentWidth: 4
|
||||
DerivePointerAlignment: false
|
||||
IndentCaseLabels: true
|
||||
IndentPPDirectives: None
|
||||
IndentWidth: 4
|
||||
ReflowComments: false
|
||||
MaxEmptyLinesToKeep: 1
|
||||
PointerAlignment: Left
|
||||
ReflowComments: true
|
||||
SortIncludes: false
|
||||
SortUsingDeclarations: true
|
||||
SpaceAfterTemplateKeyword: false
|
||||
SpacesBeforeTrailingComments: 2
|
||||
TabWidth: 4
|
||||
UseTab: Never
|
||||
|
|
|
@ -1,24 +1,24 @@
|
|||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
|
||||
default_stages: [commit]
|
||||
default_stages: [pre-commit]
|
||||
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: nac3-cargo-fmt
|
||||
name: nac3 cargo format
|
||||
entry: cargo
|
||||
entry: nix
|
||||
language: system
|
||||
types: [file, rust]
|
||||
pass_filenames: false
|
||||
description: Runs cargo fmt on the codebase.
|
||||
args: [fmt]
|
||||
args: [develop, -c, cargo, fmt, --all]
|
||||
- id: nac3-cargo-clippy
|
||||
name: nac3 cargo clippy
|
||||
entry: cargo
|
||||
entry: nix
|
||||
language: system
|
||||
types: [file, rust]
|
||||
pass_filenames: false
|
||||
description: Runs cargo clippy on the codebase.
|
||||
args: [clippy, --tests]
|
||||
args: [develop, -c, cargo, clippy, --tests]
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -4,6 +4,7 @@ members = [
|
|||
"nac3ast",
|
||||
"nac3parser",
|
||||
"nac3core",
|
||||
"nac3core/nac3core_derive",
|
||||
"nac3standalone",
|
||||
"nac3artiq",
|
||||
"runkernel",
|
||||
|
|
|
@ -2,11 +2,11 @@
|
|||
"nodes": {
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1721924956,
|
||||
"narHash": "sha256-Sb1jlyRO+N8jBXEX9Pg9Z1Qb8Bw9QyOgLDNMEpmjZ2M=",
|
||||
"lastModified": 1731319897,
|
||||
"narHash": "sha256-PbABj4tnbWFMfBp6OcUK5iGy1QY+/Z96ZcLpooIbuEI=",
|
||||
"owner": "NixOS",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "5ad6a14c6bf098e98800b091668718c336effc95",
|
||||
"rev": "dc460ec76cbff0e66e269457d7b728432263166c",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
|
12
flake.nix
12
flake.nix
|
@ -14,7 +14,6 @@
|
|||
''
|
||||
mkdir -p $out/bin
|
||||
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
||||
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
|
||||
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
||||
'';
|
||||
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
|
||||
|
@ -41,7 +40,6 @@
|
|||
cargoLock = {
|
||||
lockFile = ./Cargo.lock;
|
||||
};
|
||||
cargoTestFlags = [ "--features" "test" ];
|
||||
passthru.cargoLock = cargoLock;
|
||||
nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
||||
|
@ -109,18 +107,18 @@
|
|||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "sipyco";
|
||||
rev = "939f84f9b5eef7efbf7423c735d1834783b6140e";
|
||||
sha256 = "sha256-15Nun4EY35j+6SPZkjzZtyH/ncxLS60KuGJjFh5kSTc=";
|
||||
rev = "094a6cd63ffa980ef63698920170e50dc9ba77fd";
|
||||
sha256 = "sha256-PPnAyDedUQ7Og/Cby9x5OT9wMkNGTP8GS53V6N/dk4w=";
|
||||
})
|
||||
(pkgs.fetchFromGitHub {
|
||||
owner = "m-labs";
|
||||
repo = "artiq";
|
||||
rev = "923ca3377d42c815f979983134ec549dc39d3ca0";
|
||||
sha256 = "sha256-oJoEeNEeNFSUyh6jXG8Tzp6qHVikeHS0CzfE+mODPgw=";
|
||||
rev = "28c9de3e251daa89a8c9fd79d5ab64a3ec03bac6";
|
||||
sha256 = "sha256-vAvpbHc5B+1wtG8zqN7j9dQE1ON+i22v+uqA+tw6Gak=";
|
||||
})
|
||||
];
|
||||
buildInputs = [
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb nac3artiq-instrumented ]))
|
||||
(python3-mimalloc.withPackages(ps: [ ps.numpy ps.scipy ps.jsonschema ps.lmdb ps.platformdirs nac3artiq-instrumented ]))
|
||||
pkgs.llvmPackages_14.llvm.out
|
||||
];
|
||||
phases = [ "buildPhase" "installPhase" ];
|
||||
|
|
|
@ -12,15 +12,10 @@ crate-type = ["cdylib"]
|
|||
itertools = "0.13"
|
||||
pyo3 = { version = "0.21", features = ["extension-module", "gil-refs"] }
|
||||
parking_lot = "0.12"
|
||||
tempfile = "3.10"
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
tempfile = "3.13"
|
||||
nac3core = { path = "../nac3core" }
|
||||
nac3ld = { path = "../nac3ld" }
|
||||
|
||||
[dependencies.inkwell]
|
||||
version = "0.4"
|
||||
default-features = false
|
||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
|
||||
[features]
|
||||
init-llvm-profile = []
|
||||
no-escape-analysis = ["nac3core/no-escape-analysis"]
|
||||
|
|
|
@ -112,10 +112,15 @@ def extern(function):
|
|||
register_function(function)
|
||||
return function
|
||||
|
||||
def rpc(function):
|
||||
"""Decorates a function declaration defined by the core device runtime."""
|
||||
register_function(function)
|
||||
return function
|
||||
|
||||
def rpc(arg=None, flags={}):
|
||||
"""Decorates a function or method to be executed on the host interpreter."""
|
||||
if arg is None:
|
||||
def inner_decorator(function):
|
||||
return rpc(function, flags)
|
||||
return inner_decorator
|
||||
register_function(arg)
|
||||
return arg
|
||||
|
||||
def kernel(function_or_method):
|
||||
"""Decorates a function or method to be executed on the core device."""
|
||||
|
@ -201,7 +206,7 @@ class Core:
|
|||
embedding = EmbeddingMap()
|
||||
|
||||
if allow_registration:
|
||||
compiler.analyze(registered_functions, registered_classes)
|
||||
compiler.analyze(registered_functions, registered_classes, set())
|
||||
allow_registration = False
|
||||
|
||||
if hasattr(method, "__self__"):
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
from min_artiq import *
|
||||
from numpy import ndarray, zeros as np_zeros
|
||||
|
||||
|
||||
@nac3
|
||||
class StrFail:
|
||||
core: KernelInvariant[Core]
|
||||
|
||||
def __init__(self):
|
||||
self.core = Core()
|
||||
|
||||
@kernel
|
||||
def hello(self, arg: str):
|
||||
pass
|
||||
|
||||
@kernel
|
||||
def consume_ndarray(self, arg: ndarray[str, 1]):
|
||||
pass
|
||||
|
||||
def run(self):
|
||||
self.hello("world")
|
||||
self.consume_ndarray(np_zeros([10], dtype=str))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
StrFail().run()
|
|
@ -1,35 +1,3 @@
|
|||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{ListValue, NDArrayValue, RangeValue, UntypedArrayLikeAccessor},
|
||||
expr::{destructure_range, gen_call},
|
||||
irrt::call_ndarray_calc_size,
|
||||
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
|
||||
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
types::IntType,
|
||||
values::{BasicValueEnum, StructValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
|
||||
use pyo3::{
|
||||
types::{PyDict, PyList},
|
||||
PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||
|
||||
use itertools::Itertools;
|
||||
use std::{
|
||||
collections::{hash_map::DefaultHasher, HashMap},
|
||||
hash::{Hash, Hasher},
|
||||
|
@ -38,6 +6,40 @@ use std::{
|
|||
sync::Arc,
|
||||
};
|
||||
|
||||
use itertools::Itertools;
|
||||
use pyo3::{
|
||||
types::{PyDict, PyList},
|
||||
PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
expr::{destructure_range, gen_call},
|
||||
irrt::call_ndarray_calc_size,
|
||||
llvm_intrinsics::{call_int_smax, call_memcpy_generic, call_stackrestore, call_stacksave},
|
||||
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
|
||||
types::{NDArrayType, ProxyType},
|
||||
values::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, ProxyValue,
|
||||
RangeValue, UntypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
inkwell::{
|
||||
context::Context,
|
||||
module::Linkage,
|
||||
types::{BasicType, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue, StructValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
},
|
||||
nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, DefinitionId, GenCall},
|
||||
typecheck::typedef::{iter_type_vars, FunSignature, FuncArg, Type, TypeEnum, VarMap},
|
||||
};
|
||||
|
||||
use super::{symbol_resolver::InnerResolver, timeline::TimeFns};
|
||||
|
||||
/// The parallelism mode within a block.
|
||||
#[derive(Copy, Clone, Eq, PartialEq)]
|
||||
enum ParallelMode {
|
||||
|
@ -422,7 +424,10 @@ fn gen_rpc_tag(
|
|||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
assert!((0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims));
|
||||
assert!(
|
||||
(0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims),
|
||||
"Only NDArrays of sizes between 0 and 255 can be RPCed"
|
||||
);
|
||||
|
||||
buffer.push(b'a');
|
||||
buffer.push((ndarray_ndims & 0xFF) as u8);
|
||||
|
@ -434,17 +439,395 @@ fn gen_rpc_tag(
|
|||
Ok(())
|
||||
}
|
||||
|
||||
/// Formats an RPC argument to conform to the expected format required by `send_value`.
|
||||
///
|
||||
/// See `artiq/firmware/libproto_artiq/rpc_proto.rs` for the expected format.
|
||||
fn format_rpc_arg<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
(arg, arg_ty, arg_idx): (BasicValueEnum<'ctx>, Type, usize),
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
|
||||
let arg_slot = match &*ctx.unifier.get_ty_immutable(arg_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
// NAC3: NDArray = { usize, usize*, T* }
|
||||
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
|
||||
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, arg_ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let llvm_arg_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||
let llvm_arg = llvm_arg_ty.map_value(arg.into_pointer_value(), None);
|
||||
|
||||
let llvm_usize_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_arg_ty.size_type().size_of(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let llvm_pdata_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||
llvm_usize,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let dims_buf_sz =
|
||||
ctx.builder.build_int_mul(llvm_arg.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||
|
||||
let buffer_size =
|
||||
ctx.builder.build_int_add(dims_buf_sz, llvm_pdata_sizeof, "").unwrap();
|
||||
|
||||
let buffer = ctx.builder.build_array_alloca(llvm_i8, buffer_size, "rpc.arg").unwrap();
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, Some("rpc.arg"));
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
buffer.base_ptr(ctx, generator),
|
||||
llvm_arg.ptr_to_data(ctx),
|
||||
llvm_pdata_sizeof,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
let pbuffer_dims_begin =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
pbuffer_dims_begin,
|
||||
llvm_arg.shape().base_ptr(ctx, generator),
|
||||
dims_buf_sz,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
buffer.base_ptr(ctx, generator)
|
||||
}
|
||||
|
||||
_ => {
|
||||
let arg_slot = generator
|
||||
.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{arg_idx}")))
|
||||
.unwrap();
|
||||
ctx.builder.build_store(arg_slot, arg).unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_bit_cast(arg_slot, llvm_pi8, "rpc.arg")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
}
|
||||
};
|
||||
|
||||
debug_assert_eq!(arg_slot.get_type(), llvm_pi8);
|
||||
|
||||
arg_slot
|
||||
}
|
||||
|
||||
/// Formats an RPC return value to conform to the expected format required by NAC3.
|
||||
fn format_rpc_ret<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ret_ty: Type,
|
||||
) -> Option<BasicValueEnum<'ctx>> {
|
||||
// -- receive value:
|
||||
// T result = {
|
||||
// void *ret_ptr = alloca(sizeof(T));
|
||||
// void *ptr = ret_ptr;
|
||||
// loop: int size = rpc_recv(ptr);
|
||||
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
|
||||
// if(size) { ptr = alloca(size); goto loop; }
|
||||
// else *(T*)ret_ptr
|
||||
// }
|
||||
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_i8_8 = ctx.ctx.struct_type(&[llvm_i8.array_type(8).into()], false);
|
||||
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
|
||||
|
||||
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
|
||||
ctx.module.add_function("rpc_recv", llvm_i32.fn_type(&[llvm_pi8.into()], false), None)
|
||||
});
|
||||
|
||||
if ctx.unifier.unioned(ret_ty, ctx.primitives.none) {
|
||||
ctx.build_call_or_invoke(rpc_recv, &[llvm_pi8.const_null().into()], "rpc_recv");
|
||||
return None;
|
||||
}
|
||||
|
||||
let prehead_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let current_function = prehead_bb.get_parent().unwrap();
|
||||
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
|
||||
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
|
||||
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
|
||||
|
||||
let llvm_ret_ty = ctx.get_llvm_abi_type(generator, ret_ty);
|
||||
|
||||
let result = match &*ctx.unifier.get_ty_immutable(ret_ty) {
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// Round `val` up to its modulo `power_of_two`
|
||||
let round_up = |ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
val: IntValue<'ctx>,
|
||||
power_of_two: IntValue<'ctx>| {
|
||||
debug_assert_eq!(
|
||||
val.get_type().get_bit_width(),
|
||||
power_of_two.get_type().get_bit_width()
|
||||
);
|
||||
|
||||
let llvm_val_t = val.get_type();
|
||||
|
||||
let max_rem = ctx
|
||||
.builder
|
||||
.build_int_sub(power_of_two, llvm_val_t.const_int(1, false), "")
|
||||
.unwrap();
|
||||
ctx.builder
|
||||
.build_and(
|
||||
ctx.builder.build_int_add(val, max_rem, "").unwrap(),
|
||||
ctx.builder.build_not(max_rem, "").unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
// Setup types
|
||||
let (elem_ty, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ret_ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let llvm_ret_ty = NDArrayType::new(generator, ctx.ctx, llvm_elem_ty);
|
||||
|
||||
// Allocate the resulting ndarray
|
||||
// A condition after format_rpc_ret ensures this will not be popped this off.
|
||||
let ndarray = llvm_ret_ty.new_value(generator, ctx, Some("rpc.result"));
|
||||
|
||||
// Setup ndims
|
||||
let ndims =
|
||||
if let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) {
|
||||
assert_eq!(values.len(), 1);
|
||||
|
||||
u64::try_from(values[0].clone()).unwrap()
|
||||
} else {
|
||||
unreachable!();
|
||||
};
|
||||
// Set `ndarray.ndims`
|
||||
ndarray.store_ndims(ctx, generator, llvm_usize.const_int(ndims, false));
|
||||
// Allocate `ndarray.shape` [size_t; ndims]
|
||||
ndarray.create_shape(ctx, llvm_usize, ndarray.load_ndims(ctx));
|
||||
|
||||
/*
|
||||
ndarray now:
|
||||
- .ndims: initialized
|
||||
- .shape: allocated but uninitialized .shape
|
||||
- .data: uninitialized
|
||||
*/
|
||||
|
||||
let llvm_usize_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_usize.size_of(), llvm_usize, "")
|
||||
.unwrap();
|
||||
let llvm_pdata_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
llvm_elem_ty.ptr_type(AddressSpace::default()).size_of(),
|
||||
llvm_usize,
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let llvm_elem_sizeof = ctx
|
||||
.builder
|
||||
.build_int_truncate_or_bit_cast(llvm_elem_ty.size_of().unwrap(), llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
// Allocates a buffer for the initial RPC'ed object, which is guaranteed to be
|
||||
// (4 + 4 * ndims) bytes with 8-byte alignment
|
||||
let sizeof_dims =
|
||||
ctx.builder.build_int_mul(ndarray.load_ndims(ctx), llvm_usize_sizeof, "").unwrap();
|
||||
let unaligned_buffer_size =
|
||||
ctx.builder.build_int_add(sizeof_dims, llvm_pdata_sizeof, "").unwrap();
|
||||
let buffer_size = round_up(ctx, unaligned_buffer_size, llvm_usize.const_int(8, false));
|
||||
|
||||
let stackptr = call_stacksave(ctx, None);
|
||||
// Just to be absolutely sure, alloca in [i8 x 8] slices to force 8-byte alignment
|
||||
let buffer = ctx
|
||||
.builder
|
||||
.build_array_alloca(
|
||||
llvm_i8_8,
|
||||
ctx.builder
|
||||
.build_int_unsigned_div(buffer_size, llvm_usize.const_int(8, false), "")
|
||||
.unwrap(),
|
||||
"rpc.buffer",
|
||||
)
|
||||
.unwrap();
|
||||
let buffer = ctx
|
||||
.builder
|
||||
.build_bit_cast(buffer, llvm_pi8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
let buffer = ArraySliceValue::from_ptr_val(buffer, buffer_size, None);
|
||||
|
||||
// The first call to `rpc_recv` reads the top-level ndarray object: [pdata, shape]
|
||||
//
|
||||
// The returned value is the number of bytes for `ndarray.data`.
|
||||
let ndarray_nbytes = ctx
|
||||
.build_call_or_invoke(
|
||||
rpc_recv,
|
||||
&[buffer.base_ptr(ctx, generator).into()], // Reads [usize; ndims]. NOTE: We are allocated [size_t; ndims].
|
||||
"rpc.size.next",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
// debug_assert(ndarray_nbytes > 0)
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::UGT,
|
||||
ndarray_nbytes,
|
||||
ndarray_nbytes.get_type().const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"0:AssertionError",
|
||||
"Unexpected RPC termination for ndarray - Expected data buffer next",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
// Copy shape from the buffer to `ndarray.shape`.
|
||||
let pbuffer_dims =
|
||||
unsafe { buffer.ptr_offset_unchecked(ctx, generator, &llvm_pdata_sizeof, None) };
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.shape().base_ptr(ctx, generator),
|
||||
pbuffer_dims,
|
||||
sizeof_dims,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
// Restore stack from before allocation of buffer
|
||||
call_stackrestore(ctx, stackptr);
|
||||
|
||||
// Allocate `ndarray.data`.
|
||||
// `ndarray.shape` must be initialized beforehand in this implementation
|
||||
// (for ndarray.create_data() to know how many elements to allocate)
|
||||
let num_elements =
|
||||
call_ndarray_calc_size(generator, ctx, &ndarray.shape(), (None, None));
|
||||
|
||||
// debug_assert(nelems * sizeof(T) >= ndarray_nbytes)
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let sizeof_data =
|
||||
ctx.builder.build_int_mul(num_elements, llvm_elem_sizeof, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(IntPredicate::UGE,
|
||||
sizeof_data,
|
||||
ndarray_nbytes,
|
||||
"",
|
||||
).unwrap(),
|
||||
"0:AssertionError",
|
||||
"Unexpected allocation size request for ndarray data - Expected up to {0} bytes, got {1} bytes",
|
||||
[Some(sizeof_data), Some(ndarray_nbytes), None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
ndarray.create_data(ctx, llvm_elem_ty, num_elements);
|
||||
|
||||
let ndarray_data = ndarray.data().base_ptr(ctx, generator);
|
||||
let ndarray_data_i8 =
|
||||
ctx.builder.build_pointer_cast(ndarray_data, llvm_pi8, "").unwrap();
|
||||
|
||||
// NOTE: Currently on `prehead_bb`
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
|
||||
// Inserting into `head_bb`. Do `rpc_recv` for `data` recursively.
|
||||
ctx.builder.position_at_end(head_bb);
|
||||
|
||||
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&ndarray_data_i8, prehead_bb)]);
|
||||
|
||||
let alloc_size = ctx
|
||||
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let is_done = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
|
||||
.unwrap();
|
||||
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(alloc_bb);
|
||||
// Align the allocation to sizeof(T)
|
||||
let alloc_size = round_up(ctx, alloc_size, llvm_elem_sizeof);
|
||||
let alloc_ptr = ctx
|
||||
.builder
|
||||
.build_array_alloca(
|
||||
llvm_elem_ty,
|
||||
ctx.builder.build_int_unsigned_div(alloc_size, llvm_elem_sizeof, "").unwrap(),
|
||||
"rpc.alloc",
|
||||
)
|
||||
.unwrap();
|
||||
let alloc_ptr =
|
||||
ctx.builder.build_pointer_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(tail_bb);
|
||||
ndarray.as_base_value().into()
|
||||
}
|
||||
|
||||
_ => {
|
||||
let slot = ctx.builder.build_alloca(llvm_ret_ty, "rpc.ret.slot").unwrap();
|
||||
let slotgen = ctx.builder.build_bit_cast(slot, llvm_pi8, "rpc.ret.ptr").unwrap();
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
ctx.builder.position_at_end(head_bb);
|
||||
|
||||
let phi = ctx.builder.build_phi(llvm_pi8, "rpc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&slotgen, prehead_bb)]);
|
||||
let alloc_size = ctx
|
||||
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
let is_done = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, llvm_i32.const_zero(), alloc_size, "rpc.done")
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
|
||||
ctx.builder.position_at_end(alloc_bb);
|
||||
|
||||
let alloc_ptr =
|
||||
ctx.builder.build_array_alloca(llvm_pi8, alloc_size, "rpc.alloc").unwrap();
|
||||
let alloc_ptr =
|
||||
ctx.builder.build_bit_cast(alloc_ptr, llvm_pi8, "rpc.alloc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(tail_bb);
|
||||
ctx.builder.build_load(slot, "rpc.result").unwrap()
|
||||
}
|
||||
};
|
||||
|
||||
Some(result)
|
||||
}
|
||||
|
||||
fn rpc_codegen_callback_fn<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
is_async: bool,
|
||||
) -> Result<Option<BasicValueEnum<'ctx>>, String> {
|
||||
let ptr_type = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let int8 = ctx.ctx.i8_type();
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ptr_type = int8.ptr_type(AddressSpace::default());
|
||||
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
|
||||
|
||||
let service_id = int32.const_int(fun.1 .0 as u64, false);
|
||||
|
@ -517,22 +900,25 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||
.0
|
||||
.args
|
||||
.iter()
|
||||
.map(|arg| mapping.remove(&arg.name).unwrap().to_basic_value_enum(ctx, generator, arg.ty))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
.map(|arg| {
|
||||
mapping
|
||||
.remove(&arg.name)
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, arg.ty)
|
||||
.map(|llvm_val| (llvm_val, arg.ty))
|
||||
})
|
||||
.collect::<Result<Vec<(_, _)>, _>>()?;
|
||||
if let Some(obj) = obj {
|
||||
if let ValueEnum::Static(obj) = obj.1 {
|
||||
real_params.insert(0, obj.get_const_obj(ctx, generator));
|
||||
if let ValueEnum::Static(obj_val) = obj.1 {
|
||||
real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
|
||||
} else {
|
||||
// should be an error here...
|
||||
panic!("only host object is allowed");
|
||||
}
|
||||
}
|
||||
|
||||
for (i, arg) in real_params.iter().enumerate() {
|
||||
let arg_slot =
|
||||
generator.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{i}"))).unwrap();
|
||||
ctx.builder.build_store(arg_slot, *arg).unwrap();
|
||||
let arg_slot = ctx.builder.build_bitcast(arg_slot, ptr_type, "rpc.arg").unwrap();
|
||||
for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
|
||||
let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
|
||||
let arg_ptr = unsafe {
|
||||
ctx.builder.build_gep(
|
||||
args_ptr,
|
||||
|
@ -545,6 +931,29 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||
}
|
||||
|
||||
// call
|
||||
if is_async {
|
||||
let rpc_send_async = ctx.module.get_function("rpc_send_async").unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
"rpc_send_async",
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
int32.into(),
|
||||
tag_ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||
ptr_type.ptr_type(AddressSpace::default()).into(),
|
||||
],
|
||||
false,
|
||||
),
|
||||
None,
|
||||
)
|
||||
});
|
||||
ctx.builder
|
||||
.build_call(
|
||||
rpc_send_async,
|
||||
&[service_id.into(), tag_ptr.into(), args_ptr.into()],
|
||||
"rpc.send",
|
||||
)
|
||||
.unwrap();
|
||||
} else {
|
||||
let rpc_send = ctx.module.get_function("rpc_send").unwrap_or_else(|| {
|
||||
ctx.module.add_function(
|
||||
"rpc_send",
|
||||
|
@ -562,74 +971,32 @@ fn rpc_codegen_callback_fn<'ctx>(
|
|||
ctx.builder
|
||||
.build_call(rpc_send, &[service_id.into(), tag_ptr.into(), args_ptr.into()], "rpc.send")
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
// reclaim stack space used by arguments
|
||||
call_stackrestore(ctx, stackptr);
|
||||
|
||||
// -- receive value:
|
||||
// T result = {
|
||||
// void *ret_ptr = alloca(sizeof(T));
|
||||
// void *ptr = ret_ptr;
|
||||
// loop: int size = rpc_recv(ptr);
|
||||
// // Non-zero: Provide `size` bytes of extra storage for variable-length data.
|
||||
// if(size) { ptr = alloca(size); goto loop; }
|
||||
// else *(T*)ret_ptr
|
||||
// }
|
||||
let rpc_recv = ctx.module.get_function("rpc_recv").unwrap_or_else(|| {
|
||||
ctx.module.add_function("rpc_recv", int32.fn_type(&[ptr_type.into()], false), None)
|
||||
});
|
||||
if is_async {
|
||||
// async RPCs do not return any values
|
||||
Ok(None)
|
||||
} else {
|
||||
let result = format_rpc_ret(generator, ctx, fun.0.ret);
|
||||
|
||||
if ctx.unifier.unioned(fun.0.ret, ctx.primitives.none) {
|
||||
ctx.build_call_or_invoke(rpc_recv, &[ptr_type.const_null().into()], "rpc_recv");
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let prehead_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let current_function = prehead_bb.get_parent().unwrap();
|
||||
let head_bb = ctx.ctx.append_basic_block(current_function, "rpc.head");
|
||||
let alloc_bb = ctx.ctx.append_basic_block(current_function, "rpc.continue");
|
||||
let tail_bb = ctx.ctx.append_basic_block(current_function, "rpc.tail");
|
||||
|
||||
let ret_ty = ctx.get_llvm_abi_type(generator, fun.0.ret);
|
||||
let need_load = !ret_ty.is_pointer_type();
|
||||
let slot = ctx.builder.build_alloca(ret_ty, "rpc.ret.slot").unwrap();
|
||||
let slotgen = ctx.builder.build_bitcast(slot, ptr_type, "rpc.ret.ptr").unwrap();
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
ctx.builder.position_at_end(head_bb);
|
||||
|
||||
let phi = ctx.builder.build_phi(ptr_type, "rpc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&slotgen, prehead_bb)]);
|
||||
let alloc_size = ctx
|
||||
.build_call_or_invoke(rpc_recv, &[phi.as_basic_value()], "rpc.size.next")
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
let is_done = ctx
|
||||
.builder
|
||||
.build_int_compare(inkwell::IntPredicate::EQ, int32.const_zero(), alloc_size, "rpc.done")
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.build_conditional_branch(is_done, tail_bb, alloc_bb).unwrap();
|
||||
ctx.builder.position_at_end(alloc_bb);
|
||||
|
||||
let alloc_ptr = ctx.builder.build_array_alloca(ptr_type, alloc_size, "rpc.alloc").unwrap();
|
||||
let alloc_ptr = ctx.builder.build_bitcast(alloc_ptr, ptr_type, "rpc.alloc.ptr").unwrap();
|
||||
phi.add_incoming(&[(&alloc_ptr, alloc_bb)]);
|
||||
ctx.builder.build_unconditional_branch(head_bb).unwrap();
|
||||
|
||||
ctx.builder.position_at_end(tail_bb);
|
||||
|
||||
let result = ctx.builder.build_load(slot, "rpc.result").unwrap();
|
||||
if need_load {
|
||||
if !result.is_some_and(|res| res.get_type().is_pointer_type()) {
|
||||
// An RPC returning an NDArray would not touch here.
|
||||
call_stackrestore(ctx, stackptr);
|
||||
}
|
||||
Ok(Some(result))
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn attributes_writeback(
|
||||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
pub fn attributes_writeback<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut dyn CodeGenerator,
|
||||
inner_resolver: &InnerResolver,
|
||||
host_attributes: &PyObject,
|
||||
return_obj: Option<(Type, ValueEnum<'ctx>)>,
|
||||
) -> Result<(), String> {
|
||||
Python::with_gil(|py| -> PyResult<Result<(), String>> {
|
||||
let host_attributes: &PyList = host_attributes.downcast(py)?;
|
||||
|
@ -639,6 +1006,11 @@ pub fn attributes_writeback(
|
|||
let zero = int32.const_zero();
|
||||
let mut values = Vec::new();
|
||||
let mut scratch_buffer = Vec::new();
|
||||
|
||||
if let Some((ty, obj)) = return_obj {
|
||||
values.push((ty, obj.to_basic_value_enum(ctx, generator, ty).unwrap()));
|
||||
}
|
||||
|
||||
for val in (*globals).values() {
|
||||
let val = val.as_ref(py);
|
||||
let ty = inner_resolver.get_obj_type(
|
||||
|
@ -717,7 +1089,7 @@ pub fn attributes_writeback(
|
|||
let args: Vec<_> =
|
||||
values.into_iter().map(|(_, val)| (None, ValueEnum::Dynamic(val))).collect();
|
||||
if let Err(e) =
|
||||
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator)
|
||||
rpc_codegen_callback_fn(ctx, None, (&fun, PrimDef::Int32.id()), args, generator, true)
|
||||
{
|
||||
return Ok(Err(e));
|
||||
}
|
||||
|
@ -727,9 +1099,9 @@ pub fn attributes_writeback(
|
|||
Ok(())
|
||||
}
|
||||
|
||||
pub fn rpc_codegen_callback() -> Arc<GenCall> {
|
||||
Arc::new(GenCall::new(Box::new(|ctx, obj, fun, args, generator| {
|
||||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
|
||||
pub fn rpc_codegen_callback(is_async: bool) -> Arc<GenCall> {
|
||||
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
|
||||
rpc_codegen_callback_fn(ctx, obj, fun, args, generator, is_async)
|
||||
})))
|
||||
}
|
||||
|
||||
|
@ -798,7 +1170,8 @@ fn polymorphic_print<'ctx>(
|
|||
ctx.module.add_function(fn_name, fn_t, None)
|
||||
});
|
||||
|
||||
let fmt = ctx.gen_string(generator, &fmt).get_field(generator, ctx.ctx, |f| f.base).value;
|
||||
let fmt = ctx.gen_string(generator, fmt);
|
||||
let fmt = unsafe { fmt.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
|
@ -878,24 +1251,20 @@ fn polymorphic_print<'ctx>(
|
|||
fmt.push_str("%.*s");
|
||||
|
||||
let true_str = ctx.gen_string(generator, "True");
|
||||
|
||||
let true_data = true_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||
let true_len = true_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||
|
||||
let true_data =
|
||||
unsafe { true_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
let true_len = unsafe { true_str.get_field_at_index_unchecked(1) }.into_int_value();
|
||||
let false_str = ctx.gen_string(generator, "False");
|
||||
|
||||
let false_data = false_str.get_field(generator, ctx.ctx, |f| f.base);
|
||||
let false_len = false_str.get_field(generator, ctx.ctx, |f| f.len);
|
||||
let false_data =
|
||||
unsafe { false_str.get_field_at_index_unchecked(0) }.into_pointer_value();
|
||||
let false_len =
|
||||
unsafe { false_str.get_field_at_index_unchecked(1) }.into_int_value();
|
||||
|
||||
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
|
||||
|
||||
args.extend([
|
||||
ctx.builder
|
||||
.build_select(bool_val, true_len.value, false_len.value, "")
|
||||
.unwrap(),
|
||||
ctx.builder
|
||||
.build_select(bool_val, true_data.value, false_data.value, "")
|
||||
.unwrap(),
|
||||
ctx.builder.build_select(bool_val, true_len, false_len, "").unwrap(),
|
||||
ctx.builder.build_select(bool_val, true_data, false_data, "").unwrap(),
|
||||
]);
|
||||
}
|
||||
|
||||
|
@ -946,7 +1315,8 @@ fn polymorphic_print<'ctx>(
|
|||
fmt.push('[');
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let val =
|
||||
ListValue::from_pointer_value(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = val.load_size(ctx, None);
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
|
@ -998,12 +1368,18 @@ fn polymorphic_print<'ctx>(
|
|||
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
|
||||
fmt.push_str("array([");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = NDArrayValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
|
||||
let len = call_ndarray_calc_size(generator, ctx, &val.dim_sizes(), (None, None));
|
||||
let val = NDArrayValue::from_pointer_value(
|
||||
value.into_pointer_value(),
|
||||
llvm_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
let len = call_ndarray_calc_size(generator, ctx, &val.shape(), (None, None));
|
||||
let last =
|
||||
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
|
||||
|
||||
|
@ -1056,7 +1432,7 @@ fn polymorphic_print<'ctx>(
|
|||
fmt.push_str("range(");
|
||||
flush(ctx, generator, &mut fmt, &mut args);
|
||||
|
||||
let val = RangeValue::from_ptr_val(value.into_pointer_value(), None);
|
||||
let val = RangeValue::from_pointer_value(value.into_pointer_value(), None);
|
||||
|
||||
let (start, stop, step) = destructure_range(ctx, val);
|
||||
|
||||
|
|
|
@ -1,10 +1,4 @@
|
|||
#![deny(
|
||||
future_incompatible,
|
||||
let_underscore,
|
||||
nonstandard_style,
|
||||
rust_2024_compatibility,
|
||||
clippy::all
|
||||
)]
|
||||
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
unsafe_op_in_unsafe_fn,
|
||||
|
@ -16,65 +10,65 @@
|
|||
clippy::wildcard_imports
|
||||
)]
|
||||
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::fs;
|
||||
use std::io::Write;
|
||||
use std::process::Command;
|
||||
use std::rc::Rc;
|
||||
use std::sync::Arc;
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
fs,
|
||||
io::Write,
|
||||
process::Command,
|
||||
rc::Rc,
|
||||
sync::Arc,
|
||||
};
|
||||
|
||||
use inkwell::{
|
||||
use itertools::Itertools;
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
use pyo3::{
|
||||
create_exception, exceptions,
|
||||
prelude::*,
|
||||
types::{PyBytes, PyDict, PyNone, PySet},
|
||||
};
|
||||
use tempfile::{self, TempDir};
|
||||
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
concrete_type::ConcreteTypeStore, gen_func_impl, irrt::load_irrt, CodeGenLLVMOptions,
|
||||
CodeGenTargetMachineOptions, CodeGenTask, CodeGenerator, WithCall, WorkerRegistry,
|
||||
},
|
||||
inkwell::{
|
||||
context::Context,
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::{Linkage, Module},
|
||||
module::{FlagBehavior, Linkage, Module},
|
||||
passes::PassBuilderOptions,
|
||||
support::is_multithreaded,
|
||||
targets::*,
|
||||
OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::codegen::irrt::setup_irrt_exceptions;
|
||||
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
|
||||
use nac3core::toplevel::builtins::get_exn_constructor;
|
||||
use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
|
||||
use nac3parser::{
|
||||
ast::{ExprKind, Stmt, StmtKind, StrRef},
|
||||
},
|
||||
nac3parser::{
|
||||
ast::{Constant, ExprKind, Located, Stmt, StmtKind, StrRef},
|
||||
parser::parse_program,
|
||||
};
|
||||
use pyo3::create_exception;
|
||||
use pyo3::prelude::*;
|
||||
use pyo3::{exceptions, types::PyBytes, types::PyDict, types::PySet};
|
||||
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
|
||||
use nac3core::{
|
||||
codegen::irrt::load_irrt,
|
||||
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
|
||||
},
|
||||
symbol_resolver::SymbolResolver,
|
||||
toplevel::{
|
||||
builtins::get_exn_constructor,
|
||||
composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
|
||||
DefinitionId, GenCall, TopLevelDef,
|
||||
},
|
||||
typecheck::typedef::{FunSignature, FuncArg},
|
||||
typecheck::{type_inferencer::PrimitiveStore, typedef::Type},
|
||||
typecheck::{
|
||||
type_inferencer::PrimitiveStore,
|
||||
typedef::{into_var_map, FunSignature, FuncArg, Type, TypeEnum, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
|
||||
use nac3ld::Linker;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
use codegen::{
|
||||
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
|
||||
},
|
||||
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
|
||||
};
|
||||
use tempfile::{self, TempDir};
|
||||
use symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver};
|
||||
use timeline::TimeFns;
|
||||
|
||||
mod codegen;
|
||||
mod symbol_resolver;
|
||||
mod timeline;
|
||||
|
||||
use timeline::TimeFns;
|
||||
|
||||
#[derive(PartialEq, Clone, Copy)]
|
||||
enum Isa {
|
||||
Host,
|
||||
|
@ -148,14 +142,32 @@ impl Nac3 {
|
|||
module: &PyObject,
|
||||
registered_class_ids: &HashSet<u64>,
|
||||
) -> PyResult<()> {
|
||||
let (module_name, source_file) = Python::with_gil(|py| -> PyResult<(String, String)> {
|
||||
let (module_name, source_file, source) =
|
||||
Python::with_gil(|py| -> PyResult<(String, String, String)> {
|
||||
let module: &PyAny = module.extract(py)?;
|
||||
Ok((module.getattr("__name__")?.extract()?, module.getattr("__file__")?.extract()?))
|
||||
let source_file = module.getattr("__file__");
|
||||
let (source_file, source) = if let Ok(source_file) = source_file {
|
||||
let source_file = source_file.extract()?;
|
||||
(
|
||||
source_file,
|
||||
fs::read_to_string(source_file).map_err(|e| {
|
||||
exceptions::PyIOError::new_err(format!(
|
||||
"failed to read input file: {e}"
|
||||
))
|
||||
})?,
|
||||
)
|
||||
} else {
|
||||
// kernels submitted by content have no file
|
||||
// but still can provide source by StringLoader
|
||||
let get_src_fn = module
|
||||
.getattr("__loader__")?
|
||||
.extract::<PyObject>()?
|
||||
.getattr(py, "get_source")?;
|
||||
("<expcontent>", get_src_fn.call1(py, (PyNone::get(py),))?.extract(py)?)
|
||||
};
|
||||
Ok((module.getattr("__name__")?.extract()?, source_file.to_string(), source))
|
||||
})?;
|
||||
|
||||
let source = fs::read_to_string(&source_file).map_err(|e| {
|
||||
exceptions::PyIOError::new_err(format!("failed to read input file: {e}"))
|
||||
})?;
|
||||
let parser_result = parse_program(&source, source_file.into())
|
||||
.map_err(|e| exceptions::PySyntaxError::new_err(format!("parse error: {e}")))?;
|
||||
|
||||
|
@ -195,10 +207,8 @@ impl Nac3 {
|
|||
body.retain(|stmt| {
|
||||
if let StmtKind::FunctionDef { ref decorator_list, .. } = stmt.node {
|
||||
decorator_list.iter().any(|decorator| {
|
||||
if let ExprKind::Name { id, .. } = decorator.node {
|
||||
id.to_string() == "kernel"
|
||||
|| id.to_string() == "portable"
|
||||
|| id.to_string() == "rpc"
|
||||
if let Some(id) = decorator_id_string(decorator) {
|
||||
id == "kernel" || id == "portable" || id == "rpc"
|
||||
} else {
|
||||
false
|
||||
}
|
||||
|
@ -211,9 +221,8 @@ impl Nac3 {
|
|||
}
|
||||
StmtKind::FunctionDef { ref decorator_list, .. } => {
|
||||
decorator_list.iter().any(|decorator| {
|
||||
if let ExprKind::Name { id, .. } = decorator.node {
|
||||
let id = id.to_string();
|
||||
id == "extern" || id == "portable" || id == "kernel" || id == "rpc"
|
||||
if let Some(id) = decorator_id_string(decorator) {
|
||||
id == "extern" || id == "kernel" || id == "portable" || id == "rpc"
|
||||
} else {
|
||||
false
|
||||
}
|
||||
|
@ -449,7 +458,6 @@ impl Nac3 {
|
|||
pyid_to_type: pyid_to_type.clone(),
|
||||
primitive_ids: self.primitive_ids.clone(),
|
||||
global_value_ids: global_value_ids.clone(),
|
||||
class_names: Mutex::default(),
|
||||
name_to_pyid: name_to_pyid.clone(),
|
||||
module: module.clone(),
|
||||
id_to_pyval: RwLock::default(),
|
||||
|
@ -480,9 +488,25 @@ impl Nac3 {
|
|||
|
||||
match &stmt.node {
|
||||
StmtKind::FunctionDef { decorator_list, .. } => {
|
||||
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
|
||||
store_fun.call1(py, (def_id.0.into_py(py), module.getattr(py, name.to_string().as_str()).unwrap())).unwrap();
|
||||
rpc_ids.push((None, def_id));
|
||||
if decorator_list
|
||||
.iter()
|
||||
.any(|decorator| decorator_id_string(decorator) == Some("rpc".to_string()))
|
||||
{
|
||||
store_fun
|
||||
.call1(
|
||||
py,
|
||||
(
|
||||
def_id.0.into_py(py),
|
||||
module.getattr(py, name.to_string().as_str()).unwrap(),
|
||||
),
|
||||
)
|
||||
.unwrap();
|
||||
let is_async = decorator_list.iter().any(|decorator| {
|
||||
decorator_get_flags(decorator)
|
||||
.iter()
|
||||
.any(|constant| *constant == Constant::Str("async".into()))
|
||||
});
|
||||
rpc_ids.push((None, def_id, is_async));
|
||||
}
|
||||
}
|
||||
StmtKind::ClassDef { name, body, .. } => {
|
||||
|
@ -490,19 +514,26 @@ impl Nac3 {
|
|||
let class_obj = module.getattr(py, class_name.as_str()).unwrap();
|
||||
for stmt in body {
|
||||
if let StmtKind::FunctionDef { name, decorator_list, .. } = &stmt.node {
|
||||
if decorator_list.iter().any(|decorator| matches!(decorator.node, ExprKind::Name { id, .. } if id == "rpc".into())) {
|
||||
if decorator_list.iter().any(|decorator| {
|
||||
decorator_id_string(decorator) == Some("rpc".to_string())
|
||||
}) {
|
||||
let is_async = decorator_list.iter().any(|decorator| {
|
||||
decorator_get_flags(decorator)
|
||||
.iter()
|
||||
.any(|constant| *constant == Constant::Str("async".into()))
|
||||
});
|
||||
if name == &"__init__".into() {
|
||||
return Err(CompileError::new_err(format!(
|
||||
"compilation failed\n----------\nThe constructor of class {} should not be decorated with rpc decorator (at {})",
|
||||
class_name, stmt.location
|
||||
)));
|
||||
}
|
||||
rpc_ids.push((Some((class_obj.clone(), *name)), def_id));
|
||||
rpc_ids.push((Some((class_obj.clone(), *name)), def_id, is_async));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => ()
|
||||
_ => (),
|
||||
}
|
||||
|
||||
let id = *name_to_pyid.get(&name).unwrap();
|
||||
|
@ -541,7 +572,6 @@ impl Nac3 {
|
|||
pyid_to_type: pyid_to_type.clone(),
|
||||
primitive_ids: self.primitive_ids.clone(),
|
||||
global_value_ids: global_value_ids.clone(),
|
||||
class_names: Mutex::default(),
|
||||
id_to_pyval: RwLock::default(),
|
||||
id_to_primitive: RwLock::default(),
|
||||
field_to_val: RwLock::default(),
|
||||
|
@ -559,9 +589,8 @@ impl Nac3 {
|
|||
.unwrap();
|
||||
|
||||
// Process IRRT
|
||||
let context = inkwell::context::Context::create();
|
||||
let irrt = load_irrt(&context);
|
||||
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
|
||||
let context = Context::create();
|
||||
let irrt = load_irrt(&context, resolver.as_ref());
|
||||
|
||||
let fun_signature =
|
||||
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
|
||||
|
@ -600,13 +629,12 @@ impl Nac3 {
|
|||
let top_level = Arc::new(composer.make_top_level_context());
|
||||
|
||||
{
|
||||
let rpc_codegen = rpc_codegen_callback();
|
||||
let defs = top_level.definitions.read();
|
||||
for (class_data, id) in &rpc_ids {
|
||||
for (class_data, id, is_async) in &rpc_ids {
|
||||
let mut def = defs[id.0].write();
|
||||
match &mut *def {
|
||||
TopLevelDef::Function { codegen_callback, .. } => {
|
||||
*codegen_callback = Some(rpc_codegen.clone());
|
||||
*codegen_callback = Some(rpc_codegen_callback(*is_async));
|
||||
}
|
||||
TopLevelDef::Class { methods, .. } => {
|
||||
let (class_def, method_name) = class_data.as_ref().unwrap();
|
||||
|
@ -617,7 +645,7 @@ impl Nac3 {
|
|||
if let TopLevelDef::Function { codegen_callback, .. } =
|
||||
&mut *defs[id.0].write()
|
||||
{
|
||||
*codegen_callback = Some(rpc_codegen.clone());
|
||||
*codegen_callback = Some(rpc_codegen_callback(*is_async));
|
||||
store_fun
|
||||
.call1(
|
||||
py,
|
||||
|
@ -632,6 +660,11 @@ impl Nac3 {
|
|||
}
|
||||
}
|
||||
}
|
||||
TopLevelDef::Variable { .. } => {
|
||||
return Err(CompileError::new_err(String::from(
|
||||
"Unsupported @rpc annotation on global variable",
|
||||
)))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -652,33 +685,12 @@ impl Nac3 {
|
|||
let task = CodeGenTask {
|
||||
subst: Vec::default(),
|
||||
symbol_name: "__modinit__".to_string(),
|
||||
body: instance.body,
|
||||
signature,
|
||||
resolver: resolver.clone(),
|
||||
store,
|
||||
unifier_index: instance.unifier_id,
|
||||
calls: instance.calls,
|
||||
id: 0,
|
||||
};
|
||||
|
||||
let mut store = ConcreteTypeStore::new();
|
||||
let mut cache = HashMap::new();
|
||||
let signature = store.from_signature(
|
||||
&mut composer.unifier,
|
||||
&self.primitive,
|
||||
&fun_signature,
|
||||
&mut cache,
|
||||
);
|
||||
let signature = store.add_cty(signature);
|
||||
let attributes_writeback_task = CodeGenTask {
|
||||
subst: Vec::default(),
|
||||
symbol_name: "attributes_writeback".to_string(),
|
||||
body: Arc::new(Vec::default()),
|
||||
signature,
|
||||
resolver,
|
||||
store,
|
||||
unifier_index: instance.unifier_id,
|
||||
calls: Arc::new(HashMap::default()),
|
||||
calls: instance.calls,
|
||||
id: 0,
|
||||
};
|
||||
|
||||
|
@ -691,7 +703,7 @@ impl Nac3 {
|
|||
let buffer = buffer.as_slice().into();
|
||||
membuffer.lock().push(buffer);
|
||||
})));
|
||||
let size_t = Context::create()
|
||||
let size_t = context
|
||||
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
|
||||
.get_bit_width();
|
||||
let num_threads = if is_multithreaded() { 4 } else { 1 };
|
||||
|
@ -702,19 +714,27 @@ impl Nac3 {
|
|||
.collect();
|
||||
|
||||
let membuffer = membuffers.clone();
|
||||
let mut has_return = false;
|
||||
py.allow_threads(|| {
|
||||
let (registry, handles) =
|
||||
WorkerRegistry::create_workers(threads, top_level.clone(), &self.llvm_options, &f);
|
||||
registry.add_task(task);
|
||||
registry.wait_tasks_complete(handles);
|
||||
|
||||
let mut generator =
|
||||
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
|
||||
let context = inkwell::context::Context::create();
|
||||
let module = context.create_module("attributes_writeback");
|
||||
let mut generator = ArtiqCodeGenerator::new("main".to_string(), size_t, self.time_fns);
|
||||
let context = Context::create();
|
||||
let module = context.create_module("main");
|
||||
let target_machine = self.llvm_options.create_target_machine().unwrap();
|
||||
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
|
||||
module.set_triple(&target_machine.get_triple());
|
||||
module.add_basic_value_flag(
|
||||
"Debug Info Version",
|
||||
FlagBehavior::Warning,
|
||||
context.i32_type().const_int(3, false),
|
||||
);
|
||||
module.add_basic_value_flag(
|
||||
"Dwarf Version",
|
||||
FlagBehavior::Warning,
|
||||
context.i32_type().const_int(4, false),
|
||||
);
|
||||
let builder = context.create_builder();
|
||||
let (_, module, _) = gen_func_impl(
|
||||
&context,
|
||||
|
@ -722,9 +742,27 @@ impl Nac3 {
|
|||
®istry,
|
||||
builder,
|
||||
module,
|
||||
attributes_writeback_task,
|
||||
task,
|
||||
|generator, ctx| {
|
||||
attributes_writeback(ctx, generator, inner_resolver.as_ref(), &host_attributes)
|
||||
assert_eq!(instance.body.len(), 1, "toplevel module should have 1 statement");
|
||||
let StmtKind::Expr { value: ref expr, .. } = instance.body[0].node else {
|
||||
unreachable!("toplevel statement must be an expression")
|
||||
};
|
||||
let ExprKind::Call { .. } = expr.node else {
|
||||
unreachable!("toplevel expression must be a function call")
|
||||
};
|
||||
|
||||
let return_obj =
|
||||
generator.gen_expr(ctx, expr)?.map(|value| (expr.custom.unwrap(), value));
|
||||
has_return = return_obj.is_some();
|
||||
registry.wait_tasks_complete(handles);
|
||||
attributes_writeback(
|
||||
ctx,
|
||||
generator,
|
||||
inner_resolver.as_ref(),
|
||||
&host_attributes,
|
||||
return_obj,
|
||||
)
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
@ -733,35 +771,23 @@ impl Nac3 {
|
|||
membuffer.lock().push(buffer);
|
||||
});
|
||||
|
||||
embedding_map.setattr("expects_return", has_return).unwrap();
|
||||
|
||||
// Link all modules into `main`.
|
||||
let buffers = membuffers.lock();
|
||||
let main = context
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(
|
||||
buffers.last().unwrap(),
|
||||
"main",
|
||||
))
|
||||
.unwrap();
|
||||
for buffer in buffers.iter().skip(1) {
|
||||
for buffer in buffers.iter().rev().skip(1) {
|
||||
let other = context
|
||||
.create_module_from_ir(MemoryBuffer::create_from_memory_range(buffer, "main"))
|
||||
.unwrap();
|
||||
|
||||
main.link_in_module(other).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
}
|
||||
let builder = context.create_builder();
|
||||
let modinit_return = main
|
||||
.get_function("__modinit__")
|
||||
.unwrap()
|
||||
.get_last_basic_block()
|
||||
.unwrap()
|
||||
.get_terminator()
|
||||
.unwrap();
|
||||
builder.position_before(&modinit_return);
|
||||
builder
|
||||
.build_call(
|
||||
main.get_function("attributes_writeback").unwrap(),
|
||||
&[],
|
||||
"attributes_writeback",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
|
||||
|
||||
let mut function_iter = main.get_first_function();
|
||||
|
@ -848,6 +874,41 @@ impl Nac3 {
|
|||
}
|
||||
}
|
||||
|
||||
/// Retrieves the Name.id from a decorator, supports decorators with arguments.
|
||||
fn decorator_id_string(decorator: &Located<ExprKind>) -> Option<String> {
|
||||
if let ExprKind::Name { id, .. } = decorator.node {
|
||||
// Bare decorator
|
||||
return Some(id.to_string());
|
||||
} else if let ExprKind::Call { func, .. } = &decorator.node {
|
||||
// Decorators that are calls (e.g. "@rpc()") have Call for the node,
|
||||
// need to extract the id from within.
|
||||
if let ExprKind::Name { id, .. } = func.node {
|
||||
return Some(id.to_string());
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
/// Retrieves flags from a decorator, if any.
|
||||
fn decorator_get_flags(decorator: &Located<ExprKind>) -> Vec<Constant> {
|
||||
let mut flags = vec![];
|
||||
if let ExprKind::Call { keywords, .. } = &decorator.node {
|
||||
for keyword in keywords {
|
||||
if keyword.node.arg != Some("flags".into()) {
|
||||
continue;
|
||||
}
|
||||
if let ExprKind::Set { elts } = &keyword.node.value.node {
|
||||
for elt in elts {
|
||||
if let ExprKind::Constant { value, .. } = &elt.node {
|
||||
flags.push(value.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
flags
|
||||
}
|
||||
|
||||
fn link_with_lld(elf_filename: String, obj_filename: String) -> PyResult<()> {
|
||||
let linker_args = vec![
|
||||
"-shared".to_string(),
|
||||
|
@ -1029,7 +1090,12 @@ impl Nac3 {
|
|||
})
|
||||
}
|
||||
|
||||
fn analyze(&mut self, functions: &PySet, classes: &PySet) -> PyResult<()> {
|
||||
fn analyze(
|
||||
&mut self,
|
||||
functions: &PySet,
|
||||
classes: &PySet,
|
||||
content_modules: &PySet,
|
||||
) -> PyResult<()> {
|
||||
let (modules, class_ids) =
|
||||
Python::with_gil(|py| -> PyResult<(HashMap<u64, PyObject>, HashSet<u64>)> {
|
||||
let mut modules: HashMap<u64, PyObject> = HashMap::new();
|
||||
|
@ -1039,14 +1105,22 @@ impl Nac3 {
|
|||
let getmodule_fn = PyModule::import(py, "inspect")?.getattr("getmodule")?;
|
||||
|
||||
for function in functions {
|
||||
let module = getmodule_fn.call1((function,))?.extract()?;
|
||||
let module: PyObject = getmodule_fn.call1((function,))?.extract()?;
|
||||
if !module.is_none(py) {
|
||||
modules.insert(id_fn.call1((&module,))?.extract()?, module);
|
||||
}
|
||||
}
|
||||
for class in classes {
|
||||
let module = getmodule_fn.call1((class,))?.extract()?;
|
||||
let module: PyObject = getmodule_fn.call1((class,))?.extract()?;
|
||||
if !module.is_none(py) {
|
||||
modules.insert(id_fn.call1((&module,))?.extract()?, module);
|
||||
}
|
||||
class_ids.insert(id_fn.call1((class,))?.extract()?);
|
||||
}
|
||||
for module in content_modules {
|
||||
let module: PyObject = module.extract()?;
|
||||
modules.insert(id_fn.call1((&module,))?.extract()?, module);
|
||||
}
|
||||
Ok((modules, class_ids))
|
||||
})?;
|
||||
|
||||
|
|
|
@ -1,14 +1,30 @@
|
|||
use inkwell::{
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering::Relaxed},
|
||||
Arc,
|
||||
},
|
||||
};
|
||||
|
||||
use itertools::Itertools;
|
||||
use parking_lot::RwLock;
|
||||
use pyo3::{
|
||||
types::{PyDict, PyTuple},
|
||||
PyAny, PyObject, PyResult, Python,
|
||||
};
|
||||
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
types::{NDArrayType, ProxyType},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
inkwell::{
|
||||
module::Linkage,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use nac3core::{
|
||||
codegen::{
|
||||
classes::{NDArrayType, ProxyType},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
nac3parser::ast::{self, StrRef},
|
||||
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
|
||||
toplevel::{
|
||||
helper::PrimDef,
|
||||
|
@ -20,21 +36,8 @@ use nac3core::{
|
|||
typedef::{into_var_map, iter_type_vars, Type, TypeEnum, TypeVar, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
use nac3parser::ast::{self, StrRef};
|
||||
use parking_lot::{Mutex, RwLock};
|
||||
use pyo3::{
|
||||
types::{PyDict, PyTuple},
|
||||
PyAny, PyObject, PyResult, Python,
|
||||
};
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering::Relaxed},
|
||||
Arc,
|
||||
},
|
||||
};
|
||||
|
||||
use crate::PrimitivePythonId;
|
||||
use super::PrimitivePythonId;
|
||||
|
||||
pub enum PrimitiveValue {
|
||||
I32(i32),
|
||||
|
@ -79,7 +82,6 @@ pub struct InnerResolver {
|
|||
pub id_to_primitive: RwLock<HashMap<u64, PrimitiveValue>>,
|
||||
pub field_to_val: RwLock<HashMap<ResolverField, Option<PyFieldHandle>>>,
|
||||
pub global_value_ids: Arc<RwLock<HashMap<u64, PyObject>>>,
|
||||
pub class_names: Mutex<HashMap<StrRef, Type>>,
|
||||
pub pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
|
||||
pub pyid_to_type: Arc<RwLock<HashMap<u64, Type>>>,
|
||||
pub primitive_ids: PrimitivePythonId,
|
||||
|
@ -133,6 +135,8 @@ impl StaticValue for PythonValue {
|
|||
format!("{}_const", self.id).as_str(),
|
||||
);
|
||||
global.set_constant(true);
|
||||
// Set linkage of global to private to avoid name collisions
|
||||
global.set_linkage(Linkage::Private);
|
||||
global.set_initializer(&ctx.ctx.const_struct(
|
||||
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
|
||||
false,
|
||||
|
@ -163,7 +167,7 @@ impl StaticValue for PythonValue {
|
|||
PrimitiveValue::Bool(val) => {
|
||||
ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
|
||||
}
|
||||
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(),
|
||||
PrimitiveValue::Str(val) => ctx.gen_string(generator, val).into(),
|
||||
});
|
||||
}
|
||||
if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
|
||||
|
@ -977,7 +981,7 @@ impl InnerResolver {
|
|||
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
|
||||
let val: String = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
|
||||
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into()))
|
||||
Ok(Some(ctx.gen_string(generator, val).into()))
|
||||
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
|
||||
let val: f64 = obj.extract().unwrap();
|
||||
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
|
||||
|
@ -1092,7 +1096,7 @@ impl InnerResolver {
|
|||
if self.global_value_ids.read().contains_key(&id) {
|
||||
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
|
||||
ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
)
|
||||
|
@ -1186,7 +1190,11 @@ impl InnerResolver {
|
|||
data_global.set_initializer(&data);
|
||||
|
||||
// create a global for the ndarray object and initialize it
|
||||
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[
|
||||
let value = ndarray_llvm_ty
|
||||
.as_base_type()
|
||||
.get_element_type()
|
||||
.into_struct_type()
|
||||
.const_named_struct(&[
|
||||
llvm_usize.const_int(ndarray_ndims, false).into(),
|
||||
shape_global
|
||||
.as_pointer_value()
|
||||
|
@ -1199,7 +1207,7 @@ impl InnerResolver {
|
|||
]);
|
||||
|
||||
let ndarray = ctx.module.add_global(
|
||||
ndarray_llvm_ty.as_underlying_type(),
|
||||
ndarray_llvm_ty.as_base_type().get_element_type().into_struct_type(),
|
||||
Some(AddressSpace::default()),
|
||||
&id_str,
|
||||
);
|
||||
|
@ -1466,6 +1474,7 @@ impl SymbolResolver for Resolver {
|
|||
&self,
|
||||
id: StrRef,
|
||||
_: &mut CodeGenContext<'ctx, '_>,
|
||||
_: &mut dyn CodeGenerator,
|
||||
) -> Option<ValueEnum<'ctx>> {
|
||||
let sym_value = {
|
||||
let id_to_val = self.0.id_to_pyval.read();
|
||||
|
|
|
@ -1,9 +1,12 @@
|
|||
use inkwell::{
|
||||
use itertools::Either;
|
||||
|
||||
use nac3core::{
|
||||
codegen::CodeGenContext,
|
||||
inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue},
|
||||
AddressSpace, AtomicOrdering,
|
||||
},
|
||||
};
|
||||
use itertools::Either;
|
||||
use nac3core::codegen::CodeGenContext;
|
||||
|
||||
/// Functions for manipulating the timeline.
|
||||
pub trait TimeFns {
|
||||
|
@ -31,7 +34,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
|
@ -80,7 +83,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
|
@ -109,7 +112,7 @@ impl TimeFns for NowPinningTimeFns64 {
|
|||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
|
@ -207,7 +210,7 @@ impl TimeFns for NowPinningTimeFns {
|
|||
.unwrap_or_else(|| ctx.module.add_global(i64_type, None, "now"));
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
|
@ -258,7 +261,7 @@ impl TimeFns for NowPinningTimeFns {
|
|||
let time_lo = ctx.builder.build_int_truncate(time, i32_type, "time.lo").unwrap();
|
||||
let now_hiptr = ctx
|
||||
.builder
|
||||
.build_bitcast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.build_bit_cast(now, i32_type.ptr_type(AddressSpace::default()), "now.hi.addr")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
|
|
|
@ -10,7 +10,6 @@ constant-optimization = ["fold"]
|
|||
fold = []
|
||||
|
||||
[dependencies]
|
||||
lazy_static = "1.5"
|
||||
parking_lot = "0.12"
|
||||
string-interner = "0.17"
|
||||
fxhash = "0.2"
|
||||
|
|
|
@ -5,14 +5,12 @@ pub use crate::location::Location;
|
|||
|
||||
use fxhash::FxBuildHasher;
|
||||
use parking_lot::{Mutex, MutexGuard};
|
||||
use std::{cell::RefCell, collections::HashMap, fmt};
|
||||
use std::{cell::RefCell, collections::HashMap, fmt, sync::LazyLock};
|
||||
use string_interner::{symbol::SymbolU32, DefaultBackend, StringInterner};
|
||||
|
||||
pub type Interner = StringInterner<DefaultBackend, FxBuildHasher>;
|
||||
lazy_static! {
|
||||
static ref INTERNER: Mutex<Interner> =
|
||||
Mutex::new(StringInterner::with_hasher(FxBuildHasher::default()));
|
||||
}
|
||||
static INTERNER: LazyLock<Mutex<Interner>> =
|
||||
LazyLock::new(|| Mutex::new(StringInterner::with_hasher(FxBuildHasher::default())));
|
||||
|
||||
thread_local! {
|
||||
static LOCAL_INTERNER: RefCell<HashMap<String, StrRef>> = RefCell::default();
|
||||
|
|
|
@ -1,10 +1,4 @@
|
|||
#![deny(
|
||||
future_incompatible,
|
||||
let_underscore,
|
||||
nonstandard_style,
|
||||
rust_2024_compatibility,
|
||||
clippy::all
|
||||
)]
|
||||
#![deny(future_incompatible, let_underscore, nonstandard_style, clippy::all)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
clippy::missing_errors_doc,
|
||||
|
@ -14,9 +8,6 @@
|
|||
clippy::wildcard_imports
|
||||
)]
|
||||
|
||||
#[macro_use]
|
||||
extern crate lazy_static;
|
||||
|
||||
mod ast_gen;
|
||||
mod constant;
|
||||
#[cfg(feature = "fold")]
|
||||
|
|
|
@ -1,26 +1,29 @@
|
|||
[features]
|
||||
test = []
|
||||
|
||||
[package]
|
||||
name = "nac3core"
|
||||
version = "0.1.0"
|
||||
authors = ["M-Labs"]
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["derive"]
|
||||
derive = ["dep:nac3core_derive"]
|
||||
no-escape-analysis = []
|
||||
|
||||
[dependencies]
|
||||
itertools = "0.13"
|
||||
crossbeam = "0.8"
|
||||
indexmap = "2.2"
|
||||
indexmap = "2.6"
|
||||
parking_lot = "0.12"
|
||||
rayon = "1.8"
|
||||
rayon = "1.10"
|
||||
nac3core_derive = { path = "nac3core_derive", optional = true }
|
||||
nac3parser = { path = "../nac3parser" }
|
||||
strum = "0.26.2"
|
||||
strum_macros = "0.26.4"
|
||||
strum = "0.26"
|
||||
strum_macros = "0.26"
|
||||
|
||||
[dependencies.inkwell]
|
||||
version = "0.4"
|
||||
version = "0.5"
|
||||
default-features = false
|
||||
features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
features = ["llvm14-0-prefer-dynamic", "target-x86", "target-arm", "target-riscv", "no-libffi-linking"]
|
||||
|
||||
[dev-dependencies]
|
||||
test-case = "1.2.0"
|
||||
|
|
|
@ -1,67 +1,63 @@
|
|||
use regex::Regex;
|
||||
use std::{
|
||||
env,
|
||||
fs::File,
|
||||
io::Write,
|
||||
path::{Path, PathBuf},
|
||||
path::Path,
|
||||
process::{Command, Stdio},
|
||||
};
|
||||
|
||||
const CMD_IRRT_CLANG: &str = "clang-irrt";
|
||||
const CMD_IRRT_CLANG_TEST: &str = "clang-irrt-test";
|
||||
const CMD_IRRT_LLVM_AS: &str = "llvm-as-irrt";
|
||||
use regex::Regex;
|
||||
|
||||
fn get_out_dir() -> PathBuf {
|
||||
PathBuf::from(env::var("OUT_DIR").unwrap())
|
||||
}
|
||||
fn main() {
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
let irrt_dir = Path::new("irrt");
|
||||
|
||||
fn get_irrt_dir() -> &'static Path {
|
||||
Path::new("irrt")
|
||||
}
|
||||
|
||||
/// Compile `irrt.cpp` for use in `src/codegen`
|
||||
fn compile_irrt_cpp() {
|
||||
let out_dir = get_out_dir();
|
||||
let irrt_dir = get_irrt_dir();
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
/*
|
||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||
* Compiling for WASM32 and filtering the output with regex is the closest we can get.
|
||||
*/
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
let mut flags = vec![];
|
||||
flags.push("--target=wasm32");
|
||||
flags.extend(&["-x", "c++"]);
|
||||
flags.extend(&["-fno-discard-value-names", "-fno-exceptions", "-fno-rtti"]);
|
||||
flags.push("-emit-llvm");
|
||||
flags.push("-S");
|
||||
flags.extend(&["-Wall", "-Wextra"]);
|
||||
flags.extend(&["-o", "-"]);
|
||||
flags.extend(&["-I", irrt_dir.to_str().unwrap()]);
|
||||
flags.push(irrt_cpp_path.to_str().unwrap());
|
||||
let mut flags: Vec<&str> = vec![
|
||||
"--target=wasm32",
|
||||
"-x",
|
||||
"c++",
|
||||
"-std=c++20",
|
||||
"-fno-discard-value-names",
|
||||
"-fno-exceptions",
|
||||
"-fno-rtti",
|
||||
"-emit-llvm",
|
||||
"-S",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-o",
|
||||
"-",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
match env::var("PROFILE").as_deref() {
|
||||
Ok("debug") => {
|
||||
flags.push("-O0");
|
||||
flags.push("-DIRRT_DEBUG");
|
||||
flags.push("-DIRRT_DEBUG_ASSERT");
|
||||
}
|
||||
Ok("release") => {
|
||||
flags.push("-O3");
|
||||
}
|
||||
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
|
||||
};
|
||||
}
|
||||
|
||||
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
|
||||
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||
|
||||
// Compile IRRT and capture the LLVM IR output
|
||||
let output = Command::new(CMD_IRRT_CLANG)
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(flags)
|
||||
.output()
|
||||
.map(|o| {
|
||||
.inspect(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
|
@ -102,9 +98,7 @@ fn compile_irrt_cpp() {
|
|||
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||
}
|
||||
|
||||
// Assemble the emitted and filtered IR to .bc
|
||||
// That .bc will be integrated into nac3core's codegen
|
||||
let mut llvm_as = Command::new(CMD_IRRT_LLVM_AS)
|
||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||
.stdin(Stdio::piped())
|
||||
.arg("-o")
|
||||
.arg(out_dir.join("irrt.bc"))
|
||||
|
@ -113,48 +107,3 @@ fn compile_irrt_cpp() {
|
|||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||
assert!(llvm_as.wait().unwrap().success());
|
||||
}
|
||||
|
||||
/// Compile `irrt_test.cpp` for testing
|
||||
fn compile_irrt_test_cpp() {
|
||||
let out_dir = get_out_dir();
|
||||
let irrt_dir = get_irrt_dir();
|
||||
|
||||
let exe_path = out_dir.join("irrt_test.out"); // Output path of the compiled test executable
|
||||
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
|
||||
let flags: &[&str] = &[
|
||||
irrt_test_cpp_path.to_str().unwrap(),
|
||||
"-x",
|
||||
"c++",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
"-g",
|
||||
"-fno-discard-value-names",
|
||||
"-O0",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-Werror=return-type",
|
||||
"-lm", // for `tgamma()`, `lgamma()`
|
||||
"-o",
|
||||
exe_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
Command::new(CMD_IRRT_CLANG_TEST)
|
||||
.args(flags)
|
||||
.output()
|
||||
.map(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
|
||||
}
|
||||
|
||||
fn main() {
|
||||
compile_irrt_cpp();
|
||||
|
||||
// https://github.com/rust-lang/cargo/issues/2549
|
||||
// `cargo test -F test` to also build `irrt_test.cpp
|
||||
if cfg!(feature = "test") {
|
||||
compile_irrt_test_cpp();
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,10 +1,5 @@
|
|||
#define IRRT_DEFINE_TYPEDEF_INTS
|
||||
#include <irrt_everything.hpp>
|
||||
|
||||
/*
|
||||
* All IRRT implementations.
|
||||
*
|
||||
* We don't have pre-compiled objects, so we are writing all implementations in
|
||||
* headers and concatenate them with `#include` into one massive source file that
|
||||
* contains all the IRRT stuff.
|
||||
*/
|
||||
#include "irrt/exception.hpp"
|
||||
#include "irrt/list.hpp"
|
||||
#include "irrt/math.hpp"
|
||||
#include "irrt/ndarray.hpp"
|
||||
#include "irrt/slice.hpp"
|
||||
|
|
|
@ -1,349 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/util.hpp>
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndexInt = uint32_t;
|
||||
// The type of an index or a value describing the length of a
|
||||
// range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len,
|
||||
SizeT begin_idx, SizeT end_idx) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims,
|
||||
SizeT num_dims, NDIndexInt* idxs) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims,
|
||||
const NDIndexInt* indices,
|
||||
SizeT num_indices) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims, SizeT lhs_ndims,
|
||||
const SizeT* rhs_dims, SizeT rhs_ndims,
|
||||
SizeT* out_dims) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT* lhs_dim_sz =
|
||||
i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT* rhs_dim_sz =
|
||||
i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
|
||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndexInt* in_idx,
|
||||
NDIndexInt* out_idx) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) { \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t);
|
||||
DEF_nac3_int_exp_(int64_t);
|
||||
DEF_nac3_int_exp_(uint32_t);
|
||||
DEF_nac3_int_exp_(uint64_t);
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end,
|
||||
const SliceIndex step) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else
|
||||
// len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
|
||||
uint8_t* dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
|
||||
SliceIndex src_end, SliceIndex src_step, uint8_t* src_arr,
|
||||
SliceIndex src_arr_len, const SliceIndex size) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support
|
||||
* extending list
|
||||
*/
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of
|
||||
* the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len =
|
||||
(src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len =
|
||||
(dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(dest_arr + dest_start * size,
|
||||
src_arr + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr) &&
|
||||
!(max(dest_start, dest_end) < min(src_start, src_end) ||
|
||||
max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca) {
|
||||
uint8_t* tmp =
|
||||
reinterpret_cast<uint8_t*>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous
|
||||
* alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size,
|
||||
src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size + size + size + size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) { return __builtin_isinf(x); }
|
||||
|
||||
int32_t __nac3_isnan(double x) { return __builtin_isnan(x); }
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len,
|
||||
uint32_t begin_idx, uint32_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
|
||||
end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(const uint64_t* list_data,
|
||||
uint64_t list_len, uint64_t begin_idx,
|
||||
uint64_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx,
|
||||
end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims,
|
||||
uint32_t num_dims, NDIndexInt* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims,
|
||||
uint64_t num_dims, NDIndexInt* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims,
|
||||
const NDIndexInt* indices,
|
||||
uint32_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
|
||||
num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims,
|
||||
const NDIndexInt* indices,
|
||||
uint64_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices,
|
||||
num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims, uint32_t lhs_ndims,
|
||||
const uint32_t* rhs_dims, uint32_t rhs_ndims,
|
||||
uint32_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
|
||||
rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t* rhs_dims,
|
||||
uint64_t rhs_ndims, uint64_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims,
|
||||
rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndexInt* in_idx,
|
||||
NDIndexInt* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
|
||||
out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndexInt* in_idx,
|
||||
NDIndexInt* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx,
|
||||
out_idx);
|
||||
}
|
||||
} // extern "C"
|
|
@ -1,9 +1,9 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
template <typename SizeT>
|
||||
template<typename SizeT>
|
||||
struct CSlice {
|
||||
uint8_t* base;
|
||||
void* base;
|
||||
SizeT len;
|
||||
};
|
|
@ -1,15 +1,25 @@
|
|||
#pragma once
|
||||
|
||||
// Set in nac3core/build.rs
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||
#else
|
||||
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||
#endif
|
||||
|
||||
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
|
||||
raise_exception(SizeT, EXN_ASSERTION_ERROR, \
|
||||
"IRRT debug assert failed: " msg, param1, param2, param3);
|
||||
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3)
|
||||
|
||||
#define debug_assert_eq(SizeT, lhs, rhs) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) { \
|
||||
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
|
||||
if ((lhs) != (rhs)) { \
|
||||
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define debug_assert(SizeT, expr) \
|
||||
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) { \
|
||||
if constexpr (IRRT_DEBUG_ASSERT_BOOL) { \
|
||||
if (!(expr)) { \
|
||||
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
|
||||
} \
|
||||
}
|
|
@ -1,43 +1,37 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/cslice.hpp>
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/util.hpp>
|
||||
#include "irrt/cslice.hpp"
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
/**
|
||||
* @brief The int type of ARTIQ exception IDs.
|
||||
*
|
||||
* It is always `int32_t`
|
||||
*/
|
||||
typedef int32_t ExceptionId;
|
||||
using ExceptionId = int32_t;
|
||||
|
||||
/*
|
||||
* A set of exceptions IRRT can use.
|
||||
* Set of exceptions C++ IRRT can use.
|
||||
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
|
||||
* All exception IDs are initialized by `setup_irrt_exceptions`.
|
||||
*/
|
||||
#ifdef IRRT_TESTING
|
||||
// If we are doing IRRT tests (i.e., running `cargo test -F test`), define them with a fake set of IDs.
|
||||
ExceptionId EXN_INDEX_ERROR = 0;
|
||||
ExceptionId EXN_VALUE_ERROR = 1;
|
||||
ExceptionId EXN_ASSERTION_ERROR = 2;
|
||||
ExceptionId EXN_RUNTIME_ERROR = 3;
|
||||
ExceptionId EXN_TYPE_ERROR = 4;
|
||||
#else
|
||||
extern "C" {
|
||||
ExceptionId EXN_INDEX_ERROR;
|
||||
ExceptionId EXN_VALUE_ERROR;
|
||||
ExceptionId EXN_ASSERTION_ERROR;
|
||||
ExceptionId EXN_RUNTIME_ERROR;
|
||||
ExceptionId EXN_TYPE_ERROR;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Extern function to `__nac3_raise`
|
||||
*
|
||||
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||
*/
|
||||
extern "C" void __nac3_raise(void* err);
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief NAC3's Exception struct
|
||||
*/
|
||||
template <typename SizeT>
|
||||
template<typename SizeT>
|
||||
struct Exception {
|
||||
ExceptionId id;
|
||||
CSlice<SizeT> filename;
|
||||
|
@ -47,51 +41,36 @@ struct Exception {
|
|||
CSlice<SizeT> msg;
|
||||
int64_t params[3];
|
||||
};
|
||||
} // namespace
|
||||
|
||||
// Declare/Define `__nac3_raise`
|
||||
#ifdef IRRT_TESTING
|
||||
#include <cstdio>
|
||||
void __nac3_raise(void* err) {
|
||||
// TODO: Print the error content?
|
||||
printf("__nac3_raise called. Exiting...\n");
|
||||
exit(1);
|
||||
}
|
||||
#else
|
||||
/**
|
||||
* @brief Extern function to `__nac3_raise`
|
||||
*
|
||||
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
|
||||
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
|
||||
*/
|
||||
extern "C" void __nac3_raise(void* err);
|
||||
#endif
|
||||
constexpr int64_t NO_PARAM = 0;
|
||||
|
||||
namespace {
|
||||
const int64_t NO_PARAM = 0;
|
||||
|
||||
// Helper function to raise an exception with `__nac3_raise`
|
||||
// Do not use this function directly. See `raise_exception`.
|
||||
template <typename SizeT>
|
||||
void _raise_exception_helper(ExceptionId id, const char* filename, int32_t line,
|
||||
const char* function, const char* msg,
|
||||
int64_t param0, int64_t param1, int64_t param2) {
|
||||
template<typename SizeT>
|
||||
void _raise_exception_helper(ExceptionId id,
|
||||
const char* filename,
|
||||
int32_t line,
|
||||
const char* function,
|
||||
const char* msg,
|
||||
int64_t param0,
|
||||
int64_t param1,
|
||||
int64_t param2) {
|
||||
Exception<SizeT> e = {
|
||||
.id = id,
|
||||
.filename = {.base = (uint8_t*)filename,
|
||||
.len = (int32_t)cstr_utils::length(filename)},
|
||||
.filename = {.base = reinterpret_cast<void*>(const_cast<char*>(filename)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(filename))},
|
||||
.line = line,
|
||||
.column = 0,
|
||||
.function = {.base = (uint8_t*)function,
|
||||
.len = (int32_t)cstr_utils::length(function)},
|
||||
.msg = {.base = (uint8_t*)msg, .len = (int32_t)cstr_utils::length(msg)},
|
||||
.function = {.base = reinterpret_cast<void*>(const_cast<char*>(function)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(function))},
|
||||
.msg = {.base = reinterpret_cast<void*>(const_cast<char*>(msg)),
|
||||
.len = static_cast<SizeT>(__builtin_strlen(msg))},
|
||||
};
|
||||
e.params[0] = param0;
|
||||
e.params[1] = param1;
|
||||
e.params[2] = param2;
|
||||
__nac3_raise((void*)&e);
|
||||
__nac3_raise(reinterpret_cast<void*>(&e));
|
||||
__builtin_unreachable();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
/**
|
||||
* @brief Raise an exception with location details (location in the IRRT source files).
|
||||
|
@ -99,25 +78,8 @@ void _raise_exception_helper(ExceptionId id, const char* filename, int32_t line,
|
|||
* @param id The ID of the exception to raise.
|
||||
* @param msg A global constant C-string of the error message.
|
||||
*
|
||||
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
|
||||
* `param0` to `param2` are optional format arguments of `msg`. They should be set to
|
||||
* `NO_PARAM` to indicate they are unused.
|
||||
*/
|
||||
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, \
|
||||
param0, param1, param2)
|
||||
|
||||
/**
|
||||
* @brief Throw a dummy error for testing.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void throw_dummy_error() {
|
||||
raise_exception(SizeT, EXN_RUNTIME_ERROR, "dummy error", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_throw_dummy_error() { throw_dummy_error<int32_t>(); }
|
||||
|
||||
void __nac3_throw_dummy_error64() { throw_dummy_error<int64_t>(); }
|
||||
}
|
||||
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
|
||||
|
|
|
@ -1,12 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
// This is made toggleable since `irrt_test.cpp` itself would include
|
||||
// headers that define these typedefs
|
||||
#ifdef IRRT_DEFINE_TYPEDEF_INTS
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
#endif
|
|
@ -0,0 +1,27 @@
|
|||
#pragma once
|
||||
|
||||
#if __STDC_VERSION__ >= 202000
|
||||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
#else
|
||||
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wdeprecated-type"
|
||||
using int8_t = _ExtInt(8);
|
||||
using uint8_t = unsigned _ExtInt(8);
|
||||
using int32_t = _ExtInt(32);
|
||||
using uint32_t = unsigned _ExtInt(32);
|
||||
using int64_t = _ExtInt(64);
|
||||
using uint64_t = unsigned _ExtInt(64);
|
||||
#pragma clang diagnostic pop
|
||||
|
||||
#endif
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
|
@ -1,56 +1,81 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief A list in NAC3.
|
||||
*
|
||||
* The `items` field is opaque. You must rely on external contexts to
|
||||
* know how to interpret it.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
struct List {
|
||||
uint8_t* items;
|
||||
SizeT len;
|
||||
};
|
||||
|
||||
namespace list {
|
||||
template <typename SizeT>
|
||||
void slice_assign(List<SizeT>* dst, List<SizeT>* src, SizeT itemsize,
|
||||
UserSlice* user_slice) {
|
||||
Slice slice = user_slice->indices_checked<SizeT>(dst->len);
|
||||
|
||||
// NOTE: Python does not have this restriction.
|
||||
if (slice.len() != src->len) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"List destination has {} item(s), but source has {} "
|
||||
"item(s). The lengths must match.",
|
||||
slice.len(), src->len, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Look into how the original implementation was implemented and optimized.
|
||||
SizeT dst_i = slice.start;
|
||||
SizeT src_i = 0;
|
||||
while (src_i < slice.len()) {
|
||||
__builtin_memcpy(dst->items + dst_i, src->items + src_i, itemsize);
|
||||
|
||||
src_i += 1;
|
||||
dst_i += slice.step;
|
||||
}
|
||||
}
|
||||
} // namespace list
|
||||
} // namespace
|
||||
#include "irrt/int_types.hpp"
|
||||
#include "irrt/math_util.hpp"
|
||||
|
||||
extern "C" {
|
||||
void __nac3_list_slice_assign(List<int32_t>* dst, List<int32_t>* src,
|
||||
int32_t itemsize, UserSlice* user_slice) {
|
||||
list::slice_assign(dst, src, itemsize, user_slice);
|
||||
}
|
||||
|
||||
void __nac3_list_slice_assign64(List<int64_t>* dst, List<int64_t>* src,
|
||||
int64_t itemsize, UserSlice* user_slice) {
|
||||
list::slice_assign(dst, src, itemsize, user_slice);
|
||||
}
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
void* dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
void* src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0)
|
||||
return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_start * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_start * size, src_len * size);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + (dest_start + src_len) * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca = (dest_arr == src_arr)
|
||||
&& !(max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end));
|
||||
if (need_alloca) {
|
||||
void* tmp = __builtin_alloca(src_arr_len * size);
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind, static_cast<uint8_t*>(src_arr) + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 4,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * 8,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(src_arr) + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(static_cast<uint8_t*>(dest_arr) + dest_ind * size,
|
||||
static_cast<uint8_t*>(dest_arr) + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
} // extern "C"
|
|
@ -0,0 +1,93 @@
|
|||
#pragma once
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template<typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) { \
|
||||
return __nac3_int_exp_impl(base, exp); \
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
||||
// Putting semicolons here to make clang-format not reformat this into
|
||||
// a stair shape.
|
||||
DEF_nac3_int_exp_(int32_t);
|
||||
DEF_nac3_int_exp_(int64_t);
|
||||
DEF_nac3_int_exp_(uint32_t);
|
||||
DEF_nac3_int_exp_(uint64_t);
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
} // namespace
|
|
@ -0,0 +1,13 @@
|
|||
#pragma once
|
||||
|
||||
namespace {
|
||||
template<typename T>
|
||||
const T& max(const T& a, const T& b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
const T& min(const T& a, const T& b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
} // namespace
|
|
@ -0,0 +1,144 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
namespace {
|
||||
template<typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(const SizeT* list_data, SizeT list_len, SizeT begin_idx, SizeT end_idx) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(SizeT index, const SizeT* dims, SizeT num_dims, NDIndex* idxs) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(const SizeT* dims, SizeT num_dims, const NDIndex* indices, SizeT num_indices) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(const SizeT* lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT* rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT* out_dims) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(const SizeT* src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
uint32_t __nac3_ndarray_calc_size(const uint32_t* list_data, uint32_t list_len, uint32_t begin_idx, uint32_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
__nac3_ndarray_calc_size64(const uint64_t* list_data, uint64_t list_len, uint64_t begin_idx, uint64_t end_idx) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(uint32_t index, const uint32_t* dims, uint32_t num_dims, NDIndex* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(uint64_t index, const uint64_t* dims, uint64_t num_dims, NDIndex* idxs) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t
|
||||
__nac3_ndarray_flatten_index(const uint32_t* dims, uint32_t num_dims, const NDIndex* indices, uint32_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t
|
||||
__nac3_ndarray_flatten_index64(const uint64_t* dims, uint64_t num_dims, const NDIndex* indices, uint64_t num_indices) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(const uint32_t* lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t* rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(const uint64_t* lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t* rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t* out_dims) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(const uint32_t* src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(const uint64_t* src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
} // namespace
|
|
@ -1,119 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace array {
|
||||
// TODO: Document me
|
||||
template <typename SizeT>
|
||||
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT>* list,
|
||||
SizeT ndims, SizeT* shape) {
|
||||
if (shape[axis] == -1) {
|
||||
// Dimension is unspecified. Set it.
|
||||
shape[axis] = list->len;
|
||||
} else {
|
||||
// Dimension is specified. Check.
|
||||
if (shape[axis] != list->len) {
|
||||
// Mismatch, throw an error.
|
||||
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"The requested array has an inhomogenous shape "
|
||||
"after {0} dimension(s).",
|
||||
axis, shape[axis], list->len);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndims) {
|
||||
// `list` has type `list[ItemType]`
|
||||
// Do nothing
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims,
|
||||
shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT>
|
||||
void set_and_validate_list_shape(List<SizeT>* list, SizeT ndims, SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
|
||||
}
|
||||
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT>
|
||||
void write_list_to_array_helper(SizeT axis, SizeT* index, List<SizeT>* list,
|
||||
NDArray<SizeT>* ndarray) {
|
||||
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
|
||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||
if (!ndarray::basic::is_c_contiguous(ndarray)) {
|
||||
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0],
|
||||
ndarray->strides[1], NO_PARAM);
|
||||
}
|
||||
}
|
||||
|
||||
if (axis + 1 == ndarray->ndims) {
|
||||
// `list` has type `list[ItemType]`
|
||||
// `ndarray` is contiguous, so we can do this, and this is fast.
|
||||
uint8_t* dst = ndarray->data + (ndarray->itemsize * (*index));
|
||||
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
|
||||
*index += list->len;
|
||||
} else {
|
||||
// `list` has type `list[list[...]]`
|
||||
List<SizeT>** lists = (List<SizeT>**)(list->items);
|
||||
|
||||
for (SizeT i = 0; i < list->len; i++) {
|
||||
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i],
|
||||
ndarray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Document me
|
||||
template <typename SizeT>
|
||||
void write_list_to_array(List<SizeT>* list, NDArray<SizeT>* ndarray) {
|
||||
// done after set_and_validate(list, ndims, shape), list is well-formed
|
||||
// ndarray->data is allocated and owned
|
||||
// ndarray->itemsize is set
|
||||
// ndarray->ndims is set
|
||||
// ndarray->shape is set
|
||||
// ndarray->strides is ???
|
||||
SizeT index = 0;
|
||||
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
|
||||
}
|
||||
} // namespace array
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::array;
|
||||
|
||||
void __nac3_array_set_and_validate_list_shape(List<int32_t>* list,
|
||||
int32_t ndims, int32_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_array_set_and_validate_list_shape64(List<int64_t>* list,
|
||||
int64_t ndims, int64_t* shape) {
|
||||
set_and_validate_list_shape(list, ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_array_write_list_to_array(List<int32_t>* list,
|
||||
NDArray<int32_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
|
||||
void __nac3_array_write_list_to_array64(List<int64_t>* list,
|
||||
NDArray<int64_t>* ndarray) {
|
||||
write_list_to_array(list, ndarray);
|
||||
}
|
||||
}
|
|
@ -1,345 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace basic {
|
||||
/**
|
||||
* @brief Asserts that `shape` does not contain negative dimensions.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape to check on
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void assert_shape_no_negative(SizeT ndims, const SizeT* shape) {
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
if (shape[axis] < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"negative dimensions are not allowed; axis {0} "
|
||||
"has dimension {1}",
|
||||
axis, shape[axis], NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
|
||||
*
|
||||
* This function throws error messages for output shape mismatches.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT* ndarray_shape,
|
||||
SizeT output_ndims, const SizeT* output_shape) {
|
||||
if (ndarray_ndims != output_ndims) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(
|
||||
SizeT, EXN_VALUE_ERROR,
|
||||
"Cannot write output of ndims {0} to an ndarray with ndims {1}",
|
||||
output_ndims, ndarray_ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndarray_ndims; axis++) {
|
||||
if (ndarray_shape[axis] != output_shape[axis]) {
|
||||
// There is no corresponding NumPy error message like this.
|
||||
raise_exception(
|
||||
SizeT, EXN_VALUE_ERROR,
|
||||
"Mismatched dimensions on axis {0}, output has "
|
||||
"dimension {1}, but destination ndarray has dimension {2}.",
|
||||
axis, output_shape[axis], ndarray_shape[axis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Returns the number of elements of an ndarray given its shape.
|
||||
*
|
||||
* @param ndims Number of dimensions in `shape`
|
||||
* @param shape The shape of the ndarray
|
||||
*/
|
||||
template <typename SizeT>
|
||||
SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT axis = 0; axis < ndims; axis++) size *= shape[axis];
|
||||
return size;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
|
||||
*
|
||||
* @param ndims Number of elements in `shape` and `indices`
|
||||
* @param shape The shape of the ndarray
|
||||
* @param indices The returned indices indexing the ndarray with shape `shape`.
|
||||
* @param nth The index of the element of interest.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices,
|
||||
SizeT nth) {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
SizeT dim = shape[axis];
|
||||
|
||||
indices[axis] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the number of elements of an `ndarray`
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.size`
|
||||
*/
|
||||
template <typename SizeT>
|
||||
SizeT size(const NDArray<SizeT>* ndarray) {
|
||||
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return of the number of its content of an `ndarray`.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.nbytes`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
SizeT nbytes(const NDArray<SizeT>* ndarray) {
|
||||
return size(ndarray) * ndarray->itemsize;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
|
||||
*
|
||||
* This function corresponds to `<an_ndarray>.__len__`.
|
||||
*
|
||||
* @param dst_length The returned result
|
||||
*/
|
||||
template <typename SizeT>
|
||||
SizeT len(const NDArray<SizeT>* ndarray) {
|
||||
// numpy prohibits `__len__` on unsized objects
|
||||
if (ndarray->ndims == 0) {
|
||||
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
} else {
|
||||
return ndarray->shape[0];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
|
||||
*
|
||||
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
*/
|
||||
template <typename SizeT>
|
||||
bool is_c_contiguous(const NDArray<SizeT>* ndarray) {
|
||||
// Other references:
|
||||
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
|
||||
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
|
||||
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
|
||||
|
||||
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
|
||||
//
|
||||
// The traditional rule is that for an array to be flagged as C contiguous,
|
||||
// the following must hold:
|
||||
//
|
||||
// strides[-1] == itemsize
|
||||
// strides[i] == shape[i+1] * strides[i + 1]
|
||||
// [...]
|
||||
// According to these rules, a 0- or 1-dimensional array is either both
|
||||
// C- and F-contiguous, or neither; and an array with 2+ dimensions
|
||||
// can be C- or F- contiguous, or neither, but not both. Though there
|
||||
// there are exceptions for arrays with zero or one item, in the first
|
||||
// case the check is relaxed up to and including the first dimension
|
||||
// with shape[i] == 0. In the second case `strides == itemsize` will
|
||||
// can be true for all dimensions and both flags are set.
|
||||
|
||||
if (ndarray->ndims == 0) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 1; i < ndarray->ndims; i++) {
|
||||
SizeT axis_i = ndarray->ndims - i - 1;
|
||||
if (ndarray->strides[axis_i] !=
|
||||
ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the element indexed by `indices`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
uint8_t* get_pelement_by_indices(const NDArray<SizeT>* ndarray,
|
||||
const SizeT* indices) {
|
||||
uint8_t* element = ndarray->data;
|
||||
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
|
||||
element += indices[dim_i] * ndarray->strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Convenience function. Like `get_pelement_by_indices` but
|
||||
* reinterprets the element pointer.
|
||||
*/
|
||||
template <typename SizeT, typename T>
|
||||
T* get_ptr(const NDArray<SizeT>* ndarray, const SizeT* indices) {
|
||||
return (T*)get_pelement_by_indices(ndarray, indices);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
|
||||
*
|
||||
* This function does no bound check.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
uint8_t* get_nth_pelement(const NDArray<SizeT>* ndarray, SizeT nth) {
|
||||
uint8_t* element = ndarray->data;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
SizeT dim = ndarray->shape[axis];
|
||||
element += ndarray->strides[axis] * (nth % dim);
|
||||
nth /= dim;
|
||||
}
|
||||
return element;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update the strides of an ndarray given an ndarray `shape`
|
||||
* and assuming that the ndarray is fully c-contagious.
|
||||
*
|
||||
* You might want to read https://ajcr.net/stride-guide-part-1/.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void set_strides_by_shape(NDArray<SizeT>* ndarray) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndarray->ndims; i++) {
|
||||
SizeT axis = ndarray->ndims - i - 1;
|
||||
ndarray->strides[axis] = stride_product * ndarray->itemsize;
|
||||
stride_product *= ndarray->shape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set an element in `ndarray`.
|
||||
*
|
||||
* @param pelement Pointer to the element in `ndarray` to be set.
|
||||
* @param pvalue Pointer to the value `pelement` will be set to.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void set_pelement_value(NDArray<SizeT>* ndarray, uint8_t* pelement,
|
||||
const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
|
||||
*
|
||||
* Both ndarrays will be viewed in their flatten views when copying the elements.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void copy_data(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// TODO: Make this faster with memcpy
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
|
||||
|
||||
for (SizeT i = 0; i < size(src_ndarray); i++) {
|
||||
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
|
||||
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
|
||||
ndarray::basic::set_pelement_value(dst_ndarray, dst_element,
|
||||
src_element);
|
||||
}
|
||||
}
|
||||
} // namespace basic
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::basic;
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims,
|
||||
int32_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims,
|
||||
int64_t* shape) {
|
||||
assert_shape_no_negative(ndims, shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims,
|
||||
const int32_t* ndarray_shape,
|
||||
int32_t output_ndims,
|
||||
const int32_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
|
||||
output_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_util_assert_output_shape_same64(
|
||||
int64_t ndarray_ndims, const int64_t* ndarray_shape, int64_t output_ndims,
|
||||
const int64_t* output_shape) {
|
||||
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims,
|
||||
output_shape);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return size(ndarray);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t>* ndarray) {
|
||||
return nbytes(ndarray);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_len(NDArray<int32_t>* ndarray) { return len(ndarray); }
|
||||
|
||||
int64_t __nac3_ndarray_len64(NDArray<int64_t>* ndarray) { return len(ndarray); }
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t>* ndarray) {
|
||||
return is_c_contiguous(ndarray);
|
||||
}
|
||||
|
||||
uint8_t* __nac3_ndarray_get_nth_pelement(const NDArray<int32_t>* ndarray,
|
||||
int32_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
uint8_t* __nac3_ndarray_get_nth_pelement64(const NDArray<int64_t>* ndarray,
|
||||
int64_t nth) {
|
||||
return get_nth_pelement(ndarray, nth);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
set_strides_by_shape(ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data(NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_copy_data64(NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
copy_data(src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -1,171 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace {
|
||||
template <typename SizeT>
|
||||
struct ShapeEntry {
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace broadcast {
|
||||
/**
|
||||
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
|
||||
*
|
||||
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
*/
|
||||
template <typename SizeT>
|
||||
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT* target_shape,
|
||||
SizeT src_ndims, const SizeT* src_shape) {
|
||||
if (src_ndims > target_ndims) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (SizeT i = 0; i < src_ndims; i++) {
|
||||
SizeT target_dim = target_shape[target_ndims - i - 1];
|
||||
SizeT src_dim = src_shape[src_ndims - i - 1];
|
||||
if (!(src_dim == 1 || target_dim == src_dim)) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs `np.broadcast_shapes(<shapes>)`
|
||||
*
|
||||
* @param num_shapes Number of entries in `shapes`
|
||||
* @param shapes The list of shape to do `np.broadcast_shapes` on.
|
||||
* @param dst_ndims The length of `dst_shape`.
|
||||
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
|
||||
* for this function since they should already know in order to allocate `dst_shape` in the first place.
|
||||
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
|
||||
* of `np.broadcast_shapes` and write it here.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT>* shapes,
|
||||
SizeT dst_ndims, SizeT* dst_shape) {
|
||||
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++) {
|
||||
dst_shape[dst_axis] = 1;
|
||||
}
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
SizeT max_ndims_found = 0;
|
||||
#endif
|
||||
|
||||
for (SizeT i = 0; i < num_shapes; i++) {
|
||||
ShapeEntry<SizeT> entry = shapes[i];
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert(SizeT, entry.ndims <= dst_ndims);
|
||||
|
||||
#ifdef IRRT_DEBUG_ASSERT
|
||||
max_ndims_found = max(max_ndims_found, entry.ndims);
|
||||
#endif
|
||||
|
||||
for (SizeT j = 0; j < entry.ndims; j++) {
|
||||
SizeT entry_axis = entry.ndims - j - 1;
|
||||
SizeT dst_axis = dst_ndims - j - 1;
|
||||
|
||||
SizeT entry_dim = entry.shape[entry_axis];
|
||||
SizeT dst_dim = dst_shape[dst_axis];
|
||||
|
||||
if (dst_dim == 1) {
|
||||
dst_shape[dst_axis] = entry_dim;
|
||||
} else if (entry_dim == 1 || entry_dim == dst_dim) {
|
||||
// Do nothing
|
||||
} else {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"shape mismatch: objects cannot be broadcast "
|
||||
"to a single shape.",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
|
||||
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
|
||||
*
|
||||
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
|
||||
* and return the result by modifying `dst_ndarray`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
|
||||
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is unchanged.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void broadcast_to(const NDArray<SizeT>* src_ndarray,
|
||||
NDArray<SizeT>* dst_ndarray) {
|
||||
if (!ndarray::broadcast::can_broadcast_shape_to(
|
||||
dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
|
||||
src_ndarray->shape)) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"operands could not be broadcast together", NO_PARAM,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
for (SizeT i = 0; i < dst_ndarray->ndims; i++) {
|
||||
SizeT src_axis = src_ndarray->ndims - i - 1;
|
||||
SizeT dst_axis = dst_ndarray->ndims - i - 1;
|
||||
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 &&
|
||||
dst_ndarray->shape[dst_axis] != 1)) {
|
||||
// Freeze the steps in-place
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
} else {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace broadcast
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::broadcast;
|
||||
|
||||
void __nac3_ndarray_broadcast_to(NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_to64(NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
broadcast_to(src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes,
|
||||
const ShapeEntry<int32_t>* shapes,
|
||||
int32_t dst_ndims, int32_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes,
|
||||
const ShapeEntry<int64_t>* shapes,
|
||||
int64_t dst_ndims, int64_t* dst_shape) {
|
||||
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
|
||||
}
|
||||
}
|
|
@ -1,44 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief The NDArray object
|
||||
*
|
||||
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
*/
|
||||
template <typename SizeT>
|
||||
struct NDArray {
|
||||
/**
|
||||
* @brief The underlying data this `ndarray` is pointing to.
|
||||
*
|
||||
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
|
||||
*/
|
||||
uint8_t* data;
|
||||
|
||||
/**
|
||||
* @brief The number of bytes of a single element in `data`.
|
||||
*/
|
||||
SizeT itemsize;
|
||||
|
||||
/**
|
||||
* @brief The number of dimensions of this shape.
|
||||
*/
|
||||
SizeT ndims;
|
||||
|
||||
/**
|
||||
* @brief The NDArray shape, with length equal to `ndims`.
|
||||
*
|
||||
* Note that it may contain 0.
|
||||
*/
|
||||
SizeT* shape;
|
||||
|
||||
/**
|
||||
* @brief Array strides, with length equal to `ndims`
|
||||
*
|
||||
* The stride values are in units of bytes, not number of elements.
|
||||
*
|
||||
* Note that `strides` can have negative values.
|
||||
*/
|
||||
SizeT* strides;
|
||||
};
|
||||
} // namespace
|
|
@ -1,221 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
namespace {
|
||||
typedef uint8_t NDIndexType;
|
||||
|
||||
/**
|
||||
* @brief A single element index
|
||||
*
|
||||
* `data` points to a `SliceIndex`.
|
||||
*/
|
||||
|
||||
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
|
||||
/**
|
||||
* @brief A slice index
|
||||
*
|
||||
* `data` points to a `UserRange`.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
|
||||
|
||||
/**
|
||||
* @brief `np.newaxis` / `None`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
|
||||
|
||||
/**
|
||||
* @brief `Ellipsis` / `...`
|
||||
*
|
||||
* `data` is unused.
|
||||
*/
|
||||
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
|
||||
|
||||
/**
|
||||
* @brief An index used in ndarray indexing
|
||||
*/
|
||||
struct NDIndex {
|
||||
/**
|
||||
* @brief Enum tag to specify the type of index.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
NDIndexType type;
|
||||
|
||||
/**
|
||||
* @brief The accompanying data associated with `type`.
|
||||
*
|
||||
* Please see comments of each enum constant.
|
||||
*/
|
||||
uint8_t* data;
|
||||
};
|
||||
} // namespace
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace indexing {
|
||||
/**
|
||||
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
|
||||
*
|
||||
* This is function very similar to performing `dst_ndarray = src_ndarray[indexes]` in Python (where the variables
|
||||
* can all be found in the parameter of this function).
|
||||
*
|
||||
* In other words, this function takes in an ndarray (`src_ndarray`), index it with `indexes`, and return the
|
||||
* indexed array (by writing the result to `dst_ndarray`).
|
||||
*
|
||||
* This function also does proper assertions on `indexes`.
|
||||
*
|
||||
* # Notes on `dst_ndarray`
|
||||
* The caller is responsible for allocating space for the resulting ndarray.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
|
||||
* indexing `src_ndarray` with `indexes`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged.
|
||||
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
|
||||
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
|
||||
*
|
||||
* @param indexes Indexes to index `src_ndarray`, ordered in the same way you would write them in Python.
|
||||
* @param src_ndarray The NDArray to be indexed.
|
||||
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void index(SizeT num_indexes, const NDIndex* indexes,
|
||||
const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray) {
|
||||
// First, validate `indexes`.
|
||||
|
||||
// Expected value of `dst_ndarray->ndims`.
|
||||
SizeT expected_dst_ndims = src_ndarray->ndims;
|
||||
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
|
||||
SizeT num_indexed = 0;
|
||||
// There may be ellipsis `...` in `indexes`. There can only be 0 or 1 ellipsis.
|
||||
SizeT num_ellipsis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_indexes; i++) {
|
||||
if (indexes[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
expected_dst_ndims--;
|
||||
num_indexed++;
|
||||
} else if (indexes[i].type == ND_INDEX_TYPE_SLICE) {
|
||||
num_indexed++;
|
||||
} else if (indexes[i].type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
expected_dst_ndims++;
|
||||
} else if (indexes[i].type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
num_ellipsis++;
|
||||
if (num_ellipsis > 1) {
|
||||
raise_exception(
|
||||
SizeT, EXN_INDEX_ERROR,
|
||||
"an index can only have a single ellipsis ('...')",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
|
||||
|
||||
if (src_ndarray->ndims - num_indexed < 0) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"too many indices for array: array is {0}-dimensional, "
|
||||
"but {1} were indexed",
|
||||
src_ndarray->ndims, num_indexes, NO_PARAM);
|
||||
}
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
SizeT src_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (SliceIndex i = 0; i < num_indexes; i++) {
|
||||
const NDIndex* index = &indexes[i];
|
||||
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT) {
|
||||
SliceIndex input = *((SliceIndex*)index->data);
|
||||
SliceIndex k = slice::resolve_index_in_length(
|
||||
src_ndarray->shape[src_axis], input);
|
||||
|
||||
if (k == slice::OUT_OF_BOUNDS) {
|
||||
raise_exception(SizeT, EXN_INDEX_ERROR,
|
||||
"index {0} is out of bounds for axis {1} "
|
||||
"with size {2}",
|
||||
input, src_axis, src_ndarray->shape[src_axis]);
|
||||
}
|
||||
|
||||
dst_ndarray->data += k * src_ndarray->strides[src_axis];
|
||||
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_SLICE) {
|
||||
UserSlice* input = (UserSlice*)index->data;
|
||||
|
||||
Slice slice =
|
||||
input->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
|
||||
|
||||
dst_ndarray->data +=
|
||||
(SizeT)slice.start * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->strides[dst_axis] =
|
||||
((SizeT)slice.step) * src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = (SizeT)slice.len();
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_NEWAXIS) {
|
||||
dst_ndarray->strides[dst_axis] = 0;
|
||||
dst_ndarray->shape[dst_axis] = 1;
|
||||
|
||||
dst_axis++;
|
||||
} else if (index->type == ND_INDEX_TYPE_ELLIPSIS) {
|
||||
// The number of ':' entries this '...' implies.
|
||||
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
|
||||
|
||||
for (SizeT j = 0; j < ellipsis_size; j++) {
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
|
||||
dst_axis++;
|
||||
src_axis++;
|
||||
}
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++) {
|
||||
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
|
||||
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
|
||||
}
|
||||
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
|
||||
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
|
||||
}
|
||||
} // namespace indexing
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::indexing;
|
||||
|
||||
void __nac3_ndarray_index(int32_t num_indexes, NDIndex* indexes,
|
||||
NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
index(num_indexes, indexes, src_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_index64(int64_t num_indexes, NDIndex* indexes,
|
||||
NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
index(num_indexes, indexes, src_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -1,118 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace {
|
||||
/**
|
||||
* @brief Helper struct to enumerate through all indices under a shape.
|
||||
*
|
||||
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
|
||||
* - `[0, 0]`
|
||||
* - `[0, 1]`
|
||||
* - `[1, 0]`
|
||||
* - `[1, 1]`
|
||||
* - `[2, 0]`
|
||||
* - `[2, 1]`
|
||||
* - end.
|
||||
*
|
||||
* Interesting cases:
|
||||
* - If ndims == 0, there is one enumeration.
|
||||
* - If shape contains zeroes, there are no enumerations.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
struct NDIter {
|
||||
SizeT ndims;
|
||||
SizeT* shape;
|
||||
SizeT* strides;
|
||||
|
||||
/**
|
||||
* @brief The current indices.
|
||||
*
|
||||
* Must be allocated by the caller.
|
||||
*/
|
||||
SizeT* indices;
|
||||
|
||||
/**
|
||||
* @brief The nth (0-based) index of the current indices.
|
||||
*/
|
||||
SizeT nth;
|
||||
|
||||
/**
|
||||
* @brief Pointer to the current element.
|
||||
*/
|
||||
uint8_t* element;
|
||||
|
||||
/**
|
||||
* @brief The product of shape.
|
||||
*/
|
||||
SizeT size;
|
||||
|
||||
// TODO:: There is something called backstrides to speedup iteration.
|
||||
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
|
||||
// Maybe LLVM is clever and knows how to optimize.
|
||||
|
||||
void initialize(SizeT ndims, SizeT* shape, SizeT* strides, uint8_t* element,
|
||||
SizeT* indices) {
|
||||
this->ndims = ndims;
|
||||
this->shape = shape;
|
||||
this->strides = strides;
|
||||
|
||||
this->indices = indices;
|
||||
this->element = element;
|
||||
|
||||
// Compute size and backstrides
|
||||
this->size = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
this->size *= shape[i];
|
||||
}
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++) indices[axis] = 0;
|
||||
nth = 0;
|
||||
}
|
||||
|
||||
void initialize_by_ndarray(NDArray<SizeT>* ndarray, SizeT* indices) {
|
||||
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides,
|
||||
ndarray->data, indices);
|
||||
}
|
||||
|
||||
bool has_next() { return nth < size; }
|
||||
|
||||
void next() {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = ndims - i - 1;
|
||||
indices[axis]++;
|
||||
if (indices[axis] >= shape[axis]) {
|
||||
indices[axis] = 0;
|
||||
|
||||
// TODO: Can be optimized with backstrides.
|
||||
element -= strides[axis] * (shape[axis] - 1);
|
||||
} else {
|
||||
element += strides[axis];
|
||||
break;
|
||||
}
|
||||
}
|
||||
nth++;
|
||||
}
|
||||
};
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_nditer_initialize(NDIter<int32_t>* iter, NDArray<int32_t>* ndarray,
|
||||
int32_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
void __nac3_nditer_initialize64(NDIter<int64_t>* iter,
|
||||
NDArray<int64_t>* ndarray, int64_t* indices) {
|
||||
iter->initialize_by_ndarray(ndarray, indices);
|
||||
}
|
||||
|
||||
bool __nac3_nditer_has_next(NDIter<int32_t>* iter) { return iter->has_next(); }
|
||||
|
||||
bool __nac3_nditer_has_next64(NDIter<int64_t>* iter) { return iter->has_next(); }
|
||||
|
||||
void __nac3_nditer_next(NDIter<int32_t>* iter) { iter->next(); }
|
||||
|
||||
void __nac3_nditer_next64(NDIter<int64_t>* iter) { iter->next(); }
|
||||
}
|
|
@ -1,194 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
|
||||
// NOTE: Everything would be much easier and elegant if einsum is implemented.
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace matmul {
|
||||
|
||||
/*
|
||||
* In einsum notation, the output is the broadcasts performed by `np.einsum("...ij,...jk->...ik", a, b)`.
|
||||
*
|
||||
* Example:
|
||||
* Suppose `a_shape == [99, 1, 97, 4, 2]`
|
||||
* and `b_shape == [ 1, 98, 1, 2, 5]`,
|
||||
*
|
||||
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
|
||||
* `new_b_shape == [99, 98, 97, 2, 5]`,
|
||||
* and `dst_shape == [99, 98, 97, 4, 5]`.
|
||||
* ^^^^^^^^^^ ^^^^
|
||||
* (by broadcast) (4x2 @ 2x5 => 4x5)
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void calculate_shapes(SizeT a_ndims, SizeT* a_shape, SizeT b_ndims,
|
||||
SizeT* b_shape, SizeT final_ndims, SizeT* new_a_shape,
|
||||
SizeT* new_b_shape, SizeT* dst_shape) {
|
||||
debug_assert(SizeT, a_ndims >= 2);
|
||||
debug_assert(SizeT, b_ndims >= 2);
|
||||
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
|
||||
|
||||
const SizeT num_entries = 2;
|
||||
ShapeEntry<SizeT> entries[num_entries] = {
|
||||
{.ndims = a_ndims - 2, .shape = a_shape},
|
||||
{.ndims = b_ndims - 2, .shape = b_shape}};
|
||||
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||
final_ndims - 2, new_a_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||
final_ndims - 2, new_b_shape);
|
||||
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries,
|
||||
final_ndims - 2, dst_shape);
|
||||
|
||||
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
|
||||
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
|
||||
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
|
||||
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Perform `np.matmul(a, b)` but the inputs are both rank >=2 matrices and `a.shape[:-2] == b.shape[:-2]`.
|
||||
*
|
||||
* The compatibility of `a` and `b` (for their `.shape[-2:]`) are asserted.
|
||||
*
|
||||
* Also see https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy-matmul.
|
||||
*
|
||||
* This function expects `dst_ndarray` to contain the following content when called:
|
||||
* - `dst_ndarray->data` is allocated. Can be uninitialized.
|
||||
* - `dst_ndarray->itemsize` is set to `sizeof(T)`.
|
||||
* - `dst_ndarray->ndims` is set appropriately.
|
||||
* - `dst_ndarray->shape` is set appropriately.
|
||||
* - `dst_ndarray->strides` is ignored.
|
||||
*
|
||||
* Moreover, the shapes of `a_ndarray`, `b_ndarray`, and `dst_ndarray` **must be the same**. This implies
|
||||
*/
|
||||
template <typename SizeT, typename T>
|
||||
void matmul_at_least_2d(NDArray<SizeT>* a_ndarray, NDArray<SizeT>* b_ndarray,
|
||||
NDArray<SizeT>* dst_ndarray) {
|
||||
// All inputs' ndims should be >= 2 and be the same.
|
||||
debug_assert_eq(SizeT, a_ndarray->ndims, b_ndarray->ndims);
|
||||
debug_assert_eq(SizeT, a_ndarray->ndims, dst_ndarray->ndims);
|
||||
debug_assert(SizeT, a_ndarray->ndims >= 2);
|
||||
|
||||
debug_assert_eq(SizeT, a_ndarray->itemsize, sizeof(T));
|
||||
debug_assert_eq(SizeT, b_ndarray->itemsize, sizeof(T));
|
||||
debug_assert_eq(SizeT, dst_ndarray->itemsize, sizeof(T));
|
||||
|
||||
if (IRRT_DEBUG_ASSERT_BOOL) {
|
||||
// Check that the shapes are the same.
|
||||
for (SizeT i = 0; i < a_ndarray->ndims - 2; i++) {
|
||||
if (dst_ndarray->shape[0] != a_ndarray->shape[0]) {
|
||||
raise_debug_assert(
|
||||
SizeT, "Bad shape. At axis {0}, a has {1}, dst has {2}", i,
|
||||
a_ndarray->shape[i], dst_ndarray->shape[i]);
|
||||
}
|
||||
if (dst_ndarray->shape[0] != b_ndarray->shape[0]) {
|
||||
raise_debug_assert(
|
||||
SizeT, "Bad shape. At axis {0}, b has {1}, dst has {2}", i,
|
||||
b_ndarray->shape[i], dst_ndarray->shape[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Number of dimensions dedicated to stacking
|
||||
// e.g., [4, 6, 1, 2, 3]
|
||||
// ^^^^^^^ count these
|
||||
const SizeT u = a_ndarray->ndims - 2; // Alias
|
||||
|
||||
SizeT* a_mat_shape = a_ndarray->shape + u;
|
||||
SizeT* b_mat_shape = b_ndarray->shape + u;
|
||||
SizeT* dst_mat_shape = dst_ndarray->shape + u;
|
||||
|
||||
// Assert that dst_ndarray has the correct shape
|
||||
debug_assert_eq(SizeT, dst_mat_shape[0], a_mat_shape[0]);
|
||||
debug_assert_eq(SizeT, dst_mat_shape[1], b_mat_shape[1]);
|
||||
|
||||
// Check that a and b are compatible for matmul
|
||||
if (a_mat_shape[1] != b_mat_shape[0]) {
|
||||
// This is a custom error message. Different from NumPy.
|
||||
raise_exception(
|
||||
SizeT, EXN_VALUE_ERROR,
|
||||
"Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
|
||||
a_mat_shape[1], b_mat_shape[0], NO_PARAM);
|
||||
}
|
||||
|
||||
// Iterate through shape[:-2]. i.e,
|
||||
// Given a = [5, 4, 3, m, p] and b = [5, 4, 3, p, n]. We iterate through [5, 4, 3].
|
||||
SizeT* indices =
|
||||
(SizeT*)__builtin_alloca(sizeof(SizeT) * dst_ndarray->ndims);
|
||||
SizeT* mat_indices = indices + u;
|
||||
NDIter<SizeT> iter;
|
||||
iter.initialize(u, dst_ndarray->shape, dst_ndarray->strides,
|
||||
dst_ndarray->data, indices);
|
||||
|
||||
for (; iter.has_next(); iter.next()) {
|
||||
for (SizeT i = 0; i < dst_mat_shape[0]; i++) {
|
||||
for (SizeT j = 0; j < dst_mat_shape[1]; j++) {
|
||||
// `indices` is being reused to index into different ndarrays.
|
||||
mat_indices[0] = i;
|
||||
mat_indices[1] = j;
|
||||
T* d = ndarray::basic::get_ptr<SizeT, T>(dst_ndarray, indices);
|
||||
*d = 0;
|
||||
|
||||
for (SizeT k = 0; k < a_ndarray->shape[1]; k++) {
|
||||
mat_indices[0] = i;
|
||||
mat_indices[1] = k;
|
||||
T* a =
|
||||
ndarray::basic::get_ptr<SizeT, T>(a_ndarray, indices);
|
||||
|
||||
mat_indices[0] = k;
|
||||
mat_indices[1] = j;
|
||||
T* b =
|
||||
ndarray::basic::get_ptr<SizeT, T>(b_ndarray, indices);
|
||||
|
||||
*d += (*a) * (*b);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace matmul
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::matmul;
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t* a_shape,
|
||||
int32_t b_ndims, int32_t* b_shape,
|
||||
int32_t final_ndims,
|
||||
int32_t* new_a_shape,
|
||||
int32_t* new_b_shape,
|
||||
int32_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
|
||||
new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t* a_shape,
|
||||
int64_t b_ndims, int64_t* b_shape,
|
||||
int64_t final_ndims,
|
||||
int64_t* new_a_shape,
|
||||
int64_t* new_b_shape,
|
||||
int64_t* dst_shape) {
|
||||
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims,
|
||||
new_a_shape, new_b_shape, dst_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_float64_matmul_at_least_2d(NDArray<int32_t>* a_ndarray,
|
||||
NDArray<int32_t>* b_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray) {
|
||||
matmul_at_least_2d<int32_t, double>(a_ndarray, b_ndarray, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_float64_matmul_at_least_2d64(
|
||||
NDArray<int64_t>* a_ndarray, NDArray<int64_t>* b_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray) {
|
||||
matmul_at_least_2d<int64_t, double>(a_ndarray, b_ndarray, dst_ndarray);
|
||||
}
|
||||
}
|
|
@ -1,106 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace reshape {
|
||||
/**
|
||||
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
|
||||
*
|
||||
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
|
||||
* modified to contain the resolved dimension.
|
||||
*
|
||||
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
|
||||
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
|
||||
*
|
||||
* @param size The `.size` of `<ndarray>`
|
||||
* @param new_ndims Number of elements in `new_shape`
|
||||
* @param new_shape Target shape to reshape to
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void resolve_and_check_new_shape(SizeT size, SizeT new_ndims,
|
||||
SizeT* new_shape) {
|
||||
// Is there a -1 in `new_shape`?
|
||||
bool neg1_exists = false;
|
||||
// Location of -1, only initialized if `neg1_exists` is true
|
||||
SizeT neg1_axis_i;
|
||||
// The computed ndarray size of `new_shape`
|
||||
SizeT new_size = 1;
|
||||
|
||||
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++) {
|
||||
SizeT dim = new_shape[axis_i];
|
||||
if (dim < 0) {
|
||||
if (dim == -1) {
|
||||
if (neg1_exists) {
|
||||
// Multiple `-1` found. Throw an error.
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"can only specify one unknown dimension",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
} else {
|
||||
neg1_exists = true;
|
||||
neg1_axis_i = axis_i;
|
||||
}
|
||||
} else {
|
||||
// TODO: What? In `np.reshape` any negative dimensions is
|
||||
// treated like its `-1`.
|
||||
//
|
||||
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
|
||||
//
|
||||
// It is not documented by numpy.
|
||||
// Throw an error for now...
|
||||
|
||||
raise_exception(
|
||||
SizeT, EXN_VALUE_ERROR,
|
||||
"Found non -1 negative dimension {0} on axis {1}", dim,
|
||||
axis_i, NO_PARAM);
|
||||
}
|
||||
} else {
|
||||
new_size *= dim;
|
||||
}
|
||||
}
|
||||
|
||||
bool can_reshape;
|
||||
if (neg1_exists) {
|
||||
// Let `x` be the unknown dimension
|
||||
// Solve `x * <new_size> = <size>`
|
||||
if (new_size == 0 && size == 0) {
|
||||
// `x` has infinitely many solutions
|
||||
can_reshape = false;
|
||||
} else if (new_size == 0 && size != 0) {
|
||||
// `x` has no solutions
|
||||
can_reshape = false;
|
||||
} else if (size % new_size != 0) {
|
||||
// `x` has no integer solutions
|
||||
can_reshape = false;
|
||||
} else {
|
||||
can_reshape = true;
|
||||
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
|
||||
}
|
||||
} else {
|
||||
can_reshape = (new_size == size);
|
||||
}
|
||||
|
||||
if (!can_reshape) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"cannot reshape array of size {0} into given shape",
|
||||
size, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
}
|
||||
} // namespace reshape
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
void __nac3_ndarray_resolve_and_check_new_shape(int32_t size, int32_t new_ndims,
|
||||
int32_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_resolve_and_check_new_shape64(int64_t size,
|
||||
int64_t new_ndims,
|
||||
int64_t* new_shape) {
|
||||
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
|
||||
}
|
||||
}
|
|
@ -1,145 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
|
||||
/*
|
||||
* Notes on `np.transpose(<array>, <axes>)`
|
||||
*
|
||||
* TODO: `axes`, if specified, can actually contain negative indices,
|
||||
* but it is not documented in numpy.
|
||||
*
|
||||
* Supporting it for now.
|
||||
*/
|
||||
|
||||
namespace {
|
||||
namespace ndarray {
|
||||
namespace transpose {
|
||||
/**
|
||||
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
|
||||
*
|
||||
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
|
||||
* is specified but the user, use this function to do assertions on it.
|
||||
*
|
||||
* @param ndims The number of dimensions of `<array>`
|
||||
* @param num_axes Number of elements in `<axes>` as specified by the user.
|
||||
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
|
||||
* @param axes The user specified `<axes>`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT* axes) {
|
||||
if (ndims != num_axes) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
// TODO: Optimize this
|
||||
bool* axe_specified = (bool*)__builtin_alloca(sizeof(bool) * ndims);
|
||||
for (SizeT i = 0; i < ndims; i++) axe_specified[i] = false;
|
||||
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
|
||||
if (axis == slice::OUT_OF_BOUNDS) {
|
||||
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
|
||||
raise_exception(
|
||||
SizeT, EXN_VALUE_ERROR,
|
||||
"axis {0} is out of bounds for array of dimension {1}", axis,
|
||||
ndims, NO_PARAM);
|
||||
}
|
||||
|
||||
if (axe_specified[axis]) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"repeated axis in transpose", NO_PARAM, NO_PARAM,
|
||||
NO_PARAM);
|
||||
}
|
||||
|
||||
axe_specified[axis] = true;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
|
||||
*
|
||||
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
|
||||
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
|
||||
*
|
||||
* The transpose view created is returned by modifying `dst_ndarray`.
|
||||
*
|
||||
* The caller is responsible for setting up `dst_ndarray` before calling this function.
|
||||
* Here is what this function expects from `dst_ndarray` when called:
|
||||
* - `dst_ndarray->data` does not have to be initialized.
|
||||
* - `dst_ndarray->itemsize` does not have to be initialized.
|
||||
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
|
||||
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
|
||||
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
|
||||
* When this function call ends:
|
||||
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
|
||||
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
|
||||
* - `dst_ndarray->ndims` is unchanged
|
||||
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
|
||||
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
|
||||
*
|
||||
* @param src_ndarray The NDArray to build a transpose view on
|
||||
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
|
||||
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
|
||||
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
void transpose(const NDArray<SizeT>* src_ndarray, NDArray<SizeT>* dst_ndarray,
|
||||
SizeT num_axes, const SizeT* axes) {
|
||||
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
|
||||
const auto ndims = src_ndarray->ndims;
|
||||
|
||||
if (axes != nullptr) assert_transpose_axes(ndims, num_axes, axes);
|
||||
|
||||
dst_ndarray->data = src_ndarray->data;
|
||||
dst_ndarray->itemsize = src_ndarray->itemsize;
|
||||
|
||||
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
|
||||
if (axes == nullptr) {
|
||||
// `np.transpose(<array>, axes=None)`
|
||||
|
||||
/*
|
||||
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
|
||||
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
|
||||
* is reversing the order of strides and shape.
|
||||
*
|
||||
* This is a fast implementation to handle this special (but very common) case.
|
||||
*/
|
||||
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
|
||||
}
|
||||
} else {
|
||||
// `np.transpose(<array>, <axes>)`
|
||||
|
||||
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
|
||||
for (SizeT axis = 0; axis < ndims; axis++) {
|
||||
// `i` cannot be OUT_OF_BOUNDS because of assertions
|
||||
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
|
||||
|
||||
dst_ndarray->shape[axis] = src_ndarray->shape[i];
|
||||
dst_ndarray->strides[axis] = src_ndarray->strides[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace transpose
|
||||
} // namespace ndarray
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
using namespace ndarray::transpose;
|
||||
void __nac3_ndarray_transpose(const NDArray<int32_t>* src_ndarray,
|
||||
NDArray<int32_t>* dst_ndarray, int32_t num_axes,
|
||||
const int32_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_transpose64(const NDArray<int64_t>* src_ndarray,
|
||||
NDArray<int64_t>* dst_ndarray, int64_t num_axes,
|
||||
const int64_t* axes) {
|
||||
transpose(src_ndarray, dst_ndarray, num_axes, axes);
|
||||
}
|
||||
}
|
|
@ -1,35 +1,22 @@
|
|||
#pragma once
|
||||
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/slice.hpp>
|
||||
#include <irrt/util.hpp>
|
||||
#include "irrt/int_types.hpp"
|
||||
|
||||
#include "exception.hpp"
|
||||
extern "C" {
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
// The type of an index or a value describing the length of a
|
||||
// range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace {
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with resolved indices.
|
||||
*
|
||||
* "Resolved indices" means that `start` and `stop` must be positive and are
|
||||
* bound to a known length.
|
||||
*/
|
||||
struct Slice {
|
||||
SliceIndex start;
|
||||
SliceIndex stop;
|
||||
SliceIndex step;
|
||||
|
||||
/**
|
||||
* @brief Calculate and return the length / the number of the slice.
|
||||
*
|
||||
* If this were a Python range, this function would be `len(range(start, stop, step))`.
|
||||
*/
|
||||
SliceIndex len() {
|
||||
SliceIndex diff = stop - start;
|
||||
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
|
@ -37,131 +24,5 @@ struct Slice {
|
|||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
namespace slice {
|
||||
/**
|
||||
* @brief Resolve a slice index under a given length like Python indexing.
|
||||
*
|
||||
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
|
||||
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
|
||||
*
|
||||
* If `length` is 0, 0 is returned for any value of `index`.
|
||||
*
|
||||
* If `index` is out of bounds, clamps the returned value between `0` and
|
||||
* `length - 1` (inclusive).
|
||||
*
|
||||
*/
|
||||
SliceIndex resolve_index_in_length_clamped(SliceIndex length,
|
||||
SliceIndex index) {
|
||||
if (index < 0) {
|
||||
return max<SliceIndex>(length + index, 0);
|
||||
} else {
|
||||
return min<SliceIndex>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
const SliceIndex OUT_OF_BOUNDS = -1;
|
||||
|
||||
/**
|
||||
* @brief Like `resolve_index_in_length_clamped`, but returns `OUT_OF_BOUNDS`
|
||||
* if `index` is out of bounds.
|
||||
*/
|
||||
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
|
||||
SliceIndex resolved = index < 0 ? length + index : index;
|
||||
if (0 <= resolved && resolved < length) {
|
||||
return resolved;
|
||||
} else {
|
||||
return OUT_OF_BOUNDS;
|
||||
}
|
||||
}
|
||||
} // namespace slice
|
||||
|
||||
/**
|
||||
* @brief A Python-like slice with **unresolved** indices.
|
||||
*/
|
||||
struct UserSlice {
|
||||
bool start_defined;
|
||||
SliceIndex start;
|
||||
|
||||
bool stop_defined;
|
||||
SliceIndex stop;
|
||||
|
||||
bool step_defined;
|
||||
SliceIndex step;
|
||||
|
||||
UserSlice() { this->reset(); }
|
||||
|
||||
void reset() {
|
||||
this->start_defined = false;
|
||||
this->stop_defined = false;
|
||||
this->step_defined = false;
|
||||
}
|
||||
|
||||
void set_start(SliceIndex start) {
|
||||
this->start_defined = true;
|
||||
this->start = start;
|
||||
}
|
||||
|
||||
void set_stop(SliceIndex stop) {
|
||||
this->stop_defined = true;
|
||||
this->stop = stop;
|
||||
}
|
||||
|
||||
void set_step(SliceIndex step) {
|
||||
this->step_defined = true;
|
||||
this->step = step;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Resolve this slice.
|
||||
*
|
||||
* In Python, this would be `slice(start, stop, step).indices(length)`.
|
||||
*
|
||||
* @return A `Slice` with the resolved indices.
|
||||
*/
|
||||
Slice indices(SliceIndex length) {
|
||||
Slice result;
|
||||
|
||||
result.step = step_defined ? step : 1;
|
||||
bool step_is_negative = result.step < 0;
|
||||
|
||||
if (start_defined) {
|
||||
result.start =
|
||||
slice::resolve_index_in_length_clamped(length, start);
|
||||
} else {
|
||||
result.start = step_is_negative ? length - 1 : 0;
|
||||
}
|
||||
|
||||
if (stop_defined) {
|
||||
result.stop = slice::resolve_index_in_length_clamped(length, stop);
|
||||
} else {
|
||||
result.stop = step_is_negative ? -1 : length;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Like `.indices()` but with assertions.
|
||||
*/
|
||||
template <typename SizeT>
|
||||
Slice indices_checked(SliceIndex length) {
|
||||
// TODO: Switch to `SizeT length`
|
||||
|
||||
if (length < 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR,
|
||||
"length should not be negative, got {0}", length,
|
||||
NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
if (this->step_defined && this->step == 0) {
|
||||
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero",
|
||||
NO_PARAM, NO_PARAM, NO_PARAM);
|
||||
}
|
||||
|
||||
return this->indices(length);
|
||||
}
|
||||
};
|
||||
} // namespace
|
|
@ -1,101 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
const T& max(const T& a, const T& b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T& min(const T& a, const T& b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool arrays_match(int len, T* as, T* bs) {
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (as[i] != bs[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace cstr_utils {
|
||||
/**
|
||||
* @brief Return true if `str` is empty.
|
||||
*/
|
||||
bool is_empty(const char* str) { return str[0] == '\0'; }
|
||||
|
||||
/**
|
||||
* @brief Implementation of `strcmp()`
|
||||
*/
|
||||
int8_t compare(const char* a, const char* b) {
|
||||
uint32_t i = 0;
|
||||
while (true) {
|
||||
if (a[i] < b[i]) {
|
||||
return -1;
|
||||
} else if (a[i] > b[i]) {
|
||||
return 1;
|
||||
} else {
|
||||
if (a[i] == '\0') {
|
||||
return 0;
|
||||
} else {
|
||||
i++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Return true two strings have the same content.
|
||||
*/
|
||||
int8_t equal(const char* a, const char* b) { return compare(a, b) == 0; }
|
||||
|
||||
/**
|
||||
* @brief Implementation of `strlen()`.
|
||||
*/
|
||||
uint32_t length(const char* str) {
|
||||
uint32_t length = 0;
|
||||
while (*str != '\0') {
|
||||
length++;
|
||||
str++;
|
||||
}
|
||||
return length;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Copy a null-terminated string to a buffer with limited size and guaranteed null-termination.
|
||||
*
|
||||
* `dst_max_size` must be greater than 0, otherwise this function has undefined behavior.
|
||||
*
|
||||
* This function attempts to copy everything from `src` from `dst`, and *always* null-terminates `dst`.
|
||||
*
|
||||
* If the size of `dst` is too small, the final byte (`dst[dst_max_size - 1]`) of `dst` will be set to
|
||||
* the null terminator.
|
||||
*
|
||||
* @param src String to copy from.
|
||||
* @param dst Buffer to copy string to.
|
||||
* @param dst_max_size
|
||||
* Number of bytes of this buffer, including the space needed for the null terminator.
|
||||
* Must be greater than 0.
|
||||
* @return If `dst` is too small to contain everything in `src`.
|
||||
*/
|
||||
bool copy(const char* src, char* dst, uint32_t dst_max_size) {
|
||||
for (uint32_t i = 0; i < dst_max_size; i++) {
|
||||
bool is_last = i + 1 == dst_max_size;
|
||||
if (is_last && src[i] != '\0') {
|
||||
dst[i] = '\0';
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src[i] == '\0') {
|
||||
dst[i] = '\0';
|
||||
return true;
|
||||
}
|
||||
|
||||
dst[i] = src[i];
|
||||
}
|
||||
|
||||
__builtin_unreachable();
|
||||
}
|
||||
} // namespace cstr_utils
|
||||
} // namespace
|
|
@ -1,24 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#ifdef IRRT_DEBUG
|
||||
#define IRRT_DEBUG_ASSERT
|
||||
#define IRRT_DEBUG_ASSERT_BOOL true
|
||||
#else
|
||||
#define IRRT_DEBUG_ASSERT_BOOL false
|
||||
#endif
|
||||
|
||||
#include <irrt/core.hpp>
|
||||
#include <irrt/debug.hpp>
|
||||
#include <irrt/exception.hpp>
|
||||
#include <irrt/int_defs.hpp>
|
||||
#include <irrt/list.hpp>
|
||||
#include <irrt/ndarray/array.hpp>
|
||||
#include <irrt/ndarray/basic.hpp>
|
||||
#include <irrt/ndarray/broadcast.hpp>
|
||||
#include <irrt/ndarray/def.hpp>
|
||||
#include <irrt/ndarray/indexing.hpp>
|
||||
#include <irrt/ndarray/iter.hpp>
|
||||
#include <irrt/ndarray/product.hpp>
|
||||
#include <irrt/ndarray/reshape.hpp>
|
||||
#include <irrt/ndarray/transpose.hpp>
|
||||
#include <irrt/util.hpp>
|
|
@ -1,25 +0,0 @@
|
|||
// This file will be compiled like a real C++ program,
|
||||
// and we do have the luxury to use the standard libraries.
|
||||
// That is if the nix flakes do not have issues... especially on msys2...
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
// Special macro to inform `#include <irrt/*>` that we are testing.
|
||||
#define IRRT_TESTING
|
||||
|
||||
// Note that failure unit tests are not supported.
|
||||
|
||||
#include <test/test_core.hpp>
|
||||
#include <test/test_ndarray_basic.hpp>
|
||||
#include <test/test_ndarray_broadcast.hpp>
|
||||
#include <test/test_ndarray_indexing.hpp>
|
||||
|
||||
int main() {
|
||||
test::core::run();
|
||||
test::ndarray_basic::run();
|
||||
test::ndarray_indexing::run();
|
||||
test::ndarray_broadcast::run();
|
||||
return 0;
|
||||
}
|
|
@ -1,11 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <irrt_everything.hpp>
|
||||
#include <test/util.hpp>
|
||||
|
||||
/*
|
||||
Include this header for every test_*.cpp
|
||||
*/
|
|
@ -1,16 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <test/includes.hpp>
|
||||
|
||||
namespace test {
|
||||
namespace core {
|
||||
void test_int_exp() {
|
||||
BEGIN_TEST();
|
||||
|
||||
assert_values_match(125L, __nac3_int_exp_impl<int64_t>(5, 3));
|
||||
assert_values_match(3125L, __nac3_int_exp_impl<int64_t>(5, 5));
|
||||
}
|
||||
|
||||
void run() { test_int_exp(); }
|
||||
} // namespace core
|
||||
} // namespace test
|
|
@ -1,30 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <test/includes.hpp>
|
||||
|
||||
namespace test {
|
||||
namespace ndarray_basic {
|
||||
void test_calc_size_from_shape_normal() {
|
||||
// Test shapes with normal values
|
||||
BEGIN_TEST();
|
||||
|
||||
int64_t shape[4] = {2, 3, 5, 7};
|
||||
assert_values_match(
|
||||
210L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_has_zero() {
|
||||
// Test shapes with 0 in them
|
||||
BEGIN_TEST();
|
||||
|
||||
int64_t shape[4] = {2, 0, 5, 7};
|
||||
assert_values_match(
|
||||
0L, ndarray::basic::util::calc_size_from_shape<int64_t>(4, shape));
|
||||
}
|
||||
|
||||
void run() {
|
||||
test_calc_size_from_shape_normal();
|
||||
test_calc_size_from_shape_has_zero();
|
||||
}
|
||||
} // namespace ndarray_basic
|
||||
} // namespace test
|
|
@ -1,127 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <test/includes.hpp>
|
||||
|
||||
namespace test {
|
||||
namespace ndarray_broadcast {
|
||||
void test_can_broadcast_shape() {
|
||||
BEGIN_TEST();
|
||||
|
||||
assert_values_match(true,
|
||||
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){3}, 5, (int32_t[]){1, 1, 1, 1, 3}));
|
||||
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){3}, 2, (int32_t[]){3, 1}));
|
||||
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){3}, 1, (int32_t[]){3}));
|
||||
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){1}, 1, (int32_t[]){3}));
|
||||
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){1}, 1, (int32_t[]){1}));
|
||||
assert_values_match(
|
||||
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
3, (int32_t[]){256, 256, 3}, 3, (int32_t[]){256, 1, 3}));
|
||||
assert_values_match(true,
|
||||
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){3}));
|
||||
assert_values_match(false,
|
||||
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){2}));
|
||||
assert_values_match(true,
|
||||
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
3, (int32_t[]){256, 256, 3}, 1, (int32_t[]){1}));
|
||||
|
||||
// In cases when the shapes contain zero(es)
|
||||
assert_values_match(true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){0}, 1, (int32_t[]){1}));
|
||||
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
1, (int32_t[]){0}, 1, (int32_t[]){2}));
|
||||
assert_values_match(true,
|
||||
ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
4, (int32_t[]){0, 4, 0, 0}, 1, (int32_t[]){1}));
|
||||
assert_values_match(
|
||||
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 1, 1, 1}));
|
||||
assert_values_match(
|
||||
true, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
4, (int32_t[]){0, 4, 0, 0}, 4, (int32_t[]){1, 4, 1, 1}));
|
||||
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 3}));
|
||||
assert_values_match(false, ndarray::broadcast::util::can_broadcast_shape_to(
|
||||
2, (int32_t[]){4, 3}, 2, (int32_t[]){0, 0}));
|
||||
}
|
||||
|
||||
void test_ndarray_broadcast() {
|
||||
/*
|
||||
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||
# >>> [[19.9 29.9 39.9 49.9]]
|
||||
#
|
||||
# array = np.broadcast_to(array, (2, 3, 4))
|
||||
# >>> [[[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]
|
||||
# >>> [[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]]
|
||||
#
|
||||
# assery array.strides == (0, 0, 8)
|
||||
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[4] = {19.9, 29.9, 39.9, 49.9};
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = {1, 4};
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {.data = (uint8_t*)in_data,
|
||||
.itemsize = sizeof(double),
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides};
|
||||
ndarray::basic::set_strides_by_shape(&ndarray);
|
||||
|
||||
const int32_t dst_ndims = 3;
|
||||
int32_t dst_shape[dst_ndims] = {2, 3, 4};
|
||||
int32_t dst_strides[dst_ndims] = {};
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.ndims = dst_ndims, .shape = dst_shape, .strides = dst_strides};
|
||||
|
||||
ndarray::broadcast::broadcast_to(&ndarray, &dst_ndarray);
|
||||
|
||||
assert_arrays_match(dst_ndims, ((int32_t[]){0, 0, 8}), dst_ndarray.strides);
|
||||
|
||||
assert_values_match(19.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 0, 0}))));
|
||||
assert_values_match(29.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 0, 1}))));
|
||||
assert_values_match(39.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 0, 2}))));
|
||||
assert_values_match(49.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 0, 3}))));
|
||||
assert_values_match(19.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 1, 0}))));
|
||||
assert_values_match(29.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 1, 1}))));
|
||||
assert_values_match(39.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 1, 2}))));
|
||||
assert_values_match(49.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){0, 1, 3}))));
|
||||
assert_values_match(49.9,
|
||||
*((double*)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, ((int32_t[]){1, 2, 3}))));
|
||||
}
|
||||
|
||||
void run() {
|
||||
test_can_broadcast_shape();
|
||||
test_ndarray_broadcast();
|
||||
}
|
||||
} // namespace ndarray_broadcast
|
||||
} // namespace test
|
|
@ -1,165 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <test/includes.hpp>
|
||||
|
||||
namespace test {
|
||||
namespace ndarray_indexing {
|
||||
void test_normal_1() {
|
||||
/*
|
||||
Reference Python code:
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[-2:, 1::2]
|
||||
# array([[ 5., 7.],
|
||||
# [ 9., 11.]])
|
||||
|
||||
assert dst_ndarray.shape == (2, 2)
|
||||
assert dst_ndarray.strides == (32, 16)
|
||||
assert dst_ndarray[0, 0] == 5.0
|
||||
assert dst_ndarray[0, 1] == 7.0
|
||||
assert dst_ndarray[1, 0] == 9.0
|
||||
assert dst_ndarray[1, 1] == 11.0
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
// Prepare src_ndarray
|
||||
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
|
||||
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
|
||||
int64_t src_itemsize = sizeof(double);
|
||||
const int64_t src_ndims = 2;
|
||||
int64_t src_shape[src_ndims] = {3, 4};
|
||||
int64_t src_strides[src_ndims] = {};
|
||||
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
|
||||
.itemsize = src_itemsize,
|
||||
.ndims = src_ndims,
|
||||
.shape = src_shape,
|
||||
.strides = src_strides};
|
||||
ndarray::basic::set_strides_by_shape(&src_ndarray);
|
||||
|
||||
// Prepare dst_ndarray
|
||||
const int64_t dst_ndims = 2;
|
||||
int64_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||
int64_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||
NDArray<int64_t> dst_ndarray = {.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides};
|
||||
|
||||
// Create the subscripts in `ndarray[-2::, 1::2]`
|
||||
UserSlice subscript_1;
|
||||
subscript_1.set_start(-2);
|
||||
|
||||
UserSlice subscript_2;
|
||||
subscript_2.set_start(1);
|
||||
subscript_2.set_step(2);
|
||||
|
||||
const int64_t num_indexes = 2;
|
||||
NDIndex indexes[num_indexes] = {
|
||||
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_1},
|
||||
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
|
||||
|
||||
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
|
||||
|
||||
int64_t expected_shape[dst_ndims] = {2, 2};
|
||||
int64_t expected_strides[dst_ndims] = {32, 16};
|
||||
|
||||
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
// dst_ndarray[0, 0]
|
||||
assert_values_match(5.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){0, 0})));
|
||||
// dst_ndarray[0, 1]
|
||||
assert_values_match(7.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){0, 1})));
|
||||
// dst_ndarray[1, 0]
|
||||
assert_values_match(9.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){1, 0})));
|
||||
// dst_ndarray[1, 1]
|
||||
assert_values_match(11.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){1, 1})));
|
||||
}
|
||||
|
||||
void test_normal_2() {
|
||||
/*
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[2, ::-2]
|
||||
# array([11., 9.])
|
||||
|
||||
assert dst_ndarray.shape == (2,)
|
||||
assert dst_ndarray.strides == (-16,)
|
||||
assert dst_ndarray[0] == 11.0
|
||||
assert dst_ndarray[1] == 9.0
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
// Prepare src_ndarray
|
||||
double src_data[12] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0,
|
||||
6.0, 7.0, 8.0, 9.0, 10.0, 11.0};
|
||||
int64_t src_itemsize = sizeof(double);
|
||||
const int64_t src_ndims = 2;
|
||||
int64_t src_shape[src_ndims] = {3, 4};
|
||||
int64_t src_strides[src_ndims] = {};
|
||||
NDArray<int64_t> src_ndarray = {.data = (uint8_t *)src_data,
|
||||
.itemsize = src_itemsize,
|
||||
.ndims = src_ndims,
|
||||
.shape = src_shape,
|
||||
.strides = src_strides};
|
||||
ndarray::basic::set_strides_by_shape(&src_ndarray);
|
||||
|
||||
// Prepare dst_ndarray
|
||||
const int64_t dst_ndims = 1;
|
||||
int64_t dst_shape[dst_ndims] = {999}; // Empty values
|
||||
int64_t dst_strides[dst_ndims] = {999}; // Empty values
|
||||
NDArray<int64_t> dst_ndarray = {.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides};
|
||||
|
||||
// Create the subscripts in `ndarray[2, ::-2]`
|
||||
int64_t subscript_1 = 2;
|
||||
|
||||
UserSlice subscript_2;
|
||||
subscript_2.set_step(-2);
|
||||
|
||||
const int64_t num_indexes = 2;
|
||||
NDIndex indexes[num_indexes] = {
|
||||
{.type = ND_INDEX_TYPE_SINGLE_ELEMENT, .data = (uint8_t *)&subscript_1},
|
||||
{.type = ND_INDEX_TYPE_SLICE, .data = (uint8_t *)&subscript_2}};
|
||||
|
||||
ndarray::indexing::index(num_indexes, indexes, &src_ndarray, &dst_ndarray);
|
||||
|
||||
int64_t expected_shape[dst_ndims] = {2};
|
||||
int64_t expected_strides[dst_ndims] = {-16};
|
||||
assert_arrays_match(dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match(dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
assert_values_match(11.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){0})));
|
||||
assert_values_match(9.0,
|
||||
*((double *)ndarray::basic::get_pelement_by_indices(
|
||||
&dst_ndarray, (int64_t[dst_ndims]){1})));
|
||||
}
|
||||
|
||||
void run() {
|
||||
test_normal_1();
|
||||
test_normal_2();
|
||||
}
|
||||
} // namespace ndarray_indexing
|
||||
} // namespace test
|
|
@ -1,131 +0,0 @@
|
|||
#pragma once
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
template <class T>
|
||||
void print_value(const T& value);
|
||||
|
||||
template <>
|
||||
void print_value(const bool& value) {
|
||||
printf("%s", value ? "true" : "false");
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const int8_t& value) {
|
||||
printf("%d", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const int32_t& value) {
|
||||
printf("%d", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const int64_t& value) {
|
||||
printf("%d", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const uint8_t& value) {
|
||||
printf("%u", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const uint32_t& value) {
|
||||
printf("%u", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const uint64_t& value) {
|
||||
printf("%d", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const float& value) {
|
||||
printf("%f", value);
|
||||
}
|
||||
|
||||
template <>
|
||||
void print_value(const double& value) {
|
||||
printf("%f", value);
|
||||
}
|
||||
|
||||
void __begin_test(const char* function_name, const char* file, int line) {
|
||||
printf("######### Running %s @ %s:%d\n", function_name, file, line);
|
||||
}
|
||||
|
||||
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
|
||||
|
||||
void test_fail() {
|
||||
printf("[!] Test failed. Exiting with status code 1.\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void debug_print_array(int len, const T* as) {
|
||||
printf("[");
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (i != 0) printf(", ");
|
||||
print_value(as[i]);
|
||||
}
|
||||
printf("]");
|
||||
}
|
||||
|
||||
void print_assertion_passed(const char* file, int line) {
|
||||
printf("[*] Assertion passed on %s:%d\n", file, line);
|
||||
}
|
||||
|
||||
void print_assertion_failed(const char* file, int line) {
|
||||
printf("[!] Assertion failed on %s:%d\n", file, line);
|
||||
}
|
||||
|
||||
void __assert_true(const char* file, int line, bool cond) {
|
||||
if (cond) {
|
||||
print_assertion_passed(file, line);
|
||||
} else {
|
||||
print_assertion_failed(file, line);
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
#define assert_true(cond) __assert_true(__FILE__, __LINE__, cond)
|
||||
|
||||
template <typename T>
|
||||
void __assert_arrays_match(const char* file, int line, int len,
|
||||
const T* expected, const T* got) {
|
||||
if (arrays_match(len, expected, got)) {
|
||||
print_assertion_passed(file, line);
|
||||
} else {
|
||||
print_assertion_failed(file, line);
|
||||
printf("Expect = ");
|
||||
debug_print_array(len, expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
debug_print_array(len, got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
#define assert_arrays_match(len, expected, got) \
|
||||
__assert_arrays_match(__FILE__, __LINE__, len, expected, got)
|
||||
|
||||
template <typename T>
|
||||
void __assert_values_match(const char* file, int line, T expected, T got) {
|
||||
if (expected == got) {
|
||||
print_assertion_passed(file, line);
|
||||
} else {
|
||||
print_assertion_failed(file, line);
|
||||
printf("Expect = ");
|
||||
print_value(expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
print_value(got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
#define assert_values_match(expected, got) \
|
||||
__assert_values_match(__FILE__, __LINE__, expected, got)
|
|
@ -0,0 +1,21 @@
|
|||
[package]
|
||||
name = "nac3core_derive"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
[lib]
|
||||
proc-macro = true
|
||||
|
||||
[[test]]
|
||||
name = "structfields_tests"
|
||||
path = "tests/structfields_test.rs"
|
||||
|
||||
[dev-dependencies]
|
||||
nac3core = { path = ".." }
|
||||
trybuild = { version = "1.0", features = ["diff"] }
|
||||
|
||||
[dependencies]
|
||||
proc-macro2 = "1.0"
|
||||
proc-macro-error = "1.0"
|
||||
syn = "2.0"
|
||||
quote = "1.0"
|
|
@ -0,0 +1,320 @@
|
|||
use proc_macro::TokenStream;
|
||||
use proc_macro_error::{abort, proc_macro_error};
|
||||
use quote::quote;
|
||||
use syn::{
|
||||
parse_macro_input, spanned::Spanned, Data, DataStruct, Expr, ExprField, ExprMethodCall,
|
||||
ExprPath, GenericArgument, Ident, LitStr, Path, PathArguments, Type, TypePath,
|
||||
};
|
||||
|
||||
/// Extracts all generic arguments of a [`Type`] into a [`Vec`].
|
||||
///
|
||||
/// Returns [`Some`] of a possibly-empty [`Vec`] if the path of `ty` matches with
|
||||
/// `expected_ty_name`, otherwise returns [`None`].
|
||||
fn extract_generic_args(expected_ty_name: &'static str, ty: &Type) -> Option<Vec<GenericArgument>> {
|
||||
let Type::Path(TypePath { qself: None, path, .. }) = ty else {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segments = &path.segments;
|
||||
if segments.len() != 1 {
|
||||
return None;
|
||||
};
|
||||
|
||||
let segment = segments.iter().next().unwrap();
|
||||
if segment.ident != expected_ty_name {
|
||||
return None;
|
||||
}
|
||||
|
||||
let PathArguments::AngleBracketed(path_args) = &segment.arguments else {
|
||||
return Some(Vec::new());
|
||||
};
|
||||
let args = &path_args.args;
|
||||
|
||||
Some(args.iter().cloned().collect::<Vec<_>>())
|
||||
}
|
||||
|
||||
/// Maps a `path` matching one of the `target_idents` into the `replacement` [`Ident`].
|
||||
fn map_path_to_ident(path: &Path, target_idents: &[&str], replacement: &str) -> Option<Ident> {
|
||||
path.require_ident()
|
||||
.ok()
|
||||
.filter(|ident| target_idents.iter().any(|target| ident == target))
|
||||
.map(|ident| Ident::new(replacement, ident.span()))
|
||||
}
|
||||
|
||||
/// Extracts the left-hand side of a dot-expression.
|
||||
fn extract_dot_operand(expr: &Expr) -> Option<&Expr> {
|
||||
match expr {
|
||||
Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) => Some(operand),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Replaces the top-level receiver of a dot-expression with an [`Ident`], returning `Some(&mut expr)` if the
|
||||
/// replacement is performed.
|
||||
///
|
||||
/// The top-level receiver is the left-most receiver expression, e.g. the top-level receiver of `a.b.c.foo()` is `a`.
|
||||
fn replace_top_level_receiver(expr: &mut Expr, ident: Ident) -> Option<&mut Expr> {
|
||||
if let Expr::MethodCall(ExprMethodCall { receiver: operand, .. })
|
||||
| Expr::Field(ExprField { base: operand, .. }) = expr
|
||||
{
|
||||
return if extract_dot_operand(operand).is_some() {
|
||||
if replace_top_level_receiver(operand, ident).is_some() {
|
||||
Some(expr)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
} else {
|
||||
*operand = Box::new(Expr::Path(ExprPath {
|
||||
attrs: Vec::default(),
|
||||
qself: None,
|
||||
path: ident.into(),
|
||||
}));
|
||||
|
||||
Some(expr)
|
||||
};
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// Iterates all operands to the left-hand side of the `.` of an [expression][`Expr`], i.e. the container operand of all
|
||||
/// [`Expr::Field`] and the receiver operand of all [`Expr::MethodCall`].
|
||||
///
|
||||
/// The iterator will return the operand expressions in reverse order of appearance. For example, `a.b.c.func()` will
|
||||
/// return `vec![c, b, a]`.
|
||||
fn iter_dot_operands(expr: &Expr) -> impl Iterator<Item = &Expr> {
|
||||
let mut o = extract_dot_operand(expr);
|
||||
|
||||
std::iter::from_fn(move || {
|
||||
let this = o;
|
||||
o = o.as_ref().and_then(|o| extract_dot_operand(o));
|
||||
|
||||
this
|
||||
})
|
||||
}
|
||||
|
||||
/// Normalizes a value expression for use when creating an instance of this structure, returning a
|
||||
/// [`proc_macro2::TokenStream`] of tokens representing the normalized expression.
|
||||
fn normalize_value_expr(expr: &Expr) -> proc_macro2::TokenStream {
|
||||
match &expr {
|
||||
Expr::Path(ExprPath { qself: None, path, .. }) => {
|
||||
if let Some(ident) = map_path_to_ident(path, &["usize", "size_t"], "llvm_usize") {
|
||||
quote! { #ident }
|
||||
} else {
|
||||
abort!(
|
||||
path,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
Expr::Call(_) => {
|
||||
quote! { ctx.#expr }
|
||||
}
|
||||
|
||||
Expr::MethodCall(_) => {
|
||||
let base_receiver = iter_dot_operands(expr).last();
|
||||
|
||||
match base_receiver {
|
||||
// `usize.{...}`, `size_t.{...}` -> Rewrite the identifiers to `llvm_usize`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").is_some() =>
|
||||
{
|
||||
let ident =
|
||||
map_path_to_ident(path, &["usize", "size_t"], "llvm_usize").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// `ctx.{...}`, `context.{...}` -> Rewrite the identifiers to `ctx`
|
||||
Some(Expr::Path(ExprPath { qself: None, path, .. }))
|
||||
if map_path_to_ident(path, &["ctx", "context"], "ctx").is_some() =>
|
||||
{
|
||||
let ident = map_path_to_ident(path, &["ctx", "context"], "ctx").unwrap();
|
||||
|
||||
let mut expr = expr.clone();
|
||||
let expr = replace_top_level_receiver(&mut expr, ident).unwrap();
|
||||
|
||||
quote!(#expr)
|
||||
}
|
||||
|
||||
// No reserved identifier prefix -> Prepend `ctx.` to the entire expression
|
||||
_ => quote! { ctx.#expr },
|
||||
}
|
||||
}
|
||||
|
||||
_ => {
|
||||
abort!(
|
||||
expr,
|
||||
format!(
|
||||
"Expected one of `size_t`, `usize`, or an implicit call expression in #[value_type(...)], found {}",
|
||||
quote!(#expr).to_string(),
|
||||
)
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Derives an implementation of `codegen::types::structure::StructFields`.
|
||||
///
|
||||
/// The benefit of using `#[derive(StructFields)]` is that all index- or order-dependent logic required by
|
||||
/// `impl StructFields` is automatically generated by this implementation, including the field index as required by
|
||||
/// `StructField::new` and the fields as returned by `StructFields::to_vec`.
|
||||
///
|
||||
/// # Prerequisites
|
||||
///
|
||||
/// In order to derive from [`StructFields`], you must implement (or derive) [`Eq`] and [`Copy`] as required by
|
||||
/// `StructFields`.
|
||||
///
|
||||
/// Moreover, `#[derive(StructFields)]` can only be used for `struct`s with named fields, and may only contain fields
|
||||
/// with either `StructField` or [`PhantomData`] types.
|
||||
///
|
||||
/// # Attributes for [`StructFields`]
|
||||
///
|
||||
/// Each `StructField` field must be declared with the `#[value_type(...)]` attribute. The argument of `value_type`
|
||||
/// accepts one of the following:
|
||||
///
|
||||
/// - An expression returning an instance of `inkwell::types::BasicType` (with or without the receiver `ctx`/`context`).
|
||||
/// For example, `context.i8_type()`, `ctx.i8_type()`, and `i8_type()` all refer to `i8`.
|
||||
/// - The reserved identifiers `usize` and `size_t` referring to an `inkwell::types::IntType` of the platform-dependent
|
||||
/// integer size. `usize` and `size_t` can also be used as the receiver to other method calls, e.g.
|
||||
/// `usize.array_type(3)`.
|
||||
///
|
||||
/// # Example
|
||||
///
|
||||
/// The following is an example of an LLVM slice implemented using `#[derive(StructFields)]`.
|
||||
///
|
||||
/// ```rust,ignore
|
||||
/// use nac3core::{
|
||||
/// codegen::types::structure::StructField,
|
||||
/// inkwell::{
|
||||
/// values::{IntValue, PointerValue},
|
||||
/// AddressSpace,
|
||||
/// },
|
||||
/// };
|
||||
/// use nac3core_derive::StructFields;
|
||||
///
|
||||
/// // All classes that implement StructFields must also implement Eq and Copy
|
||||
/// #[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
/// pub struct SliceValue<'ctx> {
|
||||
/// // Declares ptr have a value type of i8*
|
||||
/// //
|
||||
/// // Can also be written as `ctx.i8_type().ptr_type(...)` or `context.i8_type().ptr_type(...)`
|
||||
/// #[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
/// ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
///
|
||||
/// // Declares len have a value type of usize, depending on the target compilation platform
|
||||
/// #[value_type(usize)]
|
||||
/// len: StructField<'ctx, IntValue<'ctx>>,
|
||||
/// }
|
||||
/// ```
|
||||
#[proc_macro_derive(StructFields, attributes(value_type))]
|
||||
#[proc_macro_error]
|
||||
pub fn derive(input: TokenStream) -> TokenStream {
|
||||
let input = parse_macro_input!(input as syn::DeriveInput);
|
||||
let ident = &input.ident;
|
||||
|
||||
let Data::Struct(DataStruct { fields, .. }) = &input.data else {
|
||||
abort!(input, "Only structs with named fields are supported");
|
||||
};
|
||||
if let Err(err_span) =
|
||||
fields
|
||||
.iter()
|
||||
.try_for_each(|field| if field.ident.is_some() { Ok(()) } else { Err(field.span()) })
|
||||
{
|
||||
abort!(err_span, "Only structs with named fields are supported");
|
||||
};
|
||||
|
||||
// Check if struct<'ctx>
|
||||
if input.generics.params.len() != 1 {
|
||||
abort!(input.generics, "Expected exactly 1 generic parameter")
|
||||
}
|
||||
|
||||
let phantom_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_some())
|
||||
.map(|field| field.ident.as_ref().unwrap())
|
||||
.cloned()
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
let field_info = fields
|
||||
.iter()
|
||||
.filter(|field| extract_generic_args("PhantomData", &field.ty).is_none())
|
||||
.map(|field| {
|
||||
let ident = field.ident.as_ref().unwrap();
|
||||
let ty = &field.ty;
|
||||
|
||||
let Some(_) = extract_generic_args("StructField", ty) else {
|
||||
abort!(field, "Only StructField and PhantomData are allowed")
|
||||
};
|
||||
|
||||
let attrs = &field.attrs;
|
||||
let Some(value_type_attr) =
|
||||
attrs.iter().find(|attr| attr.path().is_ident("value_type"))
|
||||
else {
|
||||
abort!(field, "Expected #[value_type(...)] attribute for field");
|
||||
};
|
||||
|
||||
let Ok(value_type_expr) = value_type_attr.parse_args::<Expr>() else {
|
||||
abort!(value_type_attr, "Expected expression in #[value_type(...)]");
|
||||
};
|
||||
|
||||
let value_expr_toks = normalize_value_expr(&value_type_expr);
|
||||
|
||||
(ident.clone(), value_expr_toks)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `<*>::new` impl of `StructField` and `PhantomData` for `StructFields::new`
|
||||
let phantoms_create = phantom_info
|
||||
.iter()
|
||||
.map(|id| quote! { #id: ::std::marker::PhantomData })
|
||||
.collect::<Vec<_>>();
|
||||
let fields_create = field_info
|
||||
.iter()
|
||||
.map(|(id, ty)| {
|
||||
let id_lit = LitStr::new(&id.to_string(), id.span());
|
||||
quote! {
|
||||
#id: ::nac3core::codegen::types::structure::StructField::create(
|
||||
&mut counter,
|
||||
#id_lit,
|
||||
#ty,
|
||||
)
|
||||
}
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
// `.into()` impl of `StructField` for `StructFields::to_vec`
|
||||
let fields_into =
|
||||
field_info.iter().map(|(id, _)| quote! { self.#id.into() }).collect::<Vec<_>>();
|
||||
|
||||
let impl_block = quote! {
|
||||
impl<'ctx> ::nac3core::codegen::types::structure::StructFields<'ctx> for #ident<'ctx> {
|
||||
fn new(ctx: impl ::nac3core::inkwell::context::AsContextRef<'ctx>, llvm_usize: ::nac3core::inkwell::types::IntType<'ctx>) -> Self {
|
||||
let ctx = unsafe { ::nac3core::inkwell::context::ContextRef::new(ctx.as_ctx_ref()) };
|
||||
|
||||
let mut counter = ::nac3core::codegen::types::structure::FieldIndexCounter::default();
|
||||
|
||||
#ident {
|
||||
#(#fields_create),*
|
||||
#(#phantoms_create),*
|
||||
}
|
||||
}
|
||||
|
||||
fn to_vec(&self) -> ::std::vec::Vec<(&'static str, ::nac3core::inkwell::types::BasicTypeEnum<'ctx>)> {
|
||||
vec![
|
||||
#(#fields_into),*
|
||||
]
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
impl_block.into()
|
||||
}
|
|
@ -0,0 +1,9 @@
|
|||
use nac3core_derive::StructFields;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct EmptyValue<'ctx> {
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,20 @@
|
|||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct NDArrayValue<'ctx> {
|
||||
#[value_type(usize)]
|
||||
ndims: StructField<'ctx, IntValue<'ctx>>,
|
||||
#[value_type(usize.ptr_type(AddressSpace::default()))]
|
||||
shape: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
data: StructField<'ctx, PointerValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,18 @@
|
|||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,18 @@
|
|||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(context.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,18 @@
|
|||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(ctx.i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(usize)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,18 @@
|
|||
use nac3core::{
|
||||
codegen::types::structure::StructField,
|
||||
inkwell::{
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
},
|
||||
};
|
||||
use nac3core_derive::StructFields;
|
||||
|
||||
#[derive(PartialEq, Eq, Clone, Copy, StructFields)]
|
||||
pub struct SliceValue<'ctx> {
|
||||
#[value_type(i8_type().ptr_type(AddressSpace::default()))]
|
||||
ptr: StructField<'ctx, PointerValue<'ctx>>,
|
||||
#[value_type(size_t)]
|
||||
len: StructField<'ctx, IntValue<'ctx>>,
|
||||
}
|
||||
|
||||
fn main() {}
|
|
@ -0,0 +1,10 @@
|
|||
#[test]
|
||||
fn test_parse_empty() {
|
||||
let t = trybuild::TestCases::new();
|
||||
t.pass("tests/structfields_empty.rs");
|
||||
t.pass("tests/structfields_slice.rs");
|
||||
t.pass("tests/structfields_slice_ctx.rs");
|
||||
t.pass("tests/structfields_slice_context.rs");
|
||||
t.pass("tests/structfields_slice_sizet.rs");
|
||||
t.pass("tests/structfields_ndarray.rs");
|
||||
}
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -1,3 +1,9 @@
|
|||
use std::collections::HashMap;
|
||||
|
||||
use indexmap::IndexMap;
|
||||
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::SymbolValue,
|
||||
toplevel::DefinitionId,
|
||||
|
@ -9,10 +15,6 @@ use crate::{
|
|||
},
|
||||
};
|
||||
|
||||
use indexmap::IndexMap;
|
||||
use nac3parser::ast::StrRef;
|
||||
use std::collections::HashMap;
|
||||
|
||||
pub struct ConcreteTypeStore {
|
||||
store: Vec<ConcreteTypeEnum>,
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,8 +1,10 @@
|
|||
use inkwell::attributes::{Attribute, AttributeLoc};
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::CodeGenContext;
|
||||
use super::CodeGenContext;
|
||||
|
||||
/// Macro to generate extern function
|
||||
/// Both function return type and function parameter type are `FloatValue`
|
||||
|
@ -13,8 +15,8 @@ use crate::codegen::CodeGenContext;
|
|||
/// * `$extern_fn:literal`: Name of underlying extern function
|
||||
///
|
||||
/// Optional Arguments:
|
||||
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function
|
||||
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly"
|
||||
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
|
||||
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
|
||||
/// These will be used unless other attributes are specified
|
||||
/// * `$(,$args:ident)*`: Operands of the extern function
|
||||
/// The data type of these operands will be set to `FloatValue`
|
||||
|
|
|
@ -1,16 +1,18 @@
|
|||
use crate::{
|
||||
codegen::{bool_to_i1, bool_to_i8, classes::ArraySliceValue, expr::*, stmt::*, CodeGenContext},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicTypeEnum, IntType},
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Expr, Stmt, StrRef};
|
||||
|
||||
use super::{bool_to_i1, bool_to_i8, expr::*, stmt::*, values::ArraySliceValue, CodeGenContext};
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
pub trait CodeGenerator {
|
||||
/// Return the module name for the code generator.
|
||||
fn get_name(&self) -> &str;
|
||||
|
@ -57,6 +59,7 @@ pub trait CodeGenerator {
|
|||
/// - fun: Function signature, definition ID and the substitution key.
|
||||
/// - params: Function parameters. Note that this does not include the object even if the
|
||||
/// function is a class method.
|
||||
///
|
||||
/// Note that this function should check if the function is generated in another thread (due to
|
||||
/// possible race condition), see the default implementation for an example.
|
||||
fn gen_func_instance<'ctx>(
|
||||
|
|
|
@ -0,0 +1,162 @@
|
|||
use inkwell::{
|
||||
types::BasicTypeEnum,
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::calculate_len_for_slice_range;
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
values::{ArrayLikeValue, ListValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// This function handles 'end' **inclusively**.
|
||||
/// Order of tuples `assign_idx` and `value_idx` is ('start', 'end', 'step').
|
||||
/// Negative index should be handled before entering this function
|
||||
pub fn list_slice_assignment<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: BasicTypeEnum<'ctx>,
|
||||
dest_arr: ListValue<'ctx>,
|
||||
dest_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
src_arr: ListValue<'ctx>,
|
||||
src_idx: (IntValue<'ctx>, IntValue<'ctx>, IntValue<'ctx>),
|
||||
) {
|
||||
let size_ty = generator.get_size_type(ctx.ctx);
|
||||
let int8_ptr = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let (fun_symbol, elem_ptr_type) = ("__nac3_list_slice_assign_var_size", int8_ptr);
|
||||
let slice_assign_fun = {
|
||||
let ty_vec = vec![
|
||||
int32.into(), // dest start idx
|
||||
int32.into(), // dest end idx
|
||||
int32.into(), // dest step
|
||||
elem_ptr_type.into(), // dest arr ptr
|
||||
int32.into(), // dest arr len
|
||||
int32.into(), // src start idx
|
||||
int32.into(), // src end idx
|
||||
int32.into(), // src step
|
||||
elem_ptr_type.into(), // src arr ptr
|
||||
int32.into(), // src arr len
|
||||
int32.into(), // size
|
||||
];
|
||||
ctx.module.get_function(fun_symbol).unwrap_or_else(|| {
|
||||
let fn_t = int32.fn_type(ty_vec.as_slice(), false);
|
||||
ctx.module.add_function(fun_symbol, fn_t, None)
|
||||
})
|
||||
};
|
||||
|
||||
let zero = int32.const_zero();
|
||||
let one = int32.const_int(1, false);
|
||||
let dest_arr_ptr = dest_arr.data().base_ptr(ctx, generator);
|
||||
let dest_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(dest_arr_ptr, elem_ptr_type, "dest_arr_ptr_cast").unwrap();
|
||||
let dest_len = dest_arr.load_size(ctx, Some("dest.len"));
|
||||
let dest_len = ctx.builder.build_int_truncate_or_bit_cast(dest_len, int32, "srclen32").unwrap();
|
||||
let src_arr_ptr = src_arr.data().base_ptr(ctx, generator);
|
||||
let src_arr_ptr =
|
||||
ctx.builder.build_pointer_cast(src_arr_ptr, elem_ptr_type, "src_arr_ptr_cast").unwrap();
|
||||
let src_len = src_arr.load_size(ctx, Some("src.len"));
|
||||
let src_len = ctx.builder.build_int_truncate_or_bit_cast(src_len, int32, "srclen32").unwrap();
|
||||
|
||||
// index in bound and positive should be done
|
||||
// assert if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest), and
|
||||
// throw exception if not satisfied
|
||||
let src_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, src_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(src_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(src_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let dest_end = ctx
|
||||
.builder
|
||||
.build_select(
|
||||
ctx.builder.build_int_compare(IntPredicate::SLT, dest_idx.2, zero, "is_neg").unwrap(),
|
||||
ctx.builder.build_int_sub(dest_idx.1, one, "e_min_one").unwrap(),
|
||||
ctx.builder.build_int_add(dest_idx.1, one, "e_add_one").unwrap(),
|
||||
"final_e",
|
||||
)
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let src_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, src_idx.0, src_end, src_idx.2);
|
||||
let dest_slice_len =
|
||||
calculate_len_for_slice_range(generator, ctx, dest_idx.0, dest_end, dest_idx.2);
|
||||
let src_eq_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, src_slice_len, dest_slice_len, "slice_src_eq_dest")
|
||||
.unwrap();
|
||||
let src_slt_dest = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::SLT, src_slice_len, dest_slice_len, "slice_src_slt_dest")
|
||||
.unwrap();
|
||||
let dest_step_eq_one = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
dest_idx.2,
|
||||
dest_idx.2.get_type().const_int(1, false),
|
||||
"slice_dest_step_eq_one",
|
||||
)
|
||||
.unwrap();
|
||||
let cond_1 = ctx.builder.build_and(dest_step_eq_one, src_slt_dest, "slice_cond_1").unwrap();
|
||||
let cond = ctx.builder.build_or(src_eq_dest, cond_1, "slice_cond").unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
"attempt to assign sequence of size {0} to slice of size {1} with step size {2}",
|
||||
[Some(src_slice_len), Some(dest_slice_len), Some(dest_idx.2)],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
let new_len = {
|
||||
let args = vec![
|
||||
dest_idx.0.into(), // dest start idx
|
||||
dest_idx.1.into(), // dest end idx
|
||||
dest_idx.2.into(), // dest step
|
||||
dest_arr_ptr.into(), // dest arr ptr
|
||||
dest_len.into(), // dest arr len
|
||||
src_idx.0.into(), // src start idx
|
||||
src_idx.1.into(), // src end idx
|
||||
src_idx.2.into(), // src step
|
||||
src_arr_ptr.into(), // src arr ptr
|
||||
src_len.into(), // src arr len
|
||||
{
|
||||
let s = match ty {
|
||||
BasicTypeEnum::FloatType(t) => t.size_of(),
|
||||
BasicTypeEnum::IntType(t) => t.size_of(),
|
||||
BasicTypeEnum::PointerType(t) => t.size_of(),
|
||||
BasicTypeEnum::StructType(t) => t.size_of().unwrap(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
ctx.builder.build_int_truncate_or_bit_cast(s, int32, "size").unwrap()
|
||||
}
|
||||
.into(),
|
||||
];
|
||||
ctx.builder
|
||||
.build_call(slice_assign_fun, args.as_slice(), "slice_assign")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
};
|
||||
// update length
|
||||
let need_update =
|
||||
ctx.builder.build_int_compare(IntPredicate::NE, new_len, dest_len, "need_update").unwrap();
|
||||
let current = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let update_bb = ctx.ctx.append_basic_block(current, "update");
|
||||
let cont_bb = ctx.ctx.append_basic_block(current, "cont");
|
||||
ctx.builder.build_conditional_branch(need_update, update_bb, cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(update_bb);
|
||||
let new_len = ctx.builder.build_int_z_extend_or_bit_cast(new_len, size_ty, "new_len").unwrap();
|
||||
dest_arr.store_size(ctx, generator, new_len);
|
||||
ctx.builder.build_unconditional_branch(cont_bb).unwrap();
|
||||
ctx.builder.position_at_end(cont_bb);
|
||||
}
|
|
@ -0,0 +1,152 @@
|
|||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{
|
||||
macros::codegen_unreachable,
|
||||
{CodeGenContext, CodeGenerator},
|
||||
};
|
||||
|
||||
// repeated squaring method adapted from GNU Scientific Library:
|
||||
// https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
pub fn integer_power<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
base: IntValue<'ctx>,
|
||||
exp: IntValue<'ctx>,
|
||||
signed: bool,
|
||||
) -> IntValue<'ctx> {
|
||||
let symbol = match (base.get_type().get_bit_width(), exp.get_type().get_bit_width(), signed) {
|
||||
(32, 32, true) => "__nac3_int_exp_int32_t",
|
||||
(64, 64, true) => "__nac3_int_exp_int64_t",
|
||||
(32, 32, false) => "__nac3_int_exp_uint32_t",
|
||||
(64, 64, false) => "__nac3_int_exp_uint64_t",
|
||||
_ => codegen_unreachable!(ctx),
|
||||
};
|
||||
let base_type = base.get_type();
|
||||
let pow_fun = ctx.module.get_function(symbol).unwrap_or_else(|| {
|
||||
let fn_type = base_type.fn_type(&[base_type.into(), base_type.into()], false);
|
||||
ctx.module.add_function(symbol, fn_type, None)
|
||||
});
|
||||
// throw exception when exp < 0
|
||||
let ge_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::SGE,
|
||||
exp,
|
||||
exp.get_type().const_zero(),
|
||||
"assert_int_pow_ge_0",
|
||||
)
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ge_zero,
|
||||
"0:ValueError",
|
||||
"integer power must be positive or zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(pow_fun, &[base.into(), exp.into()], "call_int_pow")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `isinf` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isinf<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isinf").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isinf", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isinf")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `isnan` in IR. Returns an `i1` representing the result.
|
||||
pub fn call_isnan<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
v: FloatValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_isnan").unwrap_or_else(|| {
|
||||
let fn_type = ctx.ctx.i32_type().fn_type(&[ctx.ctx.f64_type().into()], false);
|
||||
ctx.module.add_function("__nac3_isnan", fn_type, None)
|
||||
});
|
||||
|
||||
let ret = ctx
|
||||
.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "isnan")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
generator.bool_to_i1(ctx, ret)
|
||||
}
|
||||
|
||||
/// Generates a call to `gamma` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gamma<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gamma").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gamma", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gamma")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `gammaln` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_gammaln<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_gammaln").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_gammaln", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "gammaln")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `j0` in IR. Returns an `f64` representing the result.
|
||||
pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> FloatValue<'ctx> {
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let intrinsic_fn = ctx.module.get_function("__nac3_j0").unwrap_or_else(|| {
|
||||
let fn_type = llvm_f64.fn_type(&[llvm_f64.into()], false);
|
||||
ctx.module.add_function("__nac3_j0", fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[v.into()], "j0")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_float_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,384 @@
|
|||
use inkwell::{
|
||||
types::IntType,
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use crate::codegen::{
|
||||
llvm_intrinsics,
|
||||
macros::codegen_unreachable,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
values::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, NDArrayValue, TypedArrayLikeAccessor,
|
||||
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
/// calculated total size.
|
||||
///
|
||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
/// or [`None`] if starting from the first dimension and ending at the last dimension
|
||||
/// respectively.
|
||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dims: &Dims,
|
||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dims: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_size",
|
||||
64 => "__nac3_ndarray_calc_size64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
let ndarray_calc_size_fn =
|
||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
});
|
||||
|
||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_size_fn,
|
||||
&[
|
||||
dims.base_ptr(ctx, generator).into(),
|
||||
dims.size(ctx, generator).into(),
|
||||
begin.into(),
|
||||
end.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
/// containing `i32` indices of the flattened index.
|
||||
///
|
||||
/// * `index` - The index to compute the multidimensional index for.
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_nd_indices",
|
||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_nd_indices_fn =
|
||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_void.fn_type(
|
||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.shape();
|
||||
|
||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_nd_indices_fn,
|
||||
&[
|
||||
index.into(),
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Indices,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Indices: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
debug_assert_eq!(
|
||||
IntType::try_from(indices.element_type(ctx, generator))
|
||||
.map(IntType::get_bit_width)
|
||||
.unwrap_or_default(),
|
||||
llvm_i32.get_bit_width(),
|
||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
debug_assert_eq!(
|
||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
|
||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_flatten_index",
|
||||
64 => "__nac3_ndarray_flatten_index64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_flatten_index_fn =
|
||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.shape();
|
||||
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_call(
|
||||
ndarray_flatten_index_fn,
|
||||
&[
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
indices.size(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Index,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Index: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: NDArrayValue<'ctx>,
|
||||
rhs: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast",
|
||||
64 => "__nac3_ndarray_calc_broadcast64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
llvm_usize.const_zero(),
|
||||
(min_ndims, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
(
|
||||
lhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
rhs.shape().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
)
|
||||
};
|
||||
|
||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
let lhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let rhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
|
||||
let lhs_eq_rhs = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
.unwrap();
|
||||
|
||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
is_compatible,
|
||||
"0:ValueError",
|
||||
"operands could not be broadcast together",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
let lhs_dims = lhs.shape().base_ptr(ctx, generator);
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_dims = rhs.shape().base_ptr(ctx, generator);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[
|
||||
lhs_dims.into(),
|
||||
lhs_ndims.into(),
|
||||
rhs_dims.into(),
|
||||
rhs_ndims.into(),
|
||||
out_dims.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
out_dims,
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
/// array `broadcast_idx`.
|
||||
pub fn call_ndarray_calc_broadcast_index<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
array: NDArrayValue<'ctx>,
|
||||
broadcast_idx: &BroadcastIdx,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
bw => codegen_unreachable!(ctx, "Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
|
||||
let array_dims = array.shape().base_ptr(ctx, generator);
|
||||
let array_ndims = array.load_ndims(ctx);
|
||||
let broadcast_idx_ptr = unsafe {
|
||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
|
@ -0,0 +1,76 @@
|
|||
use inkwell::{
|
||||
values::{BasicValueEnum, CallSiteValue, IntValue},
|
||||
IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
use nac3parser::ast::Expr;
|
||||
|
||||
use crate::{
|
||||
codegen::{CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// this function allows index out of range, since python
|
||||
/// allows index out of range in slice (`a = [1,2,3]; a[1:10] == [2,3]`).
|
||||
pub fn handle_slice_index_bound<'ctx, G: CodeGenerator>(
|
||||
i: &Expr<Option<Type>>,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
length: IntValue<'ctx>,
|
||||
) -> Result<Option<IntValue<'ctx>>, String> {
|
||||
const SYMBOL: &str = "__nac3_slice_index_bound";
|
||||
let func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
let i = if let Some(v) = generator.gen_expr(ctx, i)? {
|
||||
v.to_basic_value_enum(ctx, generator, i.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
Ok(Some(
|
||||
ctx.builder
|
||||
.build_call(func, &[i.into(), length.into()], "bounded_ind")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap(),
|
||||
))
|
||||
}
|
||||
|
||||
pub fn calculate_len_for_slice_range<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
start: IntValue<'ctx>,
|
||||
end: IntValue<'ctx>,
|
||||
step: IntValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
const SYMBOL: &str = "__nac3_range_slice_len";
|
||||
let len_func = ctx.module.get_function(SYMBOL).unwrap_or_else(|| {
|
||||
let i32_t = ctx.ctx.i32_type();
|
||||
let fn_t = i32_t.fn_type(&[i32_t.into(), i32_t.into(), i32_t.into()], false);
|
||||
ctx.module.add_function(SYMBOL, fn_t, None)
|
||||
});
|
||||
|
||||
// assert step != 0, throw exception if not
|
||||
let not_zero = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, step, step.get_type().const_zero(), "range_step_ne")
|
||||
.unwrap();
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
not_zero,
|
||||
"0:ValueError",
|
||||
"step must not be zero",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
ctx.builder
|
||||
.build_call(len_func, &[start.into(), end.into(), step.into()], "calc_len")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
|
@ -1,26 +0,0 @@
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::{path::Path, process::Command};
|
||||
|
||||
#[test]
|
||||
fn run_irrt_test() {
|
||||
assert!(
|
||||
cfg!(feature = "test"),
|
||||
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
|
||||
);
|
||||
|
||||
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
|
||||
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
|
||||
|
||||
if !output.status.success() {
|
||||
eprintln!("irrt_test failed with status {}:", output.status);
|
||||
eprintln!("====== stdout ======");
|
||||
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
|
||||
eprintln!("====== stderr ======");
|
||||
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
|
||||
eprintln!("====================");
|
||||
|
||||
panic!("irrt_test failed");
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,12 +1,14 @@
|
|||
use crate::codegen::CodeGenContext;
|
||||
use inkwell::context::Context;
|
||||
use inkwell::intrinsics::Intrinsic;
|
||||
use inkwell::types::AnyTypeEnum::IntType;
|
||||
use inkwell::types::FloatType;
|
||||
use inkwell::values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue};
|
||||
use inkwell::AddressSpace;
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
intrinsics::Intrinsic,
|
||||
types::{AnyTypeEnum::IntType, FloatType},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
use itertools::Either;
|
||||
|
||||
use super::CodeGenContext;
|
||||
|
||||
/// Returns the string representation for the floating-point type `ft` when used in intrinsic
|
||||
/// functions.
|
||||
fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
||||
|
@ -183,7 +185,7 @@ pub fn call_memcpy_generic<'ctx>(
|
|||
dest
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bitcast(dest, llvm_p0i8, "")
|
||||
.build_bit_cast(dest, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
|
@ -191,7 +193,7 @@ pub fn call_memcpy_generic<'ctx>(
|
|||
src
|
||||
} else {
|
||||
ctx.builder
|
||||
.build_bitcast(src, llvm_p0i8, "")
|
||||
.build_bit_cast(src, llvm_p0i8, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap()
|
||||
};
|
||||
|
@ -205,8 +207,9 @@ pub fn call_memcpy_generic<'ctx>(
|
|||
/// * `$ctx:ident`: Reference to the current Code Generation Context
|
||||
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
|
||||
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type)
|
||||
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type
|
||||
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
|
||||
/// Use `BasicValueEnum::into_int_value` for Integer return type and
|
||||
/// `BasicValueEnum::into_float_value` for Float return type
|
||||
/// * `$llvm_ty:ident`: Type of first operand
|
||||
/// * `,($val:ident)*`: Comma separated list of operands
|
||||
macro_rules! generate_llvm_intrinsic_fn_body {
|
||||
|
@ -222,7 +225,7 @@ macro_rules! generate_llvm_intrinsic_fn_body {
|
|||
/// Arguments:
|
||||
/// * `float/int`: Indicates the return and argument type of the function
|
||||
/// * `$fn_name:ident`: The identifier of the rust function to be generated
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
|
||||
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
|
||||
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
|
||||
/// * `$val:ident`: The operand for unary operations
|
||||
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
use crate::{
|
||||
codegen::classes::{ListType, ProxyType, RangeType},
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
use std::{
|
||||
collections::{HashMap, HashSet},
|
||||
sync::{
|
||||
atomic::{AtomicBool, Ordering},
|
||||
Arc,
|
||||
},
|
||||
thread,
|
||||
};
|
||||
|
||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
|
@ -24,36 +24,52 @@ use inkwell::{
|
|||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use model::*;
|
||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||
use parking_lot::{Condvar, Mutex};
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::{
|
||||
atomic::{AtomicBool, Ordering},
|
||||
Arc,
|
||||
};
|
||||
use std::thread;
|
||||
use structure::{CSlice, Exception, NDArray};
|
||||
|
||||
pub mod classes;
|
||||
use nac3parser::ast::{Location, Stmt, StrRef};
|
||||
|
||||
use crate::{
|
||||
symbol_resolver::{StaticValue, SymbolResolver},
|
||||
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef},
|
||||
typecheck::{
|
||||
type_inferencer::{CodeLocation, PrimitiveStore},
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
};
|
||||
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
|
||||
pub use generator::{CodeGenerator, DefaultCodeGenerator};
|
||||
use types::{ListType, NDArrayType, ProxyType, RangeType};
|
||||
|
||||
pub mod builtin_fns;
|
||||
pub mod concrete_type;
|
||||
pub mod expr;
|
||||
pub mod extern_fns;
|
||||
mod generator;
|
||||
pub mod irrt;
|
||||
pub mod llvm_intrinsics;
|
||||
pub mod model;
|
||||
pub mod numpy;
|
||||
pub mod numpy_new;
|
||||
pub mod object;
|
||||
pub mod stmt;
|
||||
pub mod structure;
|
||||
pub mod types;
|
||||
pub mod values;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
||||
use concrete_type::{ConcreteType, ConcreteTypeEnum, ConcreteTypeStore};
|
||||
pub use generator::{CodeGenerator, DefaultCodeGenerator};
|
||||
mod macros {
|
||||
/// Codegen-variant of [`std::unreachable`] which accepts an instance of [`CodeGenContext`] as
|
||||
/// its first argument to provide Python source information to indicate the codegen location
|
||||
/// causing the assertion.
|
||||
macro_rules! codegen_unreachable {
|
||||
($ctx:expr $(,)?) => {
|
||||
std::unreachable!("unreachable code while processing {}", &$ctx.current_loc)
|
||||
};
|
||||
($ctx:expr, $($arg:tt)*) => {
|
||||
std::unreachable!("unreachable code while processing {}: {}", &$ctx.current_loc, std::format!("{}", std::format_args!($($arg)+)))
|
||||
};
|
||||
}
|
||||
|
||||
pub(crate) use codegen_unreachable;
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct StaticValueStore {
|
||||
|
@ -173,11 +189,11 @@ pub struct CodeGenContext<'ctx, 'a> {
|
|||
pub registry: &'a WorkerRegistry,
|
||||
|
||||
/// Cache for constant strings.
|
||||
pub const_strings: HashMap<String, Struct<'ctx, CSlice>>,
|
||||
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>,
|
||||
|
||||
/// [`BasicBlock`] containing all `alloca` statements for the current function.
|
||||
pub init_bb: BasicBlock<'ctx>,
|
||||
pub exception_val: Option<Ptr<'ctx, StructModel<Exception>>>,
|
||||
pub exception_val: Option<PointerValue<'ctx>>,
|
||||
|
||||
/// The header and exit basic blocks of a loop in this context. See
|
||||
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
|
||||
|
@ -494,8 +510,12 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
}
|
||||
|
||||
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let pndarray_model = PtrModel(StructModel(NDArray));
|
||||
pndarray_model.get_type(generator, ctx).as_basic_type_enum()
|
||||
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty);
|
||||
let element_type = get_llvm_type(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
@ -581,11 +601,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
) -> BasicTypeEnum<'ctx> {
|
||||
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
|
||||
// consistency.
|
||||
return if unifier.unioned(ty, primitives.bool) {
|
||||
if unifier.unioned(ty, primitives.bool) {
|
||||
ctx.bool_type().into()
|
||||
} else {
|
||||
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
/// Whether `sret` is needed for a return value with type `ty`.
|
||||
|
@ -701,19 +721,43 @@ pub fn gen_func_impl<
|
|||
..primitives
|
||||
};
|
||||
|
||||
let cslice_model = StructModel(CSlice);
|
||||
let pexn_model = PtrModel(StructModel(Exception));
|
||||
|
||||
let mut type_cache: HashMap<_, BasicTypeEnum<'ctx>> = [
|
||||
let mut type_cache: HashMap<_, _> = [
|
||||
(primitives.int32, context.i32_type().into()),
|
||||
(primitives.int64, context.i64_type().into()),
|
||||
(primitives.uint32, context.i32_type().into()),
|
||||
(primitives.uint64, context.i64_type().into()),
|
||||
(primitives.float, context.f64_type().into()),
|
||||
(primitives.bool, context.i8_type().into()),
|
||||
(primitives.str, cslice_model.get_type(generator, context).into()),
|
||||
(primitives.str, {
|
||||
let name = "str";
|
||||
match module.get_struct_type(name) {
|
||||
None => {
|
||||
let str_type = context.opaque_struct_type("str");
|
||||
let fields = [
|
||||
context.i8_type().ptr_type(AddressSpace::default()).into(),
|
||||
generator.get_size_type(context).into(),
|
||||
];
|
||||
str_type.set_body(&fields, false);
|
||||
str_type.into()
|
||||
}
|
||||
Some(t) => t.as_basic_type_enum(),
|
||||
}
|
||||
}),
|
||||
(primitives.range, RangeType::new(context).as_base_type().into()),
|
||||
(primitives.exception, pexn_model.get_type(generator, context).into()),
|
||||
(primitives.exception, {
|
||||
let name = "Exception";
|
||||
if let Some(t) = module.get_struct_type(name) {
|
||||
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
||||
} else {
|
||||
let exception = context.opaque_struct_type("Exception");
|
||||
let int32 = context.i32_type().into();
|
||||
let int64 = context.i64_type().into();
|
||||
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
|
||||
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
|
||||
exception.set_body(&fields, false);
|
||||
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
|
||||
}
|
||||
}),
|
||||
]
|
||||
.iter()
|
||||
.copied()
|
||||
|
@ -809,10 +853,9 @@ pub fn gen_func_impl<
|
|||
builder.position_at_end(init_bb);
|
||||
let body_bb = context.append_basic_block(fn_val, "body");
|
||||
|
||||
// Store non-vararg argument values into local variables
|
||||
let mut var_assignment = HashMap::new();
|
||||
let offset = u32::from(has_sret);
|
||||
|
||||
// Store non-vararg argument values into local variables
|
||||
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
|
||||
let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
|
||||
let local_type = get_llvm_type(
|
||||
|
|
|
@ -1,40 +0,0 @@
|
|||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum},
|
||||
values::BasicValueEnum,
|
||||
};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyModel<'ctx>(pub BasicTypeEnum<'ctx>);
|
||||
pub type Anything<'ctx> = Instance<'ctx, AnyModel<'ctx>>;
|
||||
|
||||
impl<'ctx> Model<'ctx> for AnyModel<'ctx> {
|
||||
type Value = BasicValueEnum<'ctx>;
|
||||
type Type = BasicTypeEnum<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> Self::Type {
|
||||
self.0
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &mut G,
|
||||
_ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
if ty == self.0 {
|
||||
Ok(())
|
||||
} else {
|
||||
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,122 +0,0 @@
|
|||
use inkwell::{
|
||||
context::Context,
|
||||
types::{ArrayType, BasicType, BasicTypeEnum},
|
||||
values::ArrayValue,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// A Model for an [`ArrayType`].
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ArrayModel<Element> {
|
||||
pub len: u32,
|
||||
pub element: Element,
|
||||
}
|
||||
pub type Array<'ctx, Element> = Instance<'ctx, ArrayModel<Element>>;
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for ArrayModel<Element> {
|
||||
type Value = ArrayValue<'ctx>;
|
||||
type Type = ArrayType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.element.get_type(generator, ctx).array_type(self.len)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let BasicTypeEnum::ArrayType(ty) = ty else {
|
||||
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
if ty.len() != self.len {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
|
||||
ty.len(),
|
||||
self.len
|
||||
)));
|
||||
}
|
||||
|
||||
self.element
|
||||
.check_type(generator, ctx, ty.get_element_type())
|
||||
.map_err(|err| err.under_context("an ArrayType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, ArrayModel<Element>> {
|
||||
/// Get the pointer to the `i`-th (0-based) array element.
|
||||
pub fn at<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: u32,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
assert!(i < self.model.0.len);
|
||||
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
|
||||
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
|
||||
|
||||
PtrModel(self.model.0.element).check_value(generator, ctx.ctx, ptr).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// Like [`ArrayModel`] but length is strongly-typed.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct NArrayModel<const LEN: u32, Element>(pub Element);
|
||||
pub type NArray<'ctx, const LEN: u32, Element> = Instance<'ctx, NArrayModel<LEN, Element>>;
|
||||
|
||||
impl<'ctx, const LEN: u32, Element: Model<'ctx>> NArrayModel<LEN, Element> {
|
||||
/// Forget the `LEN` constant generic and get an [`ArrayModel`] with the same length.
|
||||
pub fn forget_len(&self) -> ArrayModel<Element> {
|
||||
ArrayModel { element: self.0, len: LEN }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Model<'ctx> for NArrayModel<LEN, Element> {
|
||||
type Value = ArrayValue<'ctx>;
|
||||
type Type = ArrayType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
// Convenient implementation
|
||||
self.forget_len().get_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
// Convenient implementation
|
||||
self.forget_len().check_type(generator, ctx, ty)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, const LEN: u32, Element: Model<'ctx>> Ptr<'ctx, NArrayModel<LEN, Element>> {
|
||||
/// Get the pointer to the `i`-th (0-based) array element.
|
||||
pub fn at_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
i: u32,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
assert!(i < LEN);
|
||||
|
||||
let zero = ctx.ctx.i32_type().const_zero();
|
||||
let i = ctx.ctx.i32_type().const_int(u64::from(i), false);
|
||||
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], name).unwrap() };
|
||||
|
||||
PtrModel(self.model.0 .0).check_value(generator, ctx.ctx, ptr).unwrap()
|
||||
}
|
||||
}
|
|
@ -1,123 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::*, values::*};
|
||||
|
||||
use super::*;
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct ModelError(pub String);
|
||||
|
||||
impl ModelError {
|
||||
pub(super) fn under_context(mut self, context: &str) -> Self {
|
||||
self.0.push_str(" ... in ");
|
||||
self.0.push_str(context);
|
||||
self
|
||||
}
|
||||
}
|
||||
|
||||
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
|
||||
type Type: BasicType<'ctx>;
|
||||
|
||||
/// Return the [`BasicType`] of this model.
|
||||
#[must_use]
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
|
||||
|
||||
/// Check if a [`BasicType`] is the same type of this model.
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError>;
|
||||
|
||||
/// Create an instance from a value with [`Instance::model`] being this model.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
|
||||
#[must_use]
|
||||
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
|
||||
Instance { model: *self, value }
|
||||
}
|
||||
|
||||
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
|
||||
/// Wrap it into an [`Instance`] if it is.
|
||||
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: V,
|
||||
) -> Result<Instance<'ctx, Self>, ModelError> {
|
||||
let value = value.as_basic_value_enum();
|
||||
self.check_type(generator, ctx, value.get_type())
|
||||
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
|
||||
|
||||
let Ok(value) = Self::Value::try_from(value) else {
|
||||
unreachable!("check_type() has bad implementation")
|
||||
};
|
||||
Ok(self.believe_value(value))
|
||||
}
|
||||
|
||||
// Allocate a value on the stack and return its pointer.
|
||||
fn alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Self> {
|
||||
let pmodel = PtrModel(*self);
|
||||
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), name).unwrap();
|
||||
pmodel.believe_value(p)
|
||||
}
|
||||
|
||||
// Allocate an array on the stack and return its pointer.
|
||||
fn array_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Self> {
|
||||
let pmodel = PtrModel(*self);
|
||||
let p =
|
||||
ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, name).unwrap();
|
||||
pmodel.believe_value(p)
|
||||
}
|
||||
|
||||
fn var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: Option<&str>,
|
||||
) -> Result<Ptr<'ctx, Self>, String> {
|
||||
let pmodel = PtrModel(*self);
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_var_alloc(ctx, ty, name)?;
|
||||
Ok(pmodel.believe_value(p))
|
||||
}
|
||||
|
||||
fn array_var_alloca<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
len: IntValue<'ctx>,
|
||||
name: Option<&'ctx str>,
|
||||
) -> Result<Ptr<'ctx, Self>, String> {
|
||||
// TODO: Remove ArraySliceValue
|
||||
let pmodel = PtrModel(*self);
|
||||
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
|
||||
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
|
||||
Ok(pmodel.believe_value(PointerValue::from(p)))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct Instance<'ctx, M: Model<'ctx>> {
|
||||
/// The model of this instance.
|
||||
pub model: M,
|
||||
/// The value of this instance.
|
||||
///
|
||||
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
|
||||
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
|
||||
pub value: M::Value,
|
||||
}
|
|
@ -1,88 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::FloatType, values::FloatValue};
|
||||
|
||||
use crate::codegen::CodeGenerator;
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Float64;
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float32 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for Float64 {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
ctx.f64_type()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
|
||||
|
||||
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
|
||||
fn get_float_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> FloatType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct FloatModel<N>(pub N);
|
||||
pub type Float<'ctx, N> = Instance<'ctx, FloatModel<N>>;
|
||||
|
||||
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for FloatModel<N> {
|
||||
type Value = FloatValue<'ctx>;
|
||||
type Type = FloatType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_float_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = FloatType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_float_type(generator, ctx);
|
||||
|
||||
// TODO: Inkwell does not have get_bit_width for FloatType?
|
||||
// TODO: Quick hack for now, but does this actually work?
|
||||
if ty != exp_ty {
|
||||
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -1,125 +0,0 @@
|
|||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
|
||||
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
// When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
|
||||
// When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
|
||||
#[must_use]
|
||||
pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'_, '_>,
|
||||
name: &str,
|
||||
) -> String {
|
||||
let mut name = name.to_owned();
|
||||
match generator.get_size_type(ctx.ctx).get_bit_width() {
|
||||
32 => {}
|
||||
64 => name.push_str("64"),
|
||||
bit_width => {
|
||||
panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
|
||||
}
|
||||
}
|
||||
name
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
struct Arg<'ctx> {
|
||||
ty: BasicMetadataTypeEnum<'ctx>,
|
||||
val: BasicMetadataValueEnum<'ctx>,
|
||||
}
|
||||
|
||||
/// A structure to construct & call an LLVM function.
|
||||
///
|
||||
/// This is a helper to reduce IRRT Inkwell function call boilerplate
|
||||
// TODO: Remove the lifetimes somehow? There is 4 of them.
|
||||
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
|
||||
generator: &'d mut G,
|
||||
ctx: &'b CodeGenContext<'ctx, 'a>,
|
||||
/// Function name
|
||||
name: &'c str,
|
||||
/// Call arguments
|
||||
args: Vec<Arg<'ctx>>,
|
||||
/// LLVM function Attributes
|
||||
attrs: Vec<&'static str>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
|
||||
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
|
||||
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
|
||||
}
|
||||
|
||||
/// Push a list of LLVM function attributes to the function declaration.
|
||||
#[must_use]
|
||||
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
|
||||
self.attrs = attrs;
|
||||
self
|
||||
}
|
||||
|
||||
/// Push a call argument to the function call.
|
||||
#[allow(clippy::needless_pass_by_value)]
|
||||
#[must_use]
|
||||
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
|
||||
let arg = Arg {
|
||||
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
|
||||
val: arg.value.as_basic_value_enum().into(),
|
||||
};
|
||||
self.args.push(arg);
|
||||
self
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a value of type of `return_model`.
|
||||
#[must_use]
|
||||
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
|
||||
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
|
||||
|
||||
let ret = self.get_function(|tys| ret_ty.fn_type(tys, false), name);
|
||||
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
|
||||
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
|
||||
ret
|
||||
}
|
||||
|
||||
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
|
||||
#[must_use]
|
||||
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
|
||||
self.returning(name, M::default())
|
||||
}
|
||||
|
||||
/// Call the function and expect the function to return a void-type.
|
||||
pub fn returning_void(self) {
|
||||
let ret_ty = self.ctx.ctx.void_type();
|
||||
|
||||
let _ = self.get_function(|tys| ret_ty.fn_type(tys, false), "");
|
||||
}
|
||||
|
||||
fn get_function<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
|
||||
where
|
||||
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
|
||||
{
|
||||
// Get the LLVM function.
|
||||
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
|
||||
// Declare the function if it doesn't exist.
|
||||
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
|
||||
|
||||
let func_type = make_fn_type(&tys);
|
||||
let func = self.ctx.module.add_function(self.name, func_type, None);
|
||||
|
||||
for attr in &self.attrs {
|
||||
func.add_attribute(
|
||||
AttributeLoc::Function,
|
||||
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
|
||||
);
|
||||
}
|
||||
|
||||
func
|
||||
});
|
||||
|
||||
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
|
||||
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
|
||||
}
|
||||
}
|
|
@ -1,275 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{context::Context, types::IntType, values::IntValue, IntPredicate};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx>;
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Bool;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Byte;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int32;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct Int64;
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct SizeT;
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Bool {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.bool_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Byte {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i8_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int32 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i32_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for Int64 {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
ctx.i64_type()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for SizeT {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
generator.get_size_type(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
|
||||
fn get_int_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
_generator: &G,
|
||||
_ctx: &'ctx Context,
|
||||
) -> IntType<'ctx> {
|
||||
self.0
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct IntModel<N>(pub N);
|
||||
pub type Int<'ctx, N> = Instance<'ctx, IntModel<N>>;
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for IntModel<N> {
|
||||
type Value = IntValue<'ctx>;
|
||||
type Type = IntType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_int_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = IntType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let exp_ty = self.0.get_int_type(generator, ctx);
|
||||
if ty.get_bit_width() != exp_ty.get_bit_width() {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting IntType to have {} bit(s), but got {} bit(s)",
|
||||
exp_ty.get_bit_width(),
|
||||
ty.get_bit_width()
|
||||
)));
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> IntModel<N> {
|
||||
pub fn constant<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
value: u64,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = self.get_type(generator, ctx).const_int(value, false);
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn const_0<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, N> {
|
||||
self.constant(generator, ctx, 0)
|
||||
}
|
||||
|
||||
pub fn const_1<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, N> {
|
||||
self.constant(generator, ctx, 1)
|
||||
}
|
||||
|
||||
pub fn const_all_1s<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = self.get_type(generator, ctx).const_all_ones();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), name)
|
||||
.unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn truncate<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
value: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, N> {
|
||||
let value =
|
||||
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), name).unwrap();
|
||||
self.believe_value(value)
|
||||
}
|
||||
}
|
||||
|
||||
impl IntModel<Bool> {
|
||||
#[must_use]
|
||||
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, Bool> {
|
||||
self.constant(generator, ctx, 0)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, Bool> {
|
||||
self.constant(generator, ctx, 1)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, N: IntKind<'ctx>> Int<'ctx, N> {
|
||||
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
name: &str,
|
||||
) -> Int<'ctx, NewN> {
|
||||
IntModel(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value, name)
|
||||
}
|
||||
|
||||
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
to_int_kind: NewN,
|
||||
name: &str,
|
||||
) -> Int<'ctx, NewN> {
|
||||
IntModel(to_int_kind).truncate(generator, ctx, self.value, name)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn add(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
other: Int<'ctx, N>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = ctx.builder.build_int_add(self.value, other.value, name).unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn sub(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
other: Int<'ctx, N>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = ctx.builder.build_int_sub(self.value, other.value, name).unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn mul(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
other: Int<'ctx, N>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, N> {
|
||||
let value = ctx.builder.build_int_mul(self.value, other.value, name).unwrap();
|
||||
self.model.believe_value(value)
|
||||
}
|
||||
|
||||
pub fn compare(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
op: IntPredicate,
|
||||
other: Int<'ctx, N>,
|
||||
name: &str,
|
||||
) -> Int<'ctx, Bool> {
|
||||
let bool_model = IntModel(Bool);
|
||||
let value = ctx.builder.build_int_compare(op, self.value, other.value, name).unwrap();
|
||||
bool_model.believe_value(value)
|
||||
}
|
||||
}
|
|
@ -1,17 +0,0 @@
|
|||
mod any;
|
||||
mod array;
|
||||
mod core;
|
||||
mod float;
|
||||
pub mod function;
|
||||
mod int;
|
||||
mod ptr;
|
||||
mod structure;
|
||||
pub mod util;
|
||||
|
||||
pub use any::*;
|
||||
pub use array::*;
|
||||
pub use core::*;
|
||||
pub use float::*;
|
||||
pub use int::*;
|
||||
pub use ptr::*;
|
||||
pub use structure::*;
|
|
@ -1,145 +0,0 @@
|
|||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, PointerType},
|
||||
values::{IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct PtrModel<Element>(pub Element);
|
||||
pub type Ptr<'ctx, Element> = Instance<'ctx, PtrModel<Element>>;
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Model<'ctx> for PtrModel<Element> {
|
||||
type Value = PointerValue<'ctx>;
|
||||
type Type = PointerType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = PointerType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let elem_ty = ty.get_element_type();
|
||||
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
|
||||
)));
|
||||
};
|
||||
|
||||
// TODO: inkwell `get_element_type()` will be deprecated.
|
||||
// Remove the check for `get_element_type()` when the time comes.
|
||||
self.0
|
||||
.check_type(generator, ctx, elem_ty)
|
||||
.map_err(|err| err.under_context("a PointerType"))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> PtrModel<Element> {
|
||||
/// Return a ***constant*** nullptr.
|
||||
pub fn nullptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
let ptr = self.get_type(generator, ctx).const_null();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
|
||||
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
let ptr =
|
||||
ctx.builder.build_pointer_cast(ptr, self.get_type(generator, ctx.ctx), name).unwrap();
|
||||
self.believe_value(ptr)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: Model<'ctx>> Ptr<'ctx, Element> {
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
|
||||
#[must_use]
|
||||
pub fn offset<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
let new_ptr =
|
||||
unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], name).unwrap() };
|
||||
self.model.check_value(generator, ctx.ctx, new_ptr).unwrap()
|
||||
}
|
||||
|
||||
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
|
||||
#[must_use]
|
||||
pub fn offset_const<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
offset: u64,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, Element> {
|
||||
let offset = ctx.ctx.i32_type().const_int(offset, false);
|
||||
self.offset(generator, ctx, offset, name)
|
||||
}
|
||||
|
||||
/// Load the value with [`inkwell::builder::Builder::build_load`].
|
||||
pub fn load<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
name: &str,
|
||||
) -> Instance<'ctx, Element> {
|
||||
let value = ctx.builder.build_load(self.value, name).unwrap();
|
||||
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
|
||||
}
|
||||
|
||||
/// Store a value with [`inkwell::builder::Builder::build_store`].
|
||||
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Element>) {
|
||||
ctx.builder.build_store(self.value, value.value).unwrap();
|
||||
}
|
||||
|
||||
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
|
||||
pub fn pointer_cast<NewElement: Model<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
new_model: NewElement,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, NewElement> {
|
||||
PtrModel(new_model).pointer_cast(generator, ctx, self.value, name)
|
||||
}
|
||||
|
||||
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
|
||||
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
|
||||
let bool_model = IntModel(Bool);
|
||||
let value = ctx.builder.build_is_null(self.value, name).unwrap();
|
||||
bool_model.believe_value(value)
|
||||
}
|
||||
|
||||
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
|
||||
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Int<'ctx, Bool> {
|
||||
let bool_model = IntModel(Bool);
|
||||
let value = ctx.builder.build_is_not_null(self.value, name).unwrap();
|
||||
bool_model.believe_value(value)
|
||||
}
|
||||
}
|
|
@ -1,222 +0,0 @@
|
|||
use std::fmt;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, StructType},
|
||||
values::StructValue,
|
||||
};
|
||||
|
||||
use crate::codegen::{CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct GepField<M> {
|
||||
pub gep_index: u64,
|
||||
pub name: &'static str,
|
||||
pub model: M,
|
||||
}
|
||||
|
||||
pub trait FieldTraversal<'ctx> {
|
||||
type Out<M>;
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
|
||||
|
||||
/// Like [`FieldTraversal::visit`] but [`Model`] is automatically inferred from [`Default`] trait.
|
||||
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
|
||||
self.add(name, M::default())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GepFieldTraversal {
|
||||
gep_index_counter: u64,
|
||||
}
|
||||
|
||||
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
|
||||
type Out<M> = GepField<M>;
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let gep_index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
Self::Out { gep_index, name, model }
|
||||
}
|
||||
}
|
||||
|
||||
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a G,
|
||||
ctx: &'ctx Context,
|
||||
field_types: Vec<BasicTypeEnum<'ctx>>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
|
||||
type Out<M> = ();
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
|
||||
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
|
||||
self.field_types.push(t);
|
||||
}
|
||||
}
|
||||
|
||||
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
|
||||
generator: &'a mut G,
|
||||
ctx: &'ctx Context,
|
||||
index: u32,
|
||||
scrutinee: StructType<'ctx>,
|
||||
errors: Vec<ModelError>,
|
||||
}
|
||||
|
||||
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
|
||||
for CheckTypeFieldTraversal<'ctx, 'a, G>
|
||||
{
|
||||
type Out<M> = ();
|
||||
|
||||
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
|
||||
let i = self.index;
|
||||
self.index += 1;
|
||||
|
||||
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
|
||||
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
|
||||
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
|
||||
}
|
||||
} // Otherwise, it will be caught
|
||||
}
|
||||
}
|
||||
|
||||
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
|
||||
type Fields<F: FieldTraversal<'ctx>>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
|
||||
|
||||
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
|
||||
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
|
||||
}
|
||||
|
||||
fn get_struct_type<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &G,
|
||||
ctx: &'ctx Context,
|
||||
) -> StructType<'ctx> {
|
||||
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
|
||||
self.traverse_fields(&mut traversal);
|
||||
|
||||
ctx.struct_type(&traversal.field_types, false)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct StructModel<S>(pub S);
|
||||
pub type Struct<'ctx, S> = Instance<'ctx, StructModel<S>>;
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for StructModel<S> {
|
||||
type Value = StructValue<'ctx>;
|
||||
type Type = StructType<'ctx>;
|
||||
|
||||
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
|
||||
self.0.get_struct_type(generator, ctx)
|
||||
}
|
||||
|
||||
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
ty: T,
|
||||
) -> Result<(), ModelError> {
|
||||
let ty = ty.as_basic_type_enum();
|
||||
let Ok(ty) = StructType::try_from(ty) else {
|
||||
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
|
||||
};
|
||||
|
||||
let mut traversal =
|
||||
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
|
||||
self.0.traverse_fields(&mut traversal);
|
||||
|
||||
let exp_num_fields = traversal.index;
|
||||
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
|
||||
if exp_num_fields != got_num_fields {
|
||||
return Err(ModelError(format!(
|
||||
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
|
||||
)));
|
||||
}
|
||||
|
||||
if !traversal.errors.is_empty() {
|
||||
return Err(traversal.errors[0].clone()); // TODO: Return other errors as well
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Struct<'ctx, S> {
|
||||
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
get_field: GetField,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0.fields());
|
||||
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
|
||||
field.model.check_value(generator, ctx, val).unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, S: StructKind<'ctx>> Ptr<'ctx, StructModel<S>> {
|
||||
pub fn gep<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
) -> Ptr<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
let field = get_field(self.model.0 .0.fields());
|
||||
let llvm_i32 = ctx.ctx.i32_type(); // i64 would segfault
|
||||
|
||||
let ptr = unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
self.value,
|
||||
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
|
||||
field.name,
|
||||
)
|
||||
.unwrap()
|
||||
};
|
||||
|
||||
let ptr_model = PtrModel(field.model);
|
||||
ptr_model.believe_value(ptr)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).load(...)`.
|
||||
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
name: &str,
|
||||
) -> Instance<'ctx, M>
|
||||
where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).load(generator, ctx, name)
|
||||
}
|
||||
|
||||
/// Convenience function equivalent to `.gep(...).store(...)`.
|
||||
pub fn set<M, GetField>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
get_field: GetField,
|
||||
value: Instance<'ctx, M>,
|
||||
) where
|
||||
M: Model<'ctx>,
|
||||
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
|
||||
{
|
||||
self.gep(ctx, get_field).store(ctx, value);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add an opaque struct type?
|
|
@ -1,62 +0,0 @@
|
|||
use inkwell::{types::BasicType, values::IntValue};
|
||||
|
||||
/// `llvm.memcpy` but under the [`Model`] abstraction
|
||||
use crate::codegen::{
|
||||
llvm_intrinsics::call_memcpy_generic,
|
||||
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
|
||||
/// Convenience function.
|
||||
///
|
||||
/// Like [`call_memcpy_generic`] but with model abstractions and `is_volatile` set to `false`.
|
||||
pub fn call_memcpy_model<'ctx, Item: Model<'ctx> + Default, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_array: Ptr<'ctx, Item>,
|
||||
src_array: Ptr<'ctx, Item>,
|
||||
num_items: IntValue<'ctx>,
|
||||
) {
|
||||
let itemsize = Item::default().get_type(generator, ctx.ctx).size_of().unwrap();
|
||||
let totalsize = ctx.builder.build_int_mul(itemsize, num_items, "totalsize").unwrap(); // TODO: Int types may not match.
|
||||
let is_volatile = ctx.ctx.bool_type().const_zero();
|
||||
call_memcpy_generic(ctx, dst_array.value, src_array.value, totalsize, is_volatile);
|
||||
}
|
||||
|
||||
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
|
||||
/// The [`IntKind`] is automatically inferred.
|
||||
pub fn gen_for_model_auto<'ctx, 'a, G, F, I>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
start: Int<'ctx, I>,
|
||||
stop: Int<'ctx, I>,
|
||||
step: Int<'ctx, I>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
Int<'ctx, I>,
|
||||
) -> Result<(), String>,
|
||||
I: IntKind<'ctx> + Default,
|
||||
{
|
||||
let int_model = IntModel(I::default());
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
None,
|
||||
start.value,
|
||||
(stop.value, false),
|
||||
|g, ctx, hooks, i| {
|
||||
let i = int_model.believe_value(i);
|
||||
body(g, ctx, hooks, i)
|
||||
},
|
||||
step.value,
|
||||
)
|
||||
}
|
|
@ -1,23 +1,32 @@
|
|||
use crate::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
|
||||
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
},
|
||||
use inkwell::{
|
||||
types::{AnyTypeEnum, BasicType, BasicTypeEnum, PointerType},
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
|
||||
use nac3parser::ast::{Operator, StrRef};
|
||||
|
||||
use super::{
|
||||
expr::gen_binop_expr_with_values,
|
||||
irrt::{
|
||||
calculate_len_for_slice_range, call_ndarray_calc_broadcast,
|
||||
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
|
||||
call_ndarray_calc_size,
|
||||
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices, call_ndarray_calc_size,
|
||||
},
|
||||
llvm_intrinsics::{self, call_memcpy_generic},
|
||||
macros::codegen_unreachable,
|
||||
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
|
||||
CodeGenContext, CodeGenerator,
|
||||
types::{ListType, NDArrayType, ProxyType},
|
||||
values::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListValue, NDArrayValue, ProxyValue,
|
||||
TypedArrayLikeAccessor, TypedArrayLikeAdapter, TypedArrayLikeMutator,
|
||||
UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
helper::PrimDef,
|
||||
helper::{arraylike_flatten_element_type, PrimDef},
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||
DefinitionId,
|
||||
},
|
||||
|
@ -26,16 +35,6 @@ use crate::{
|
|||
typedef::{FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
types::BasicType,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use inkwell::{
|
||||
types::{AnyTypeEnum, BasicTypeEnum, PointerType},
|
||||
values::BasicValue,
|
||||
};
|
||||
use nac3parser::ast::{Operator, StrRef};
|
||||
|
||||
/// Creates an uninitialized `NDArray` instance.
|
||||
fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
||||
|
@ -43,6 +42,7 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
@ -55,7 +55,7 @@ fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
let ndarray = generator.gen_var_alloc(ctx, llvm_ndarray_t.into(), None)?;
|
||||
|
||||
Ok(NDArrayValue::from_ptr_val(ndarray, llvm_usize, None))
|
||||
Ok(NDArrayValue::from_pointer_value(ndarray, llvm_elem_ty, llvm_usize, None))
|
||||
}
|
||||
|
||||
/// Creates an `NDArray` instance from a dynamic shape.
|
||||
|
@ -128,7 +128,7 @@ where
|
|||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
// Copy the dimension sizes from shape to ndarray.dims
|
||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||
|
@ -144,7 +144,7 @@ where
|
|||
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
|
||||
|
||||
let ndarray_pdim =
|
||||
unsafe { ndarray.dim_sizes().ptr_offset_unchecked(ctx, generator, &i, None) };
|
||||
unsafe { ndarray.shape().ptr_offset_unchecked(ctx, generator, &i, None) };
|
||||
|
||||
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
|
||||
|
||||
|
@ -195,12 +195,12 @@ pub fn create_ndarray_const_shape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
ndarray.create_shape(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
for (i, &shape_dim) in shape.iter().enumerate() {
|
||||
let shape_dim = ctx.builder.build_int_z_extend(shape_dim, llvm_usize, "").unwrap();
|
||||
let ndarray_dim = unsafe {
|
||||
ndarray.dim_sizes().ptr_offset_unchecked(
|
||||
ndarray.shape().ptr_offset_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, true),
|
||||
|
@ -229,7 +229,7 @@ fn ndarray_init_data<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
||||
&ndarray.shape().as_slice_value(ctx, generator),
|
||||
(None, None),
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
@ -257,9 +257,9 @@ fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
|||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").value.into()
|
||||
ctx.gen_string(generator, "").into()
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -285,9 +285,9 @@ fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
|||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").value.into()
|
||||
ctx.gen_string(generator, "1").into()
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -315,11 +315,11 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
match shape {
|
||||
BasicValueEnum::PointerValue(shape_list_ptr)
|
||||
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
{
|
||||
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
|
||||
let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
|
||||
create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
|
@ -355,7 +355,7 @@ fn call_ndarray_empty_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
|
||||
}
|
||||
_ => unreachable!(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -380,7 +380,7 @@ where
|
|||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
||||
&ndarray.shape().as_slice_value(ctx, generator),
|
||||
(None, None),
|
||||
);
|
||||
|
||||
|
@ -474,8 +474,8 @@ fn ndarray_broadcast_fill<'ctx, 'a, G, ValueFn>(
|
|||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
res: NDArrayValue<'ctx>,
|
||||
lhs: (BasicValueEnum<'ctx>, bool),
|
||||
rhs: (BasicValueEnum<'ctx>, bool),
|
||||
lhs: (Type, BasicValueEnum<'ctx>, bool),
|
||||
rhs: (Type, BasicValueEnum<'ctx>, bool),
|
||||
value_fn: ValueFn,
|
||||
) -> Result<NDArrayValue<'ctx>, String>
|
||||
where
|
||||
|
@ -488,8 +488,8 @@ where
|
|||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let (lhs_val, lhs_scalar) = lhs;
|
||||
let (rhs_val, rhs_scalar) = rhs;
|
||||
let (lhs_ty, lhs_val, lhs_scalar) = lhs;
|
||||
let (rhs_ty, rhs_val, rhs_scalar) = rhs;
|
||||
|
||||
assert!(
|
||||
!(lhs_scalar && rhs_scalar),
|
||||
|
@ -500,12 +500,26 @@ where
|
|||
|
||||
// Assert that all ndarray operands are broadcastable to the target size
|
||||
if !lhs_scalar {
|
||||
let lhs_val = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
|
||||
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
|
||||
let lhs_val = NDArrayValue::from_pointer_value(
|
||||
lhs_val.into_pointer_value(),
|
||||
llvm_lhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
ndarray_assert_is_broadcastable(generator, ctx, res, lhs_val);
|
||||
}
|
||||
|
||||
if !rhs_scalar {
|
||||
let rhs_val = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
|
||||
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
|
||||
let rhs_val = NDArrayValue::from_pointer_value(
|
||||
rhs_val.into_pointer_value(),
|
||||
llvm_rhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
ndarray_assert_is_broadcastable(generator, ctx, res, rhs_val);
|
||||
}
|
||||
|
||||
|
@ -513,7 +527,14 @@ where
|
|||
let lhs_elem = if lhs_scalar {
|
||||
lhs_val
|
||||
} else {
|
||||
let lhs = NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
|
||||
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
|
||||
let lhs = NDArrayValue::from_pointer_value(
|
||||
lhs_val.into_pointer_value(),
|
||||
llvm_lhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
let lhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, lhs, idx);
|
||||
|
||||
unsafe { lhs.data().get_unchecked(ctx, generator, &lhs_idx, None) }
|
||||
|
@ -522,7 +543,14 @@ where
|
|||
let rhs_elem = if rhs_scalar {
|
||||
rhs_val
|
||||
} else {
|
||||
let rhs = NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
|
||||
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
|
||||
let rhs = NDArrayValue::from_pointer_value(
|
||||
rhs_val.into_pointer_value(),
|
||||
llvm_rhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
let rhs_idx = call_ndarray_calc_broadcast_index(generator, ctx, rhs, idx);
|
||||
|
||||
unsafe { rhs.data().get_unchecked(ctx, generator, &rhs_idx, None) }
|
||||
|
@ -626,7 +654,7 @@ fn call_ndarray_full_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
} else if fill_value.is_int_value() || fill_value.is_float_value() {
|
||||
fill_value
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
|
@ -648,11 +676,15 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
let ndims = llvm_usize.const_int(1, false);
|
||||
match list_elem_ty {
|
||||
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
|
||||
AnyTypeEnum::PointerType(ptr_ty)
|
||||
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
ndims.const_add(llvm_ndlist_get_ndims(generator, ctx, ptr_ty))
|
||||
}
|
||||
|
||||
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
|
||||
AnyTypeEnum::PointerType(ptr_ty)
|
||||
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
todo!("Getting ndims for list[ndarray] not supported")
|
||||
}
|
||||
|
||||
|
@ -664,16 +696,20 @@ fn llvm_ndlist_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
|||
fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
(ty, value): (Type, BasicValueEnum<'ctx>),
|
||||
) -> IntValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
match value {
|
||||
BasicValueEnum::PointerValue(v) if NDArrayValue::is_instance(v, llvm_usize).is_ok() => {
|
||||
NDArrayValue::from_ptr_val(v, llvm_usize, None).load_ndims(ctx)
|
||||
BasicValueEnum::PointerValue(v)
|
||||
if NDArrayValue::is_representable(v, llvm_usize).is_ok() =>
|
||||
{
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, ty);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
|
||||
NDArrayValue::from_pointer_value(v, llvm_elem_ty, llvm_usize, None).load_ndims(ctx)
|
||||
}
|
||||
|
||||
BasicValueEnum::PointerValue(v) if ListValue::is_instance(v, llvm_usize).is_ok() => {
|
||||
BasicValueEnum::PointerValue(v) if ListValue::is_representable(v, llvm_usize).is_ok() => {
|
||||
llvm_ndlist_get_ndims(generator, ctx, v.get_type())
|
||||
}
|
||||
|
||||
|
@ -685,7 +721,6 @@ fn llvm_arraylike_get_ndims<'ctx, G: CodeGenerator + ?Sized>(
|
|||
fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
|
||||
src_lst: ListValue<'ctx>,
|
||||
dim: u64,
|
||||
|
@ -696,13 +731,15 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let list_elem_ty = src_lst.get_type().element_type();
|
||||
|
||||
match list_elem_ty {
|
||||
AnyTypeEnum::PointerType(ptr_ty) if ListType::is_type(ptr_ty, llvm_usize).is_ok() => {
|
||||
AnyTypeEnum::PointerType(ptr_ty)
|
||||
if ListType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
// The stride of elements in this dimension, i.e. the number of elements between arr[i]
|
||||
// and arr[i + 1] in this dimension
|
||||
let stride = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&dst_arr.dim_sizes(),
|
||||
&dst_arr.shape(),
|
||||
(Some(llvm_usize.const_int(dim + 1, false)), None),
|
||||
);
|
||||
|
||||
|
@ -716,11 +753,25 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|_, _| Ok(llvm_usize.const_int(1, false)),
|
||||
|generator, ctx, _, i| {
|
||||
let offset = ctx.builder.build_int_mul(stride, i, "").unwrap();
|
||||
let offset = ctx
|
||||
.builder
|
||||
.build_int_mul(
|
||||
offset,
|
||||
ctx.builder
|
||||
.build_int_truncate_or_bit_cast(
|
||||
dst_arr.get_type().element_type().size_of().unwrap(),
|
||||
offset.get_type(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let dst_ptr =
|
||||
unsafe { ctx.builder.build_gep(dst_slice_ptr, &[offset], "").unwrap() };
|
||||
|
||||
let nested_lst_elem = ListValue::from_ptr_val(
|
||||
let nested_lst_elem = ListValue::from_pointer_value(
|
||||
unsafe { src_lst.data().get_unchecked(ctx, generator, &i, None) }
|
||||
.into_pointer_value(),
|
||||
llvm_usize,
|
||||
|
@ -730,7 +781,6 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray_from_ndlist_impl(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
(dst_arr, dst_ptr),
|
||||
nested_lst_elem,
|
||||
dim + 1,
|
||||
|
@ -741,13 +791,15 @@ fn ndarray_from_ndlist_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
)?;
|
||||
}
|
||||
|
||||
AnyTypeEnum::PointerType(ptr_ty) if NDArrayType::is_type(ptr_ty, llvm_usize).is_ok() => {
|
||||
AnyTypeEnum::PointerType(ptr_ty)
|
||||
if NDArrayType::is_representable(ptr_ty, llvm_usize).is_ok() =>
|
||||
{
|
||||
todo!("Not implemented for list[ndarray]")
|
||||
}
|
||||
|
||||
_ => {
|
||||
let lst_len = src_lst.load_size(ctx, None);
|
||||
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
|
||||
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
|
||||
let sizeof_elem = ctx.builder.build_int_cast(sizeof_elem, llvm_usize, "").unwrap();
|
||||
|
||||
let cpy_len = ctx
|
||||
|
@ -802,8 +854,9 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let object = object.into_pointer_value();
|
||||
|
||||
// object is an NDArray instance - copy object unless copy=0 && ndmin < object.ndims
|
||||
if NDArrayValue::is_instance(object, llvm_usize).is_ok() {
|
||||
let object = NDArrayValue::from_ptr_val(object, llvm_usize, None);
|
||||
if NDArrayValue::is_representable(object, llvm_usize).is_ok() {
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let object = NDArrayValue::from_pointer_value(object, llvm_elem_ty, llvm_usize, None);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
|
@ -865,7 +918,6 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray_sliced_copyto_impl(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
(ndarray, ndarray.data().base_ptr(ctx, generator)),
|
||||
(object, object.data().base_ptr(ctx, generator)),
|
||||
0,
|
||||
|
@ -877,16 +929,17 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|_, _| Ok(Some(object.as_base_value())),
|
||||
)?;
|
||||
|
||||
return Ok(NDArrayValue::from_ptr_val(
|
||||
return Ok(NDArrayValue::from_pointer_value(
|
||||
ndarray.map(BasicValueEnum::into_pointer_value).unwrap(),
|
||||
llvm_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
));
|
||||
}
|
||||
|
||||
// Remaining case: TList
|
||||
assert!(ListValue::is_instance(object, llvm_usize).is_ok());
|
||||
let object = ListValue::from_ptr_val(object, llvm_usize, None);
|
||||
assert!(ListValue::is_representable(object, llvm_usize).is_ok());
|
||||
let object = ListValue::from_pointer_value(object, llvm_usize, None);
|
||||
|
||||
// The number of dimensions to prepend 1's to
|
||||
let ndims = llvm_ndlist_get_ndims(generator, ctx, object.as_base_value().get_type());
|
||||
|
@ -941,7 +994,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.build_store(
|
||||
lst,
|
||||
ctx.builder
|
||||
.build_bitcast(object.as_base_value(), llvm_plist_i8, "")
|
||||
.build_bit_cast(object.as_base_value(), llvm_plist_i8, "")
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
@ -963,10 +1016,11 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.builder
|
||||
.build_load(lst, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.map(|v| ctx.builder.build_bitcast(v, plist_plist_i8, "").unwrap())
|
||||
.map(|v| ctx.builder.build_bit_cast(v, plist_plist_i8, "").unwrap())
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
let this_dim = ListValue::from_ptr_val(this_dim, llvm_usize, None);
|
||||
let this_dim =
|
||||
ListValue::from_pointer_value(this_dim, llvm_usize, None);
|
||||
|
||||
// TODO: Assert this_dim.sz != 0
|
||||
|
||||
|
@ -982,7 +1036,9 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ctx.builder
|
||||
.build_store(
|
||||
lst,
|
||||
ctx.builder.build_bitcast(next_dim, llvm_plist_i8, "").unwrap(),
|
||||
ctx.builder
|
||||
.build_bit_cast(next_dim, llvm_plist_i8, "")
|
||||
.unwrap(),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
|
@ -990,7 +1046,7 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
},
|
||||
)?;
|
||||
|
||||
let lst = ListValue::from_ptr_val(
|
||||
let lst = ListValue::from_pointer_value(
|
||||
ctx.builder
|
||||
.build_load(lst, "")
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
|
@ -1010,7 +1066,6 @@ fn call_ndarray_array_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray_from_ndlist_impl(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
(ndarray, ndarray.data().base_ptr(ctx, generator)),
|
||||
object,
|
||||
0,
|
||||
|
@ -1083,7 +1138,6 @@ fn call_ndarray_eye_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
(dst_arr, dst_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
|
||||
(src_arr, src_slice_ptr): (NDArrayValue<'ctx>, PointerValue<'ctx>),
|
||||
dim: u64,
|
||||
|
@ -1092,14 +1146,16 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
assert_eq!(dst_arr.get_type().element_type(), src_arr.get_type().element_type());
|
||||
|
||||
let sizeof_elem = dst_arr.get_type().element_type().size_of().unwrap();
|
||||
|
||||
// If there are no (remaining) slice expressions, memcpy the entire dimension
|
||||
if slices.is_empty() {
|
||||
let sizeof_elem = ctx.get_llvm_type(generator, elem_ty).size_of().unwrap();
|
||||
|
||||
let stride = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&src_arr.dim_sizes(),
|
||||
&src_arr.shape(),
|
||||
(Some(llvm_usize.const_int(dim, false)), None),
|
||||
);
|
||||
let stride =
|
||||
|
@ -1117,13 +1173,13 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
let src_stride = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&src_arr.dim_sizes(),
|
||||
&src_arr.shape(),
|
||||
(Some(llvm_usize.const_int(dim + 1, false)), None),
|
||||
);
|
||||
let dst_stride = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&dst_arr.dim_sizes(),
|
||||
&dst_arr.shape(),
|
||||
(Some(llvm_usize.const_int(dim + 1, false)), None),
|
||||
);
|
||||
|
||||
|
@ -1146,9 +1202,29 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|generator, ctx, _, src_i| {
|
||||
// Calculate the offset of the active slice
|
||||
let src_data_offset = ctx.builder.build_int_mul(src_stride, src_i, "").unwrap();
|
||||
let src_data_offset = ctx
|
||||
.builder
|
||||
.build_int_mul(
|
||||
src_data_offset,
|
||||
ctx.builder
|
||||
.build_int_cast(sizeof_elem, src_data_offset.get_type(), "")
|
||||
.unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let dst_i =
|
||||
ctx.builder.build_load(dst_i_addr, "").map(BasicValueEnum::into_int_value).unwrap();
|
||||
let dst_data_offset = ctx.builder.build_int_mul(dst_stride, dst_i, "").unwrap();
|
||||
let dst_data_offset = ctx
|
||||
.builder
|
||||
.build_int_mul(
|
||||
dst_data_offset,
|
||||
ctx.builder
|
||||
.build_int_cast(sizeof_elem, dst_data_offset.get_type(), "")
|
||||
.unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let (src_ptr, dst_ptr) = unsafe {
|
||||
(
|
||||
|
@ -1160,7 +1236,6 @@ fn ndarray_sliced_copyto_impl<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray_sliced_copyto_impl(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
(dst_arr, dst_ptr),
|
||||
(src_arr, src_ptr),
|
||||
dim + 1,
|
||||
|
@ -1203,7 +1278,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||
&this,
|
||||
|_, ctx, shape| Ok(shape.load_ndims(ctx)),
|
||||
|generator, ctx, shape, idx| unsafe {
|
||||
Ok(shape.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
Ok(shape.shape().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
},
|
||||
)?
|
||||
} else {
|
||||
|
@ -1211,7 +1286,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray.store_ndims(ctx, generator, this.load_ndims(ctx));
|
||||
|
||||
let ndims = this.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndims);
|
||||
ndarray.create_shape(ctx, llvm_usize, ndims);
|
||||
|
||||
// Populate the first slices.len() dimensions by computing the size of each dim slice
|
||||
for (i, (start, stop, step)) in slices.iter().enumerate() {
|
||||
|
@ -1243,7 +1318,7 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ctx.builder.build_int_z_extend_or_bit_cast(slice_len, llvm_usize, "").unwrap();
|
||||
|
||||
unsafe {
|
||||
ndarray.dim_sizes().set_typed_unchecked(
|
||||
ndarray.shape().set_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(i as u64, false),
|
||||
|
@ -1261,8 +1336,8 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||
(this.load_ndims(ctx), false),
|
||||
|generator, ctx, _, idx| {
|
||||
unsafe {
|
||||
let dim_sz = this.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None);
|
||||
ndarray.dim_sizes().set_typed_unchecked(ctx, generator, &idx, dim_sz);
|
||||
let dim_sz = this.shape().get_typed_unchecked(ctx, generator, &idx, None);
|
||||
ndarray.shape().set_typed_unchecked(ctx, generator, &idx, dim_sz);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
|
@ -1277,7 +1352,6 @@ pub fn ndarray_sliced_copy<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ndarray_sliced_copyto_impl(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
(ndarray, ndarray.data().base_ptr(ctx, generator)),
|
||||
(this, this.data().base_ptr(ctx, generator)),
|
||||
0,
|
||||
|
@ -1323,7 +1397,7 @@ where
|
|||
&operand,
|
||||
|_, ctx, v| Ok(v.load_ndims(ctx)),
|
||||
|generator, ctx, v, idx| unsafe {
|
||||
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
|
@ -1360,8 +1434,8 @@ pub fn ndarray_elementwise_binop_impl<'ctx, 'a, G, ValueFn>(
|
|||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
elem_ty: Type,
|
||||
res: Option<NDArrayValue<'ctx>>,
|
||||
lhs: (BasicValueEnum<'ctx>, bool),
|
||||
rhs: (BasicValueEnum<'ctx>, bool),
|
||||
lhs: (Type, BasicValueEnum<'ctx>, bool),
|
||||
rhs: (Type, BasicValueEnum<'ctx>, bool),
|
||||
value_fn: ValueFn,
|
||||
) -> Result<NDArrayValue<'ctx>, String>
|
||||
where
|
||||
|
@ -1374,8 +1448,8 @@ where
|
|||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let (lhs_val, lhs_scalar) = lhs;
|
||||
let (rhs_val, rhs_scalar) = rhs;
|
||||
let (lhs_ty, lhs_val, lhs_scalar) = lhs;
|
||||
let (rhs_ty, rhs_val, rhs_scalar) = rhs;
|
||||
|
||||
assert!(
|
||||
!(lhs_scalar && rhs_scalar),
|
||||
|
@ -1386,10 +1460,22 @@ where
|
|||
|
||||
let ndarray = res.unwrap_or_else(|| {
|
||||
if lhs_scalar && rhs_scalar {
|
||||
let lhs_val =
|
||||
NDArrayValue::from_ptr_val(lhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let rhs_val =
|
||||
NDArrayValue::from_ptr_val(rhs_val.into_pointer_value(), llvm_usize, None);
|
||||
let lhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, lhs_ty);
|
||||
let llvm_lhs_elem_ty = ctx.get_llvm_type(generator, lhs_dtype);
|
||||
let lhs_val = NDArrayValue::from_pointer_value(
|
||||
lhs_val.into_pointer_value(),
|
||||
llvm_lhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
let rhs_dtype = arraylike_flatten_element_type(&mut ctx.unifier, rhs_ty);
|
||||
let llvm_rhs_elem_ty = ctx.get_llvm_type(generator, rhs_dtype);
|
||||
let rhs_val = NDArrayValue::from_pointer_value(
|
||||
rhs_val.into_pointer_value(),
|
||||
llvm_rhs_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
|
||||
let ndarray_dims = call_ndarray_calc_broadcast(generator, ctx, lhs_val, rhs_val);
|
||||
|
||||
|
@ -1405,8 +1491,14 @@ where
|
|||
)
|
||||
.unwrap()
|
||||
} else {
|
||||
let ndarray = NDArrayValue::from_ptr_val(
|
||||
let dtype = arraylike_flatten_element_type(
|
||||
&mut ctx.unifier,
|
||||
if lhs_scalar { rhs_ty } else { lhs_ty },
|
||||
);
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, dtype);
|
||||
let ndarray = NDArrayValue::from_pointer_value(
|
||||
if lhs_scalar { rhs_val } else { lhs_val }.into_pointer_value(),
|
||||
llvm_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
|
@ -1418,7 +1510,7 @@ where
|
|||
&ndarray,
|
||||
|_, ctx, v| Ok(v.load_ndims(ctx)),
|
||||
|generator, ctx, v, idx| unsafe {
|
||||
Ok(v.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
Ok(v.shape().get_typed_unchecked(ctx, generator, &idx, None))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
|
@ -1479,10 +1571,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
if let Some(res) = res {
|
||||
let res_ndims = res.load_ndims(ctx);
|
||||
let res_dim0 = unsafe {
|
||||
res.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
res.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
let res_dim1 = unsafe {
|
||||
res.dim_sizes().get_typed_unchecked(
|
||||
res.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
|
@ -1490,10 +1582,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
)
|
||||
};
|
||||
let lhs_dim0 = unsafe {
|
||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
let rhs_dim1 = unsafe {
|
||||
rhs.dim_sizes().get_typed_unchecked(
|
||||
rhs.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
|
@ -1542,15 +1634,10 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let lhs_dim1 = unsafe {
|
||||
lhs.dim_sizes().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
None,
|
||||
)
|
||||
lhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_int(1, false), None)
|
||||
};
|
||||
let rhs_dim0 = unsafe {
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
// lhs.dims[1] == rhs.dims[0]
|
||||
|
@ -1589,7 +1676,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
},
|
||||
|generator, ctx| {
|
||||
Ok(Some(unsafe {
|
||||
lhs.dim_sizes().get_typed_unchecked(
|
||||
lhs.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_zero(),
|
||||
|
@ -1599,7 +1686,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
},
|
||||
|generator, ctx| {
|
||||
Ok(Some(unsafe {
|
||||
rhs.dim_sizes().get_typed_unchecked(
|
||||
rhs.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
|
@ -1626,7 +1713,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
|
||||
let common_dim = {
|
||||
let lhs_idx1 = unsafe {
|
||||
lhs.dim_sizes().get_typed_unchecked(
|
||||
lhs.shape().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
|
@ -1634,7 +1721,7 @@ pub fn ndarray_matmul_2d<'ctx, G: CodeGenerator>(
|
|||
)
|
||||
};
|
||||
let rhs_idx0 = unsafe {
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
rhs.shape().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
let idx = llvm_intrinsics::call_expect(ctx, rhs_idx0, lhs_idx1, None);
|
||||
|
@ -1965,11 +2052,18 @@ pub fn gen_ndarray_copy<'ctx>(
|
|||
let this_arg =
|
||||
obj.as_ref().unwrap().1.clone().to_basic_value_enum(context, generator, this_ty)?;
|
||||
|
||||
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
|
||||
|
||||
ndarray_copy_impl(
|
||||
generator,
|
||||
context,
|
||||
this_elem_ty,
|
||||
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
|
||||
NDArrayValue::from_pointer_value(
|
||||
this_arg.into_pointer_value(),
|
||||
llvm_elem_ty,
|
||||
llvm_usize,
|
||||
None,
|
||||
),
|
||||
)
|
||||
.map(NDArrayValue::into)
|
||||
}
|
||||
|
@ -1988,6 +2082,7 @@ pub fn gen_ndarray_fill<'ctx>(
|
|||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let this_elem_ty = arraylike_flatten_element_type(&mut context.unifier, this_ty);
|
||||
let this_arg = obj
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
|
@ -1998,10 +2093,12 @@ pub fn gen_ndarray_fill<'ctx>(
|
|||
let value_ty = fun.0.args[0].ty;
|
||||
let value_arg = args[0].1.clone().to_basic_value_enum(context, generator, value_ty)?;
|
||||
|
||||
let llvm_elem_ty = context.get_llvm_type(generator, this_elem_ty);
|
||||
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
context,
|
||||
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|
||||
NDArrayValue::from_pointer_value(this_arg, llvm_elem_ty, llvm_usize, None),
|
||||
|generator, ctx, _| {
|
||||
let value = if value_arg.is_pointer_value() {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
@ -2020,7 +2117,7 @@ pub fn gen_ndarray_fill<'ctx>(
|
|||
} else if value_arg.is_int_value() || value_arg.is_float_value() {
|
||||
value_arg
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
|
@ -2042,8 +2139,9 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
if let BasicValueEnum::PointerValue(n1) = x1 {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
|
||||
|
||||
// Dimensions are reversed in the transposed array
|
||||
let out = create_ndarray_dyn_shape(
|
||||
|
@ -2058,7 +2156,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.builder
|
||||
.build_int_sub(new_idx, new_idx.get_type().const_int(1, false), "")
|
||||
.unwrap();
|
||||
unsafe { Ok(n.dim_sizes().get_typed_unchecked(ctx, generator, &new_idx, None)) }
|
||||
unsafe { Ok(n.shape().get_typed_unchecked(ctx, generator, &new_idx, None)) }
|
||||
},
|
||||
)
|
||||
.unwrap();
|
||||
|
@ -2095,7 +2193,7 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.build_int_sub(ndim_rev, llvm_usize.const_int(1, false), "")
|
||||
.unwrap();
|
||||
let dim = unsafe {
|
||||
n1.dim_sizes().get_typed_unchecked(ctx, generator, &ndim_rev, None)
|
||||
n1.shape().get_typed_unchecked(ctx, generator, &ndim_rev, None)
|
||||
};
|
||||
|
||||
let rem_idx_val =
|
||||
|
@ -2129,7 +2227,8 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
Ok(out.as_base_value().into())
|
||||
} else {
|
||||
unreachable!(
|
||||
codegen_unreachable!(
|
||||
ctx,
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
)
|
||||
|
@ -2144,7 +2243,8 @@ pub fn ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
|
|||
/// 1. A list of `int32`; e.g., `np.reshape(arr, [600, -1, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.reshape(arr, (-1, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.reshape(arr, 3)`
|
||||
/// Note that unlike other generating functions, one of the dimesions in the shape can be negative
|
||||
///
|
||||
/// Note that unlike other generating functions, one of the dimensions in the shape can be negative.
|
||||
pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
|
@ -2159,8 +2259,9 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
if let BasicValueEnum::PointerValue(n1) = x1 {
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, x1_ty);
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let llvm_elem_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let n1 = NDArrayValue::from_pointer_value(n1, llvm_elem_ty, llvm_usize, None);
|
||||
let n_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
|
||||
|
||||
let acc = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
let num_neg = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
|
@ -2169,11 +2270,11 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
let out = match shape {
|
||||
BasicValueEnum::PointerValue(shape_list_ptr)
|
||||
if ListValue::is_instance(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
if ListValue::is_representable(shape_list_ptr, llvm_usize).is_ok() =>
|
||||
{
|
||||
// 1. A list of ints; e.g., `np.reshape(arr, [int64(600), int64(800, -1])`
|
||||
|
||||
let shape_list = ListValue::from_ptr_val(shape_list_ptr, llvm_usize, None);
|
||||
let shape_list = ListValue::from_pointer_value(shape_list_ptr, llvm_usize, None);
|
||||
// Check for -1 in dimensions
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
|
@ -2370,7 +2471,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.into_int_value();
|
||||
create_ndarray_const_shape(generator, ctx, elem_ty, &[shape_int])
|
||||
}
|
||||
_ => unreachable!(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
}
|
||||
.unwrap();
|
||||
|
||||
|
@ -2388,7 +2489,7 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
);
|
||||
|
||||
// The new shape must be compatible with the old shape
|
||||
let out_sz = call_ndarray_calc_size(generator, ctx, &out.dim_sizes(), (None, None));
|
||||
let out_sz = call_ndarray_calc_size(generator, ctx, &out.shape(), (None, None));
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder.build_int_compare(IntPredicate::EQ, out_sz, n_sz, "").unwrap(),
|
||||
|
@ -2414,7 +2515,8 @@ pub fn ndarray_reshape<'ctx, G: CodeGenerator + ?Sized>(
|
|||
|
||||
Ok(out.as_base_value().into())
|
||||
} else {
|
||||
unreachable!(
|
||||
codegen_unreachable!(
|
||||
ctx,
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
)
|
||||
|
@ -2435,17 +2537,22 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
|||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
const FN_NAME: &str = "ndarray_dot";
|
||||
let (x1_ty, x1) = x1;
|
||||
let (_, x2) = x2;
|
||||
let (x2_ty, x2) = x2;
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
match (x1, x2) {
|
||||
(BasicValueEnum::PointerValue(n1), BasicValueEnum::PointerValue(n2)) => {
|
||||
let n1 = NDArrayValue::from_ptr_val(n1, llvm_usize, None);
|
||||
let n2 = NDArrayValue::from_ptr_val(n2, llvm_usize, None);
|
||||
let n1_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x1_ty);
|
||||
let n2_dtype = arraylike_flatten_element_type(&mut ctx.unifier, x2_ty);
|
||||
let llvm_n1_data_ty = ctx.get_llvm_type(generator, n1_dtype);
|
||||
let llvm_n2_data_ty = ctx.get_llvm_type(generator, n2_dtype);
|
||||
|
||||
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.dim_sizes(), (None, None));
|
||||
let n1 = NDArrayValue::from_pointer_value(n1, llvm_n1_data_ty, llvm_usize, None);
|
||||
let n2 = NDArrayValue::from_pointer_value(n2, llvm_n2_data_ty, llvm_usize, None);
|
||||
|
||||
let n1_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
|
||||
let n2_sz = call_ndarray_calc_size(generator, ctx, &n1.shape(), (None, None));
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
|
@ -2482,7 +2589,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.build_float_mul(e1, elem2.into_float_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
_ => unreachable!(),
|
||||
_ => codegen_unreachable!(ctx, "product: {}", elem1.get_type()),
|
||||
};
|
||||
let acc_val = ctx.builder.build_load(acc, "").unwrap();
|
||||
let acc_val = match acc_val {
|
||||
|
@ -2496,7 +2603,7 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
|||
.build_float_add(e1, product.into_float_value(), "")
|
||||
.unwrap()
|
||||
.as_basic_value_enum(),
|
||||
_ => unreachable!(),
|
||||
_ => codegen_unreachable!(ctx, "acc_val: {}", acc_val.get_type()),
|
||||
};
|
||||
ctx.builder.build_store(acc, acc_val).unwrap();
|
||||
|
||||
|
@ -2513,7 +2620,8 @@ pub fn ndarray_dot<'ctx, G: CodeGenerator + ?Sized>(
|
|||
(BasicValueEnum::FloatValue(e1), BasicValueEnum::FloatValue(e2)) => {
|
||||
Ok(ctx.builder.build_float_mul(e1, e2, "").unwrap().as_basic_value_enum())
|
||||
}
|
||||
_ => unreachable!(
|
||||
_ => codegen_unreachable!(
|
||||
ctx,
|
||||
"{FN_NAME}() not supported for '{}'",
|
||||
format!("'{}'", ctx.unifier.stringify(x1_ty))
|
||||
),
|
||||
|
|
|
@ -1,210 +0,0 @@
|
|||
// TODO: Replace numpy.rs
|
||||
|
||||
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||
use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
codegen::object::{ndarray::scalar::split_scalar_or_ndarray, tuple::TupleObject},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{helper::extract_ndims, numpy::unpack_ndarray_var_tys, DefinitionId},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
use super::{
|
||||
irrt::call_nac3_ndarray_util_assert_shape_no_negative,
|
||||
model::*,
|
||||
object::{
|
||||
ndarray::{shape_util::parse_numpy_int_sequence, NDArrayObject},
|
||||
AnyObject,
|
||||
},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Generates LLVM IR for `np.broadcast_to`.
|
||||
pub fn gen_ndarray_broadcast_to<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
// Parse argument #1 input
|
||||
let input_ty = fun.0.args[0].ty;
|
||||
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
|
||||
let input = AnyObject { ty: input_ty, value: input };
|
||||
|
||||
// Parse argument #2 shape
|
||||
let shape_ty = fun.0.args[1].ty;
|
||||
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||
let shape = AnyObject { ty: shape_ty, value: shape };
|
||||
|
||||
// Define models
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
// Extract broadcast_ndims, this is the only way to get the
|
||||
// ndims of the ndarray result statically.
|
||||
let (_, broadcast_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||
let broadcast_ndims = extract_ndims(&ctx.unifier, broadcast_ndims_ty);
|
||||
|
||||
// Process `input`
|
||||
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
|
||||
|
||||
// Process `shape`
|
||||
let (_, broadcast_shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||
// NOTE: shape.size should equal to `broadcasted_ndims`.
|
||||
let broadcast_ndims_llvm = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_ndims_llvm,
|
||||
broadcast_shape,
|
||||
);
|
||||
|
||||
// Create broadcast view
|
||||
let broadcast_ndarray =
|
||||
in_ndarray.broadcast_to(generator, ctx, broadcast_ndims, broadcast_shape);
|
||||
|
||||
Ok(broadcast_ndarray.instance.value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.reshape`.
|
||||
pub fn gen_ndarray_reshape<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
// Parse argument #1 input
|
||||
let input_ty = fun.0.args[0].ty;
|
||||
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?;
|
||||
let input = AnyObject { ty: input_ty, value: input };
|
||||
|
||||
// Parse argument #2 shape
|
||||
let shape_ty = fun.0.args[1].ty;
|
||||
let shape = args[1].1.clone().to_basic_value_enum(ctx, generator, shape_ty)?;
|
||||
let shape = AnyObject { ty: shape_ty, value: shape };
|
||||
|
||||
// Extract reshaped_ndims
|
||||
let (_, reshaped_ndims_ty) = unpack_ndarray_var_tys(&mut ctx.unifier, fun.0.ret);
|
||||
let reshaped_ndims = extract_ndims(&ctx.unifier, reshaped_ndims_ty);
|
||||
|
||||
// Process `input`
|
||||
let in_ndarray = split_scalar_or_ndarray(generator, ctx, input).as_ndarray(generator, ctx);
|
||||
|
||||
// Process the shape input from user and resolve negative indices.
|
||||
// The resulting `new_shape`'s size should be equal to reshaped_ndims.
|
||||
// This is ensured by the typechecker.
|
||||
let (_, new_shape) = parse_numpy_int_sequence(generator, ctx, shape);
|
||||
let reshaped_ndarray = in_ndarray.reshape_or_copy(generator, ctx, reshaped_ndims, new_shape);
|
||||
|
||||
Ok(reshaped_ndarray.instance.value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.arange`.
|
||||
pub fn gen_ndarray_arange<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse argument #1 len
|
||||
let input_ty = fun.0.args[0].ty;
|
||||
let input = args[0].1.clone().to_basic_value_enum(ctx, generator, input_ty)?.into_int_value();
|
||||
|
||||
// Implementation
|
||||
let input_dim = IntModel(SizeT).s_extend_or_bit_cast(generator, ctx, input, "input_dim");
|
||||
let ndarray = NDArrayObject::from_np_arange(generator, ctx, input_dim);
|
||||
|
||||
Ok(ndarray.instance.value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.size`.
|
||||
pub fn gen_ndarray_size<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let size = ndarray.size(generator, ctx).truncate(generator, ctx, Int32, "size");
|
||||
Ok(size.value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.shape`.
|
||||
pub fn gen_ndarray_shape<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse argument #1 ndarray
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||
|
||||
// Process ndarray
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
Ok(ndarray.make_shape_tuple(generator, ctx).value.as_basic_value_enum())
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `<ndarray>.strides`.
|
||||
pub fn gen_ndarray_strides<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<BasicValueEnum<'ctx>, String> {
|
||||
// TODO: Code duplication: This function looks exactly like `gen_ndarray_shapes`.
|
||||
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse argument #1 ndarray
|
||||
let ndarray_ty = fun.0.args[0].ty;
|
||||
let ndarray = args[0].1.clone().to_basic_value_enum(ctx, generator, ndarray_ty)?;
|
||||
let ndarray = AnyObject { ty: ndarray_ty, value: ndarray };
|
||||
|
||||
// Process ndarray
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
|
||||
|
||||
let mut objects = Vec::with_capacity(ndarray.ndims as usize);
|
||||
|
||||
for i in 0..ndarray.ndims {
|
||||
let dim = ndarray
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.strides, "")
|
||||
.offset_const(generator, ctx, i, "")
|
||||
.load(generator, ctx, "dim");
|
||||
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||
|
||||
objects
|
||||
.push(AnyObject { ty: ctx.primitives.int32, value: dim.value.as_basic_value_enum() });
|
||||
}
|
||||
|
||||
let strides = TupleObject::create(generator, ctx, objects, "strides");
|
||||
Ok(strides.value.as_basic_value_enum())
|
||||
}
|
|
@ -1,121 +0,0 @@
|
|||
use crate::{
|
||||
codegen::{
|
||||
irrt::{call_nac3_list_slice_assign, list_slice_assignment},
|
||||
model::*,
|
||||
object::ndarray::indexing::UserSlice,
|
||||
structure::List,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::{ndarray::indexing::RustUserSlice, AnyObject};
|
||||
|
||||
/// A NAC3 Python List object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct ListObject<'ctx> {
|
||||
/// Typechecker type of the list items
|
||||
pub item_type: Type,
|
||||
pub instance: Ptr<'ctx, StructModel<List<AnyModel<'ctx>>>>,
|
||||
}
|
||||
|
||||
impl<'ctx> ListObject<'ctx> {
|
||||
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
// Check typechecker type and extract `item_type`
|
||||
let item_type = match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, params, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
|
||||
}
|
||||
_ => {
|
||||
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
|
||||
}
|
||||
};
|
||||
|
||||
let item_model = AnyModel(ctx.get_llvm_type(generator, item_type));
|
||||
let plist_model = PtrModel(StructModel(List { item: item_model }));
|
||||
|
||||
// Create object
|
||||
let value = plist_model.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
ListObject { item_type, instance: value }
|
||||
}
|
||||
|
||||
/// Get the `items` field as an opaque pointer.
|
||||
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Ptr<'ctx, IntModel<Byte>> {
|
||||
self.instance.get(generator, ctx, |f| f.items, "items").pointer_cast(
|
||||
generator,
|
||||
ctx,
|
||||
IntModel(Byte),
|
||||
"items_opaque",
|
||||
)
|
||||
}
|
||||
|
||||
/// Get the value of this [`ListObject`] as a list with opaque items.
|
||||
///
|
||||
/// This function allocates on the stack to create the list, but the
|
||||
/// reference to the `items` are preserved.
|
||||
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Ptr<'ctx, StructModel<List<IntModel<Byte>>>> {
|
||||
let opaque_list_model = StructModel(List { item: IntModel(Byte) });
|
||||
let opaque_list_ptr = opaque_list_model.alloca(generator, ctx, "opaque_list_ptr");
|
||||
|
||||
// Copy items pointer
|
||||
let items = self.get_opaque_items_ptr(generator, ctx);
|
||||
opaque_list_ptr.set(ctx, |f| f.items, items);
|
||||
|
||||
// Copy len
|
||||
let len = self.instance.get(generator, ctx, |f| f.len, "len");
|
||||
opaque_list_ptr.set(ctx, |f| f.len, len);
|
||||
|
||||
opaque_list_ptr
|
||||
}
|
||||
|
||||
/// Get the `len()` of this list.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
self.instance.get(generator, ctx, |f| f.len, "list_len")
|
||||
}
|
||||
|
||||
pub fn slice_assign_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
user_slice: &RustUserSlice<'ctx>,
|
||||
source: ListObject<'ctx>,
|
||||
) {
|
||||
// Sanity check
|
||||
assert!(ctx.unifier.unioned(self.item_type, source.item_type));
|
||||
|
||||
let user_slice_model = StructModel(UserSlice);
|
||||
let puser_slice = user_slice_model.alloca(generator, ctx, "user_slice");
|
||||
user_slice.write_to_user_slice(generator, ctx, puser_slice);
|
||||
|
||||
let itemsize = self.instance.model.get_type(generator, ctx.ctx).size_of();
|
||||
|
||||
call_nac3_list_slice_assign(
|
||||
generator,
|
||||
ctx,
|
||||
self.get_opaque_list_ptr(generator, ctx),
|
||||
source.instance.value,
|
||||
itemsize,
|
||||
user_slice,
|
||||
);
|
||||
todo!()
|
||||
}
|
||||
}
|
|
@ -1,608 +0,0 @@
|
|||
use inkwell::{
|
||||
values::{BasicValue, BasicValueEnum, FloatValue, IntValue},
|
||||
FloatPredicate, IntPredicate,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
use list::ListObject;
|
||||
use ndarray::{NDArrayObject, NDArrayOut};
|
||||
use range::RangeObject;
|
||||
use tuple::TupleObject;
|
||||
|
||||
use crate::{
|
||||
toplevel::helper::PrimDef,
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::{llvm_intrinsics, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
pub mod list;
|
||||
pub mod ndarray;
|
||||
pub mod range;
|
||||
pub mod tuple;
|
||||
|
||||
/// Convenience function to crash the program when types of arguments are not supported.
|
||||
/// Used to be debugged with a stacktrace.
|
||||
fn unsupported_type<I>(ctx: &CodeGenContext<'_, '_>, tys: I) -> !
|
||||
where
|
||||
I: IntoIterator<Item = Type>,
|
||||
{
|
||||
unreachable!(
|
||||
"unsupported types found '{}'",
|
||||
tys.into_iter().map(|ty| format!("'{}'", ctx.unifier.stringify(ty))).join(", "),
|
||||
)
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum FloorOrCeil {
|
||||
Floor,
|
||||
Ceil,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum MinOrMax {
|
||||
Min,
|
||||
Max,
|
||||
}
|
||||
|
||||
fn signed_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||
vec![ctx.primitives.int32, ctx.primitives.int64]
|
||||
}
|
||||
|
||||
fn unsigned_ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||
vec![ctx.primitives.uint32, ctx.primitives.uint64]
|
||||
}
|
||||
|
||||
fn ints(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||
vec![ctx.primitives.int32, ctx.primitives.int64, ctx.primitives.uint32, ctx.primitives.uint64]
|
||||
}
|
||||
|
||||
fn int_like(ctx: &CodeGenContext<'_, '_>) -> Vec<Type> {
|
||||
vec![
|
||||
ctx.primitives.bool,
|
||||
ctx.primitives.int32,
|
||||
ctx.primitives.int64,
|
||||
ctx.primitives.uint32,
|
||||
ctx.primitives.uint64,
|
||||
]
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct AnyObject<'ctx> {
|
||||
pub ty: Type,
|
||||
pub value: BasicValueEnum<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> AnyObject<'ctx> {
|
||||
/// Returns true if this object's type is a [`TypeEnum::TObj`] and has the object ID as `prim`.
|
||||
pub fn is_obj(&self, ctx: &mut CodeGenContext<'ctx, '_>, prim: PrimDef) -> bool {
|
||||
match &*ctx.unifier.get_ty(self.ty) {
|
||||
TypeEnum::TObj { obj_id, .. } => *obj_id == prim.id(),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns true if this object's type is a [`TypeEnum::TTuple`]
|
||||
pub fn is_tuple(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
matches!(&*ctx.unifier.get_ty(self.ty), TypeEnum::TTuple { .. })
|
||||
}
|
||||
|
||||
pub fn into_tuple() {}
|
||||
|
||||
pub fn is_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned(self.ty, ctx.primitives.int32)
|
||||
}
|
||||
|
||||
pub fn into_int32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Int32> {
|
||||
assert!(self.is_int32(ctx));
|
||||
IntModel(Int32).believe_value(self.value.into_int_value())
|
||||
}
|
||||
|
||||
pub fn is_uint32(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned(self.ty, ctx.primitives.uint32)
|
||||
}
|
||||
|
||||
pub fn is_int64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned(self.ty, ctx.primitives.int64)
|
||||
}
|
||||
|
||||
pub fn is_uint64(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned(self.ty, ctx.primitives.uint64)
|
||||
}
|
||||
|
||||
pub fn is_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned(self.ty, ctx.primitives.bool)
|
||||
}
|
||||
|
||||
/// Returns true if the object type is `bool`, `int32`, `int64`, `uint32`, or `uint64`.
|
||||
pub fn is_int_like(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned_any(self.ty, int_like(ctx))
|
||||
}
|
||||
|
||||
/// Returns true if the object type is `int32`, `int64`.
|
||||
pub fn is_signed_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned_any(self.ty, signed_ints(ctx))
|
||||
}
|
||||
|
||||
/// Returns true if the object type is `uint32`, `uint64`.
|
||||
pub fn is_unsigned_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
ctx.unifier.unioned_any(self.ty, unsigned_ints(ctx))
|
||||
}
|
||||
|
||||
pub fn into_int(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
assert!(self.is_int_like(ctx));
|
||||
self.value.into_int_value()
|
||||
}
|
||||
|
||||
pub fn is_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
self.is_obj(ctx, PrimDef::Float)
|
||||
}
|
||||
|
||||
pub fn into_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Float<'ctx, Float64> {
|
||||
assert!(self.is_float(ctx));
|
||||
FloatModel(Float64).believe_value(self.value.into_float_value())
|
||||
}
|
||||
|
||||
pub fn is_ndarray(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> bool {
|
||||
self.is_obj(ctx, PrimDef::NDArray)
|
||||
}
|
||||
|
||||
pub fn into_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
NDArrayObject::from_object(generator, ctx, *self)
|
||||
}
|
||||
|
||||
/// Create an object from a boolean from an i1.
|
||||
///
|
||||
/// NOTE: In NAC3, booleans are i8. This function does converts the input i1 to an i8.
|
||||
pub fn from_bool(ctx: &mut CodeGenContext<'ctx, '_>, n: Int<'ctx, Bool>) -> AnyObject<'ctx> {
|
||||
let llvm_i8 = ctx.ctx.i8_type();
|
||||
let value = ctx.builder.build_int_z_extend(n.value, llvm_i8, "bool").unwrap();
|
||||
AnyObject { value: value.as_basic_value_enum(), ty: ctx.primitives.bool }
|
||||
}
|
||||
|
||||
/// Helper function to compare two scalars.
|
||||
///
|
||||
/// Only int-to-int and float-to-float comparisons are allowed.
|
||||
///
|
||||
/// Panic otherwise.
|
||||
pub fn compare_int_or_float_by_predicate<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: AnyObject<'ctx>,
|
||||
rhs: AnyObject<'ctx>,
|
||||
int_predicate: IntPredicate,
|
||||
float_predicate: FloatPredicate,
|
||||
name: &str,
|
||||
) -> Int<'ctx, Bool> {
|
||||
assert!(ctx.unifier.unioned(lhs.ty, rhs.ty), "lhs and rhs type should be the same");
|
||||
|
||||
let bool_model = IntModel(Bool);
|
||||
|
||||
let common_ty = lhs.ty;
|
||||
let result = if lhs.is_float(ctx) {
|
||||
let lhs = lhs.into_float(ctx);
|
||||
let rhs = rhs.into_float(ctx);
|
||||
ctx.builder.build_float_compare(float_predicate, lhs.value, rhs.value, name).unwrap()
|
||||
} else if ctx.unifier.unioned_any(common_ty, int_like(ctx)) {
|
||||
let lhs = lhs.into_int(ctx);
|
||||
let rhs = rhs.into_int(ctx);
|
||||
ctx.builder.build_int_compare(int_predicate, lhs, rhs, name).unwrap()
|
||||
} else {
|
||||
unsupported_type(ctx, [lhs.ty, rhs.ty]);
|
||||
};
|
||||
|
||||
bool_model.check_value(generator, ctx.ctx, result).unwrap()
|
||||
}
|
||||
|
||||
/// Helper function for `int32()`, `int64()`, `uint32()`, and `uint64()`.
|
||||
///
|
||||
/// TODO: Document me
|
||||
fn cast_to_int_conversion<'a, G, HandleFloatFn>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ret_int_ty: Type,
|
||||
handle_float: HandleFloatFn,
|
||||
) -> AnyObject<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
HandleFloatFn:
|
||||
FnOnce(&mut G, &mut CodeGenContext<'ctx, 'a>, FloatValue<'ctx>) -> IntValue<'ctx>,
|
||||
{
|
||||
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||
|
||||
let result = if self.is_float(ctx) {
|
||||
// Handle float to int
|
||||
let n = self.into_float(ctx);
|
||||
handle_float(generator, ctx, n.value)
|
||||
} else if self.is_int_like(ctx) {
|
||||
// Handle int to a new int type
|
||||
let n = self.into_int(ctx);
|
||||
if n.get_type().get_bit_width() <= ret_int_ty_llvm.get_bit_width() {
|
||||
ctx.builder.build_int_z_extend(n, ret_int_ty_llvm, "zext").unwrap()
|
||||
} else {
|
||||
ctx.builder.build_int_truncate(n, ret_int_ty_llvm, "trunc").unwrap()
|
||||
}
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty]);
|
||||
};
|
||||
|
||||
assert_eq!(ret_int_ty_llvm.get_bit_width(), result.get_type().get_bit_width()); // Sanity check
|
||||
AnyObject { value: result.into(), ty: ret_int_ty }
|
||||
}
|
||||
|
||||
/// Call `int32()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_int32<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
self.cast_to_int_conversion(
|
||||
generator,
|
||||
ctx,
|
||||
ctx.primitives.int32,
|
||||
|_generator, ctx, input| {
|
||||
let n =
|
||||
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap();
|
||||
ctx.builder.build_int_truncate(n, ctx.ctx.i32_type(), "conv").unwrap()
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Call `int64()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_int64<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
self.cast_to_int_conversion(
|
||||
generator,
|
||||
ctx,
|
||||
ctx.primitives.int64,
|
||||
|_generator, ctx, input| {
|
||||
ctx.builder.build_float_to_signed_int(input, ctx.ctx.i64_type(), "").unwrap()
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Call `uint32()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_uint32<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint32, |_generator, ctx, n| {
|
||||
let n_gez = ctx
|
||||
.builder
|
||||
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
let to_int32 =
|
||||
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i32_type(), "").unwrap();
|
||||
let to_uint64 =
|
||||
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_select(
|
||||
n_gez,
|
||||
ctx.builder.build_int_truncate(to_uint64, ctx.ctx.i32_type(), "").unwrap(),
|
||||
to_int32,
|
||||
"conv",
|
||||
)
|
||||
.unwrap()
|
||||
.into_int_value()
|
||||
})
|
||||
}
|
||||
|
||||
/// Call `uint64()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_uint64<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
self.cast_to_int_conversion(generator, ctx, ctx.primitives.uint64, |_generator, ctx, n| {
|
||||
let val_gez = ctx
|
||||
.builder
|
||||
.build_float_compare(FloatPredicate::OGE, n, n.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
let to_int64 =
|
||||
ctx.builder.build_float_to_signed_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||
let to_uint64 =
|
||||
ctx.builder.build_float_to_unsigned_int(n, ctx.ctx.i64_type(), "").unwrap();
|
||||
|
||||
ctx.builder.build_select(val_gez, to_uint64, to_int64, "conv").unwrap().into_int_value()
|
||||
})
|
||||
}
|
||||
|
||||
// Get the `len()` of this object.
|
||||
#[must_use]
|
||||
pub fn call_len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
// TODO: Switch to returning SizeT
|
||||
let result = match &*ctx.unifier.get_ty_immutable(self.ty) {
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let tuple = TupleObject::from_object(ctx, *self);
|
||||
tuple.len(generator, ctx).truncate(generator, ctx, Int32, "tuple_len_32")
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let range = RangeObject::from_object(generator, ctx, *self);
|
||||
range.len(generator, ctx)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListObject::from_object(generator, ctx, *self);
|
||||
list.len(generator, ctx).truncate(generator, ctx, Int32, "list_len_i32")
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, *self);
|
||||
ndarray.len(generator, ctx).truncate(generator, ctx, Int32, "ndarray_len_i32")
|
||||
}
|
||||
_ => unreachable!(),
|
||||
};
|
||||
|
||||
AnyObject { ty: ctx.primitives.int32, value: result.value.as_basic_value_enum() }
|
||||
}
|
||||
|
||||
/// Like [`AnyObject::call_bool`] but this returns an `Int<'ctx, Bool>` instead of an object.
|
||||
pub fn bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Int<'ctx, Bool> {
|
||||
let bool_model = IntModel(Bool);
|
||||
if self.is_int_like(ctx) {
|
||||
let n = self.into_int(ctx);
|
||||
let n = ctx
|
||||
.builder
|
||||
.build_int_compare(inkwell::IntPredicate::NE, n, n.get_type().const_zero(), "bool")
|
||||
.unwrap();
|
||||
bool_model.believe_value(n)
|
||||
} else if self.is_float(ctx) {
|
||||
let n = self.value.into_float_value();
|
||||
let n = ctx
|
||||
.builder
|
||||
.build_float_compare(FloatPredicate::UNE, n, n.get_type().const_zero(), "bool")
|
||||
.unwrap();
|
||||
bool_model.believe_value(n)
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
}
|
||||
}
|
||||
|
||||
/// Call `bool()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_bool(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||
let n = self.bool(ctx);
|
||||
AnyObject::from_bool(ctx, n)
|
||||
}
|
||||
|
||||
/// Call `float()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_float(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||
let f64_model = FloatModel(Float64);
|
||||
let llvm_f64 = ctx.ctx.f64_type();
|
||||
|
||||
let result = if self.is_float(ctx) {
|
||||
self.into_float(ctx)
|
||||
} else if self.is_signed_int(ctx) || self.is_bool(ctx) {
|
||||
let n = self.into_int(ctx);
|
||||
let n = ctx.builder.build_signed_int_to_float(n, llvm_f64, "sitofp").unwrap();
|
||||
f64_model.believe_value(n)
|
||||
} else if self.is_unsigned_int(ctx) {
|
||||
let n = self.into_int(ctx);
|
||||
let n = ctx.builder.build_unsigned_int_to_float(n, llvm_f64, "uitofp").unwrap();
|
||||
f64_model.believe_value(n)
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty]);
|
||||
};
|
||||
|
||||
AnyObject { ty: ctx.primitives.float, value: result.value.as_basic_value_enum() }
|
||||
}
|
||||
|
||||
// Call `abs()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_abs<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Self {
|
||||
if self.is_float(ctx) {
|
||||
let n = self.value.into_float_value();
|
||||
let n = llvm_intrinsics::call_float_fabs(ctx, n, Some("abs"));
|
||||
AnyObject { value: n.into(), ty: ctx.primitives.float }
|
||||
} else if self.is_unsigned_int(ctx) || self.is_signed_int(ctx) {
|
||||
let is_poisoned = ctx.ctx.bool_type().const_zero(); // is_poisoned = false
|
||||
|
||||
let n = self.value.into_int_value();
|
||||
let n = llvm_intrinsics::call_int_abs(ctx, n, is_poisoned, Some("abs"));
|
||||
AnyObject { value: n.into(), ty: self.ty }
|
||||
} else if self.is_ndarray(ctx) {
|
||||
let ndarray = self.into_ndarray(generator, ctx);
|
||||
ndarray
|
||||
.map(
|
||||
generator,
|
||||
ctx,
|
||||
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
||||
|generator, ctx, scalar| Ok(scalar.call_abs(generator, ctx)),
|
||||
)
|
||||
.unwrap()
|
||||
.to_any_object(ctx)
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
}
|
||||
}
|
||||
|
||||
// Call `round()` on this object.
|
||||
//
|
||||
// It is possible to specify which kind of int type to return.
|
||||
#[must_use]
|
||||
pub fn call_round<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ret_int_ty: Type,
|
||||
) -> AnyObject<'ctx> {
|
||||
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||
|
||||
let result = if ctx.unifier.unioned(self.ty, ctx.primitives.float) {
|
||||
let n = self.value.into_float_value();
|
||||
let n = llvm_intrinsics::call_float_round(ctx, n, None);
|
||||
ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "round").unwrap()
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
};
|
||||
AnyObject { ty: ret_int_ty, value: result.as_basic_value_enum() }
|
||||
}
|
||||
|
||||
/// Call `np_round()` on this object.
|
||||
///
|
||||
/// NOTE: `np.round()` has different behaviors than `round()` when in comes to "tie" cases and return type.
|
||||
#[must_use]
|
||||
pub fn call_np_round<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
if self.is_float(ctx) {
|
||||
let n = self.into_float(ctx);
|
||||
let n = llvm_intrinsics::call_float_rint(ctx, n.value, None);
|
||||
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
|
||||
} else if self.is_ndarray(ctx) {
|
||||
let ndarray = self.into_ndarray(generator, ctx);
|
||||
ndarray
|
||||
.map(
|
||||
generator,
|
||||
ctx,
|
||||
NDArrayOut::NewNDArray { dtype: ndarray.dtype },
|
||||
|generator, ctx, scalar| Ok(scalar.call_np_round(generator, ctx)),
|
||||
)
|
||||
.unwrap()
|
||||
.to_any_object(ctx)
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
}
|
||||
}
|
||||
|
||||
/// Call `min()` or `max()` on two objects.
|
||||
#[must_use]
|
||||
pub fn call_min_or_max(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: MinOrMax,
|
||||
a: AnyObject<'ctx>,
|
||||
b: AnyObject<'ctx>,
|
||||
) -> AnyObject<'ctx> {
|
||||
if !ctx.unifier.unioned(a.ty, b.ty) {
|
||||
unsupported_type(ctx, [a.ty, b.ty])
|
||||
}
|
||||
|
||||
let common_ty = a.ty;
|
||||
|
||||
if a.is_float(ctx) {
|
||||
let function = match kind {
|
||||
MinOrMax::Min => llvm_intrinsics::call_float_minnum,
|
||||
MinOrMax::Max => llvm_intrinsics::call_float_maxnum,
|
||||
};
|
||||
|
||||
let a = a.into_float(ctx).value;
|
||||
let b = b.into_float(ctx).value;
|
||||
let result = function(ctx, a, b, None);
|
||||
AnyObject { value: result.as_basic_value_enum(), ty: ctx.primitives.float }
|
||||
} else if a.is_unsigned_int(ctx) || a.is_bool(ctx) {
|
||||
// Treating bool has an unsigned int since that is convenient
|
||||
let function = match kind {
|
||||
MinOrMax::Min => llvm_intrinsics::call_int_umin,
|
||||
MinOrMax::Max => llvm_intrinsics::call_int_umax,
|
||||
};
|
||||
|
||||
let a = a.into_int(ctx);
|
||||
let b = b.into_int(ctx);
|
||||
let result = function(ctx, a, b, None);
|
||||
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
|
||||
} else if a.is_signed_int(ctx) {
|
||||
let function = match kind {
|
||||
MinOrMax::Min => llvm_intrinsics::call_int_smin,
|
||||
MinOrMax::Max => llvm_intrinsics::call_int_smax,
|
||||
};
|
||||
|
||||
let a = a.into_int(ctx);
|
||||
let b = b.into_int(ctx);
|
||||
let result = function(ctx, a, b, None);
|
||||
AnyObject { value: result.as_basic_value_enum(), ty: common_ty }
|
||||
} else {
|
||||
unsupported_type(ctx, [common_ty])
|
||||
}
|
||||
}
|
||||
|
||||
/// Call `floor()` or `ceil()` on this object.
|
||||
///
|
||||
/// It is possible to specify which kind of int type to return.
|
||||
#[must_use]
|
||||
pub fn call_floor_or_ceil<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: FloorOrCeil,
|
||||
ret_int_ty: Type,
|
||||
) -> Self {
|
||||
let ret_int_ty_llvm = ctx.get_llvm_type(generator, ret_int_ty).into_int_type();
|
||||
|
||||
if self.is_float(ctx) {
|
||||
let function = match kind {
|
||||
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
|
||||
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
|
||||
};
|
||||
|
||||
let n = self.into_float(ctx).value;
|
||||
let n = function(ctx, n, None);
|
||||
let n = ctx.builder.build_float_to_signed_int(n, ret_int_ty_llvm, "").unwrap();
|
||||
AnyObject { ty: ret_int_ty, value: n.as_basic_value_enum() }
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
}
|
||||
}
|
||||
|
||||
/// Call `np_floor()` or `np_ceil()` on this object.
|
||||
#[must_use]
|
||||
pub fn call_np_floor_or_ceil<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: FloorOrCeil,
|
||||
) -> Self {
|
||||
// TODO:
|
||||
if self.is_float(ctx) {
|
||||
let function = match kind {
|
||||
FloorOrCeil::Floor => llvm_intrinsics::call_float_floor,
|
||||
FloorOrCeil::Ceil => llvm_intrinsics::call_float_ceil,
|
||||
};
|
||||
let n = self.into_float(ctx).value;
|
||||
let n = function(ctx, n, None);
|
||||
AnyObject { ty: ctx.primitives.float, value: n.as_basic_value_enum() }
|
||||
} else if self.is_ndarray(ctx) {
|
||||
let ndarray = self.into_ndarray(generator, ctx);
|
||||
ndarray
|
||||
.map(
|
||||
generator,
|
||||
ctx,
|
||||
NDArrayOut::NewNDArray { dtype: ctx.primitives.float },
|
||||
|generator, ctx, scalar| Ok(scalar.call_np_floor_or_ceil(generator, ctx, kind)),
|
||||
)
|
||||
.unwrap()
|
||||
.to_any_object(ctx)
|
||||
} else {
|
||||
unsupported_type(ctx, [self.ty])
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,176 +0,0 @@
|
|||
use super::NDArrayObject;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{call_nac3_array_set_and_validate_list_shape, call_nac3_array_write_list_to_array},
|
||||
model::*,
|
||||
object::{list::ListObject, AnyObject},
|
||||
stmt::gen_if_else_expr_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
fn get_list_object_dtype_and_ndims<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> (Type, u64) {
|
||||
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
|
||||
|
||||
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
|
||||
let ndims = ndims + 1; // To count `list` itself.
|
||||
|
||||
(dtype, ndims)
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
fn from_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
let list_value = list.get_opaque_list_ptr(generator, ctx);
|
||||
|
||||
// Validate `list` has a consistent shape.
|
||||
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
|
||||
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
|
||||
let ndims = sizet_model.constant(generator, ctx.ctx, ndims_int);
|
||||
let shape = sizet_model.array_alloca(generator, ctx, ndims.value, "shape");
|
||||
call_nac3_array_set_and_validate_list_shape(generator, ctx, list_value, ndims, shape);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int, "ndarray_from_list");
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
// Copy all contents from the list.
|
||||
call_nac3_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
fn from_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
) -> Self {
|
||||
// np_array without copy is only possible `list` is not nested.
|
||||
|
||||
// If `list` is `list[T]`, we can create an ndarray with `data` set
|
||||
// to the array pointer of `list`.
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
if ndims == 1 {
|
||||
// `list` is not nested, does not need to copy.
|
||||
let ndarray =
|
||||
NDArrayObject::alloca(generator, ctx, dtype, 1, "ndarray_from_list_no_copy");
|
||||
|
||||
// Set data
|
||||
let data = list.get_opaque_items_ptr(generator, ctx);
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
// Set shape
|
||||
// dim = list->len;
|
||||
// shape[0] = dim;
|
||||
let shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||
let dim = list.instance.get(generator, ctx, |f| f.len, "dim");
|
||||
shape.offset(generator, ctx, zero.value, "pdim").store(ctx, dim);
|
||||
|
||||
// Set strides, the `data` is contiguous
|
||||
ndarray.update_strides_by_shape(generator, ctx);
|
||||
|
||||
// Done
|
||||
ndarray
|
||||
} else {
|
||||
// `list` is nested, it is impossible to not copy.
|
||||
NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list)
|
||||
}
|
||||
}
|
||||
|
||||
fn from_np_array_list_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
list: ListObject<'ctx>,
|
||||
copy: Int<'ctx, Bool>,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
|
||||
|
||||
let ndarray = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = NDArrayObject::from_np_array_list_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|generator, ctx| {
|
||||
let ndarray =
|
||||
NDArrayObject::from_np_array_list_try_no_copy_impl(generator, ctx, list);
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
|
||||
}
|
||||
|
||||
pub fn from_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
copy: Int<'ctx, Bool>,
|
||||
) -> Self {
|
||||
let ndarray_val = gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|_generator, _ctx| Ok(copy.value),
|
||||
|generator, ctx| {
|
||||
let ndarray = ndarray.make_copy(generator, ctx, "np_array_copied_ndarray"); // Force copy
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No need to copy. Return `ndarray` itself.
|
||||
Ok(Some(ndarray.instance.value))
|
||||
},
|
||||
)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
NDArrayObject::from_value_and_unpacked_types(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_val,
|
||||
ndarray.dtype,
|
||||
ndarray.ndims,
|
||||
)
|
||||
}
|
||||
|
||||
pub fn from_np_array<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
copy: Int<'ctx, Bool>,
|
||||
) -> Self {
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let list = ListObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::from_np_array_list_impl(generator, ctx, list, copy)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
NDArrayObject::from_np_array_ndarray_impl(generator, ctx, ndarray, copy)
|
||||
}
|
||||
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,161 +0,0 @@
|
|||
use itertools::Itertools;
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to,
|
||||
call_nac3_ndarray_util_assert_shape_no_negative,
|
||||
},
|
||||
model::*,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
/// Fields of [`ShapeEntry`]
|
||||
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub ndims: F::Out<IntModel<SizeT>>,
|
||||
pub shape: F::Out<PtrModel<IntModel<SizeT>>>,
|
||||
}
|
||||
|
||||
/// An IRRT structure used in broadcasting.
|
||||
#[derive(Debug, Clone, Copy, Default)]
|
||||
pub struct ShapeEntry;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for ShapeEntry {
|
||||
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create a broadcast view on this ndarray with a target shape.
|
||||
///
|
||||
/// The input shape will be checked to make sure that it contains no negative values.
|
||||
///
|
||||
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
|
||||
/// The caller has to figure this out for this function.
|
||||
/// * `target_shape` - An array pointer pointing to the target shape.
|
||||
#[must_use]
|
||||
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
target_ndims: u64,
|
||||
target_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) -> Self {
|
||||
let target_ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, target_ndims);
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(
|
||||
generator,
|
||||
ctx,
|
||||
target_ndims_llvm,
|
||||
target_shape,
|
||||
);
|
||||
|
||||
let broadcast_ndarray = NDArrayObject::alloca(
|
||||
generator,
|
||||
ctx,
|
||||
self.dtype,
|
||||
target_ndims,
|
||||
"broadcast_ndarray_to_dst",
|
||||
);
|
||||
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
|
||||
|
||||
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
|
||||
broadcast_ndarray
|
||||
}
|
||||
}
|
||||
/// A result produced by [`broadcast_all_ndarrays`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct BroadcastAllResult<'ctx> {
|
||||
/// The statically known `ndims` of the broadcast result.
|
||||
pub ndims: u64,
|
||||
/// The broadcasting shape.
|
||||
pub shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
/// Broadcasted views on the inputs.
|
||||
///
|
||||
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
|
||||
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
|
||||
/// is the same as the input.
|
||||
pub ndarrays: Vec<NDArrayObject<'ctx>>,
|
||||
}
|
||||
|
||||
pub fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_entries: &[(Ptr<'ctx, IntModel<SizeT>>, u64)],
|
||||
broadcast_ndims: u64,
|
||||
broadcast_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let shape_model = StructModel(ShapeEntry);
|
||||
|
||||
// Prepare input shape entries
|
||||
let num_shape_entries =
|
||||
sizet_model.constant(generator, ctx.ctx, u64::try_from(in_entries.len()).unwrap());
|
||||
let shape_entries =
|
||||
shape_model.array_alloca(generator, ctx, num_shape_entries.value, "shape_entries");
|
||||
for (i, (in_shape, in_ndims)) in in_entries.iter().enumerate() {
|
||||
let i = sizet_model.constant(generator, ctx.ctx, i as u64).value;
|
||||
let pshape_entry = shape_entries.offset(generator, ctx, i, "shape_entry");
|
||||
|
||||
let in_ndims = sizet_model.constant(generator, ctx.ctx, *in_ndims);
|
||||
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
|
||||
|
||||
pshape_entry.set(ctx, |f| f.shape, *in_shape);
|
||||
}
|
||||
|
||||
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims);
|
||||
|
||||
call_nac3_ndarray_broadcast_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
num_shape_entries,
|
||||
shape_entries,
|
||||
broadcast_ndims,
|
||||
broadcast_shape,
|
||||
);
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
// TODO: DOCUMENT: Behaves like `np.broadcast()`, except returns results differently.
|
||||
pub fn broadcast<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarrays: &[Self],
|
||||
) -> BroadcastAllResult<'ctx> {
|
||||
assert!(!ndarrays.is_empty());
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
// Infer the broadcast output ndims.
|
||||
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
|
||||
|
||||
let broadcast_ndims = sizet_model.constant(generator, ctx.ctx, broadcast_ndims_int);
|
||||
let broadcast_shape =
|
||||
sizet_model.array_alloca(generator, ctx, broadcast_ndims.value, "broadcast_shape");
|
||||
|
||||
let shape_entries = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
(ndarray.instance.get(generator, ctx, |f| f.shape, "shape"), ndarray.ndims)
|
||||
})
|
||||
.collect_vec();
|
||||
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
|
||||
|
||||
// Broadcast all the inputs to shape `dst_shape`.
|
||||
let broadcast_ndarrays: Vec<_> = ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| {
|
||||
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
BroadcastAllResult {
|
||||
ndims: broadcast_ndims_int,
|
||||
shape: broadcast_shape,
|
||||
ndarrays: broadcast_ndarrays,
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,238 +0,0 @@
|
|||
use inkwell::{values::BasicValueEnum, IntPredicate};
|
||||
|
||||
use super::NDArrayObject;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, object::AnyObject,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
/// Get the zero value in `np.zeros()` of a `dtype`.
|
||||
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "").value.into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the one value in `np.ones()` of a `dtype`.
|
||||
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64]
|
||||
.iter()
|
||||
.any(|ty| ctx.unifier.unioned(dtype, *ty))
|
||||
{
|
||||
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1").value.into()
|
||||
} else {
|
||||
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create an ndarray like `np.empty`.
|
||||
pub fn from_np_empty<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) -> Self {
|
||||
// Validate `shape`
|
||||
// TODO: Should the caller be responsible for this instead?
|
||||
let ndims_llvm = IntModel(SizeT).constant(generator, ctx.ctx, ndims);
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "full_ndarray");
|
||||
ndarray.copy_shape_from_array(generator, ctx, shape);
|
||||
ndarray.create_data(generator, ctx);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.full`.
|
||||
pub fn from_np_full<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
fill_value: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
// Sanity check on `fill_value`'s dtype.
|
||||
assert!(ctx.unifier.unioned(dtype, fill_value.ty));
|
||||
|
||||
let ndarray = NDArrayObject::from_np_empty(generator, ctx, dtype, ndims, shape);
|
||||
ndarray.fill(generator, ctx, fill_value);
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.zero`.
|
||||
pub fn from_np_zero<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_zero_value(generator, ctx, dtype);
|
||||
let fill_value = AnyObject { value: fill_value, ty: dtype };
|
||||
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.ones`.
|
||||
pub fn from_np_ones<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) -> Self {
|
||||
let fill_value = ndarray_one_value(generator, ctx, dtype);
|
||||
let fill_value = AnyObject { value: fill_value, ty: dtype };
|
||||
NDArrayObject::from_np_full(generator, ctx, dtype, ndims, shape, fill_value)
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.arange`.
|
||||
/// The returned ndarray's `dtype` is always `float`
|
||||
pub fn from_np_arange<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
length: Int<'ctx, SizeT>,
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(
|
||||
generator,
|
||||
ctx,
|
||||
ctx.primitives.float,
|
||||
1, // ndims = 1
|
||||
"arange_ndarray",
|
||||
);
|
||||
|
||||
// `ndarray.shape[0] = length`
|
||||
ndarray
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.shape, "shape")
|
||||
.offset_const(generator, ctx, 0, "dim")
|
||||
.store(ctx, length);
|
||||
|
||||
// Create data and set elements
|
||||
ndarray.create_data(generator, ctx);
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
// Get the index of the current element, convert that index to float, and write it.
|
||||
// This is how we get [0.0, 1.0, 2.0, ...].
|
||||
let index = nditer.get_index(generator, ctx);
|
||||
let pelement = nditer.get_pointer(generator, ctx);
|
||||
|
||||
let val = ctx
|
||||
.builder
|
||||
.build_unsigned_int_to_float(index.value, ctx.ctx.f64_type(), "val")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(pelement, val).unwrap();
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.eye`.
|
||||
pub fn from_np_eye<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
nrows: Int<'ctx, SizeT>,
|
||||
ncols: Int<'ctx, SizeT>,
|
||||
offset: Int<'ctx, SizeT>,
|
||||
) -> Self {
|
||||
let ndzero = ndarray_zero_value(generator, ctx, dtype);
|
||||
let ndone = ndarray_one_value(generator, ctx, dtype);
|
||||
|
||||
let ndarray = NDArrayObject::alloca_dynamic_shape(
|
||||
generator,
|
||||
ctx,
|
||||
dtype,
|
||||
&[nrows, ncols],
|
||||
"eye_ndarray",
|
||||
);
|
||||
|
||||
// Create data and make the matrix like look np.eye()
|
||||
ndarray.create_data(generator, ctx);
|
||||
ndarray
|
||||
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
|
||||
// and this loop would not execute.
|
||||
|
||||
// Load up `row_i` and `col_i` from indices.
|
||||
let row_i = nditer
|
||||
.get_indices()
|
||||
.offset_const(generator, ctx, 0, "")
|
||||
.load(generator, ctx, "row_i");
|
||||
let col_i = nditer
|
||||
.get_indices()
|
||||
.offset_const(generator, ctx, 1, "")
|
||||
.load(generator, ctx, "col_i");
|
||||
|
||||
// Write to element
|
||||
let be_one =
|
||||
row_i.add(ctx, offset, "").compare(ctx, IntPredicate::EQ, col_i, "write_one");
|
||||
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
|
||||
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Create an ndarray like `np.identity`.
|
||||
pub fn from_np_identity<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
size: Int<'ctx, SizeT>,
|
||||
) -> Self {
|
||||
// Convenient implementation
|
||||
let offset = IntModel(SizeT).const_0(generator, ctx.ctx);
|
||||
NDArrayObject::from_np_eye(generator, ctx, dtype, size, size, offset)
|
||||
}
|
||||
}
|
|
@ -1,128 +0,0 @@
|
|||
use inkwell::{FloatPredicate, IntPredicate};
|
||||
|
||||
use crate::codegen::{
|
||||
model::*,
|
||||
object::{AnyObject, MinOrMax},
|
||||
stmt::gen_if_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Helper function to implement NAC3's builtin `np_min()`, `np_max()`, `np_argmin()`, and `np_argmax()`.
|
||||
///
|
||||
/// Generate LLVM IR to find the extremum and index of the **first** extremum value.
|
||||
///
|
||||
/// Care has also been taken to make the error messages match that of NumPy.
|
||||
fn min_max_argmin_argmax_helper<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: MinOrMax,
|
||||
on_empty_err_msg: &str,
|
||||
) -> (AnyObject<'ctx>, Int<'ctx, SizeT>) {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
// If the ndarray is empty, throw an error.
|
||||
let is_empty = self.is_empty(generator, ctx);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
is_empty.value,
|
||||
"0:ValueError",
|
||||
on_empty_err_msg,
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
// Setup and initialize the extremum to be the first element in the ndarray
|
||||
let pextremum_index = sizet_model.alloca(generator, ctx, "extremum_index");
|
||||
let pextremum = ctx.builder.build_alloca(dtype_llvm, "extremum").unwrap();
|
||||
|
||||
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||
pextremum_index.store(ctx, zero);
|
||||
|
||||
let first_scalar = self.get_nth_scalar(generator, ctx, zero);
|
||||
ctx.builder.build_store(pextremum, first_scalar.value).unwrap();
|
||||
|
||||
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
let old_extremum = ctx.builder.build_load(pextremum, "current_extremum").unwrap();
|
||||
let old_extremum = AnyObject { ty: self.dtype, value: old_extremum };
|
||||
|
||||
let scalar = nditer.get_scalar(generator, ctx);
|
||||
let new_extremum = AnyObject::call_min_or_max(ctx, kind, old_extremum, scalar);
|
||||
|
||||
gen_if_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
// Is new_extremum is more extreme than old_extremum?
|
||||
let cmp = AnyObject::compare_int_or_float_by_predicate(
|
||||
generator,
|
||||
ctx,
|
||||
new_extremum,
|
||||
old_extremum,
|
||||
IntPredicate::NE,
|
||||
FloatPredicate::ONE,
|
||||
"",
|
||||
);
|
||||
Ok(cmp.value)
|
||||
},
|
||||
|generator, ctx| {
|
||||
// Yes, update the extremum index
|
||||
let index = nditer.get_index(generator, ctx);
|
||||
pextremum_index.store(ctx, index);
|
||||
Ok(())
|
||||
},
|
||||
|_generator, _ctx| {
|
||||
// No, do nothing
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
// Finally return the extremum and extremum index.
|
||||
let extremum_index = pextremum_index.load(generator, ctx, "extremum_index");
|
||||
|
||||
let extremum = ctx.builder.build_load(pextremum, "extremum_value").unwrap();
|
||||
let extremum = AnyObject { ty: self.dtype, value: extremum };
|
||||
|
||||
(extremum, extremum_index)
|
||||
}
|
||||
|
||||
/// Invoke NAC3's builtin `np_min()` or `np_max()`.
|
||||
pub fn min_or_max<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: MinOrMax,
|
||||
) -> AnyObject<'ctx> {
|
||||
let on_empty_err_msg = format!(
|
||||
"zero-size array to reduction operation {} which has no identity",
|
||||
match kind {
|
||||
MinOrMax::Min => "minimum",
|
||||
MinOrMax::Max => "maximum",
|
||||
}
|
||||
);
|
||||
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).0
|
||||
}
|
||||
|
||||
/// Invoke NAC3's builtin `np_argmin()` or `np_argmax()`.
|
||||
pub fn argmin_or_argmax<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
kind: MinOrMax,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
let on_empty_err_msg = format!(
|
||||
"attempt to get {} of an empty sequence",
|
||||
match kind {
|
||||
MinOrMax::Min => "argmin",
|
||||
MinOrMax::Max => "argmax",
|
||||
}
|
||||
);
|
||||
self.min_max_argmin_argmax_helper(generator, ctx, kind, &on_empty_err_msg).1
|
||||
}
|
||||
}
|
|
@ -1,321 +0,0 @@
|
|||
use crate::codegen::{irrt::call_nac3_ndarray_index, model::*, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
pub type NDIndexType = Byte;
|
||||
|
||||
/// Fields of [`NDIndex`]
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub type_: F::Out<IntModel<NDIndexType>>, // Defined to be uint8_t in IRRT
|
||||
pub data: F::Out<PtrModel<IntModel<Byte>>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation fo an ndarray subscript index.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct NDIndex;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for NDIndex {
|
||||
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
|
||||
}
|
||||
}
|
||||
|
||||
/// Fields of [`UserSlice`]
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct UserSliceFields<'ctx, F: FieldTraversal<'ctx>> {
|
||||
pub start_defined: F::Out<IntModel<Bool>>,
|
||||
pub start: F::Out<IntModel<Int32>>,
|
||||
pub stop_defined: F::Out<IntModel<Bool>>,
|
||||
pub stop: F::Out<IntModel<Int32>>,
|
||||
pub step_defined: F::Out<IntModel<Bool>>,
|
||||
pub step: F::Out<IntModel<Int32>>,
|
||||
}
|
||||
|
||||
/// An IRRT representation of a user slice.
|
||||
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
|
||||
pub struct UserSlice;
|
||||
|
||||
impl<'ctx> StructKind<'ctx> for UserSlice {
|
||||
type Fields<F: FieldTraversal<'ctx>> = UserSliceFields<'ctx, F>;
|
||||
|
||||
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
|
||||
Self::Fields {
|
||||
start_defined: traversal.add_auto("start_defined"),
|
||||
start: traversal.add_auto("start"),
|
||||
stop_defined: traversal.add_auto("stop_defined"),
|
||||
stop: traversal.add_auto("stop"),
|
||||
step_defined: traversal.add_auto("step_defined"),
|
||||
step: traversal.add_auto("step"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience structure to prepare a [`UserSlice`].
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct RustUserSlice<'ctx> {
|
||||
pub start: Option<Int<'ctx, Int32>>,
|
||||
pub stop: Option<Int<'ctx, Int32>>,
|
||||
pub step: Option<Int<'ctx, Int32>>,
|
||||
}
|
||||
|
||||
impl<'ctx> RustUserSlice<'ctx> {
|
||||
/// Write the contents to an LLVM [`UserSlice`].
|
||||
pub fn write_to_user_slice<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_slice_ptr: Ptr<'ctx, StructModel<UserSlice>>,
|
||||
) {
|
||||
let bool_model = IntModel(Bool);
|
||||
|
||||
let false_ = bool_model.constant(generator, ctx.ctx, 0);
|
||||
let true_ = bool_model.constant(generator, ctx.ctx, 1);
|
||||
|
||||
// TODO: Code duplication. Probably okay...?
|
||||
|
||||
match self.start {
|
||||
Some(start) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.stop {
|
||||
Some(stop) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
|
||||
}
|
||||
|
||||
match self.step {
|
||||
Some(step) => {
|
||||
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
|
||||
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
|
||||
}
|
||||
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A convenience enum variant to store the content and type of an NDIndex in high level.
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum RustNDIndex<'ctx> {
|
||||
SingleElement(Int<'ctx, Int32>), // TODO: To be SizeT
|
||||
Slice(RustUserSlice<'ctx>),
|
||||
NewAxis,
|
||||
Ellipsis,
|
||||
}
|
||||
|
||||
impl<'ctx> RustNDIndex<'ctx> {
|
||||
/// Get the value to set `NDIndex::type` for this variant.
|
||||
fn get_type_id(&self) -> u64 {
|
||||
// Defined in IRRT, must be in sync
|
||||
match self {
|
||||
RustNDIndex::SingleElement(_) => 0,
|
||||
RustNDIndex::Slice(_) => 1,
|
||||
RustNDIndex::NewAxis => 2,
|
||||
RustNDIndex::Ellipsis => 3,
|
||||
}
|
||||
}
|
||||
|
||||
/// Write the contents to an LLVM [`NDIndex`].
|
||||
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dst_ndindex_ptr: Ptr<'ctx, StructModel<NDIndex>>,
|
||||
) {
|
||||
let ndindex_type_model = IntModel(NDIndexType::default());
|
||||
let i32_model = IntModel(Int32);
|
||||
let user_slice_model = StructModel(UserSlice);
|
||||
|
||||
// Set `dst_ndindex_ptr->type`
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.type_)
|
||||
.store(ctx, ndindex_type_model.constant(generator, ctx.ctx, self.get_type_id()));
|
||||
|
||||
// Set `dst_ndindex_ptr->data`
|
||||
match self {
|
||||
RustNDIndex::SingleElement(in_index) => {
|
||||
let index_ptr = i32_model.alloca(generator, ctx, "index");
|
||||
index_ptr.store(ctx, *in_index);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, index_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
|
||||
}
|
||||
RustNDIndex::Slice(in_rust_slice) => {
|
||||
let user_slice_ptr = user_slice_model.alloca(generator, ctx, "user_slice");
|
||||
in_rust_slice.write_to_user_slice(generator, ctx, user_slice_ptr);
|
||||
|
||||
dst_ndindex_ptr
|
||||
.gep(ctx, |f| f.data)
|
||||
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, IntModel(Byte), ""));
|
||||
}
|
||||
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
|
||||
}
|
||||
}
|
||||
|
||||
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
|
||||
pub fn alloca_ndindexes<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
in_ndindexes: &[RustNDIndex<'ctx>],
|
||||
) -> (Int<'ctx, SizeT>, Ptr<'ctx, StructModel<NDIndex>>) {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let ndindex_model = StructModel(NDIndex);
|
||||
|
||||
let num_ndindexes = sizet_model.constant(generator, ctx.ctx, in_ndindexes.len() as u64);
|
||||
let ndindexes =
|
||||
ndindex_model.array_alloca(generator, ctx, num_ndindexes.value, "ndindexes");
|
||||
for (i, in_ndindex) in in_ndindexes.iter().enumerate() {
|
||||
let i = sizet_model.constant(generator, ctx.ctx, i as u64);
|
||||
let pndindex = ndindexes.offset(generator, ctx, i.value, "");
|
||||
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
|
||||
}
|
||||
|
||||
(num_ndindexes, ndindexes)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Get the ndims [`Type`] after indexing with a given slice.
|
||||
#[must_use]
|
||||
pub fn deduce_ndims_after_indexing_with(&self, indexes: &[RustNDIndex<'ctx>]) -> u64 {
|
||||
let mut ndims = self.ndims;
|
||||
for index in indexes {
|
||||
match index {
|
||||
RustNDIndex::SingleElement(_) => {
|
||||
ndims -= 1; // Single elements decrements ndims
|
||||
}
|
||||
RustNDIndex::NewAxis => {
|
||||
ndims += 1; // `np.newaxis` / `none` adds a new axis
|
||||
}
|
||||
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
|
||||
}
|
||||
}
|
||||
ndims
|
||||
}
|
||||
|
||||
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
|
||||
///
|
||||
/// This function behaves like NumPy's ndarray indexing, but if the indexes index
|
||||
/// into a single element, an unsized ndarray is returned.
|
||||
#[must_use]
|
||||
pub fn index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
indexes: &[RustNDIndex<'ctx>],
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let dst_ndims = self.deduce_ndims_after_indexing_with(indexes);
|
||||
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims, name);
|
||||
|
||||
let (num_indexes, indexes) = RustNDIndex::alloca_ndindexes(generator, ctx, indexes);
|
||||
call_nac3_ndarray_index(
|
||||
generator,
|
||||
ctx,
|
||||
num_indexes,
|
||||
indexes,
|
||||
self.instance,
|
||||
dst_ndarray.instance,
|
||||
);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
}
|
||||
|
||||
pub mod util {
|
||||
use itertools::Itertools;
|
||||
use nac3parser::ast::{Constant, Expr, ExprKind};
|
||||
|
||||
use crate::{
|
||||
codegen::{expr::gen_slice, model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::{RustNDIndex, RustUserSlice};
|
||||
|
||||
/// Generate LLVM code to transform an ndarray subscript expression to
|
||||
/// its list of [`RustNDIndex`]
|
||||
///
|
||||
/// i.e.,
|
||||
/// ```python
|
||||
/// my_ndarray[::3, 1, :2:]
|
||||
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
|
||||
/// ```
|
||||
pub fn gen_ndarray_subscript_ndindexes<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
subscript: &Expr<Option<Type>>,
|
||||
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||
let i32_model = IntModel(Int32);
|
||||
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// So we first "flatten" out the slice expression
|
||||
let index_exprs = match &subscript.node {
|
||||
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
|
||||
_ => vec![subscript],
|
||||
};
|
||||
|
||||
// Process all index expressions
|
||||
let mut rust_ndindexes: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
|
||||
for index_expr in index_exprs {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
|
||||
// Handle slices
|
||||
|
||||
// Helper function here to deduce code duplication
|
||||
let (lower, upper, step) = gen_slice(generator, ctx, lower, upper, step)?;
|
||||
RustNDIndex::Slice(RustUserSlice { start: lower, stop: upper, step })
|
||||
} else if let ExprKind::Constant { value: Constant::Ellipsis, .. } = &index_expr.node {
|
||||
// Handle '...'
|
||||
RustNDIndex::Ellipsis
|
||||
} else {
|
||||
match &*ctx.unifier.get_ty(index_expr.custom.unwrap()) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.option.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle `np.newaxis` / `None`
|
||||
RustNDIndex::NewAxis
|
||||
}
|
||||
_ => {
|
||||
// Treat and handle everything else as a single element index.
|
||||
let index =
|
||||
generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.primitives.int32, // Must be int32, this checks for illegal values
|
||||
)?;
|
||||
let index = i32_model.check_value(generator, ctx.ctx, index).unwrap();
|
||||
|
||||
RustNDIndex::SingleElement(index)
|
||||
}
|
||||
}
|
||||
};
|
||||
rust_ndindexes.push(ndindex);
|
||||
}
|
||||
Ok(rust_ndindexes)
|
||||
}
|
||||
}
|
|
@ -1,200 +0,0 @@
|
|||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
object::ndarray::{AnyObject, NDArrayObject},
|
||||
stmt::gen_for_callback,
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
|
||||
use super::{nditer::NDIterHandle, scalar::ScalarOrNDArray, NDArrayOut};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// TODO: Document me. Has complex behavior.
|
||||
/// and explain why `ret_dtype` has to be specified beforehand.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarrays: &[Self],
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: MappingFn,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[AnyObject<'ctx>],
|
||||
) -> Result<AnyObject<'ctx>, String>,
|
||||
{
|
||||
// Broadcast inputs
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
|
||||
|
||||
let out_ndarray = match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// Create a new ndarray based on the broadcast shape.
|
||||
let result_ndarray = NDArrayObject::alloca(
|
||||
generator,
|
||||
ctx,
|
||||
dtype,
|
||||
broadcast_result.ndims,
|
||||
"mapped_ndarray",
|
||||
);
|
||||
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
|
||||
result_ndarray.create_data(generator, ctx);
|
||||
result_ndarray
|
||||
}
|
||||
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
|
||||
// Use an existing ndarray.
|
||||
|
||||
// Check that its shape is compatible with the broadcast shape.
|
||||
result_ndarray.check_can_be_written_by_out(
|
||||
generator,
|
||||
ctx,
|
||||
broadcast_result.ndims,
|
||||
broadcast_result.shape,
|
||||
);
|
||||
result_ndarray
|
||||
}
|
||||
};
|
||||
|
||||
// Map element-wise and store results into `mapped_ndarray`.
|
||||
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("broadcast_starmap"),
|
||||
|generator, ctx| {
|
||||
// Create NDIters for all broadcasted input ndarrays.
|
||||
let other_nditers = broadcast_result
|
||||
.ndarrays
|
||||
.iter()
|
||||
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
|
||||
.collect_vec();
|
||||
Ok((nditer, other_nditers))
|
||||
},
|
||||
|generator, ctx, (out_nditer, _in_nditers)| {
|
||||
// We can simply use `out_nditer`'s `has_next()`.
|
||||
// `in_nditers`' `has_next()`s should return the same value.
|
||||
Ok(out_nditer.has_next(generator, ctx).value)
|
||||
},
|
||||
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
|
||||
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
|
||||
// and write to `out_ndarray`.
|
||||
|
||||
let in_scalars =
|
||||
in_nditers.iter().map(|nditer| nditer.get_scalar(generator, ctx)).collect_vec();
|
||||
|
||||
let result = mapping(generator, ctx, &in_scalars)?;
|
||||
// Sanity check on result's ty
|
||||
assert!(ctx.unifier.unioned(result.ty, out_ndarray.dtype));
|
||||
|
||||
let p = out_nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, result.value).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|generator, ctx, (out_nditer, in_nditers)| {
|
||||
// Advance all iterators
|
||||
out_nditer.next(generator, ctx);
|
||||
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(out_ndarray)
|
||||
}
|
||||
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
out: NDArrayOut<'ctx>,
|
||||
mapping: Mapping,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
AnyObject<'ctx>,
|
||||
) -> Result<AnyObject<'ctx>, String>,
|
||||
{
|
||||
NDArrayObject::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
out,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// TODO: Document me. Has complex behavior.
|
||||
/// and explain why `ret_dtype` has to be specified beforehand.
|
||||
pub fn broadcasting_starmap<'a, G, MappingFn>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: &[Self],
|
||||
ret_dtype: Type,
|
||||
mapping: MappingFn,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
MappingFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
&[AnyObject<'ctx>],
|
||||
) -> Result<AnyObject<'ctx>, String>,
|
||||
{
|
||||
// Check if all inputs are AnyObjects
|
||||
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
|
||||
|
||||
if let Some(scalars) = all_scalars {
|
||||
let scalar = mapping(generator, ctx, &scalars)?;
|
||||
|
||||
// Sanity check on scalar's type
|
||||
assert!(ctx.unifier.unioned(scalar.ty, ret_dtype));
|
||||
|
||||
Ok(ScalarOrNDArray::Scalar(scalar))
|
||||
} else {
|
||||
// Promote all input to ndarrays and map through them.
|
||||
let inputs = inputs.iter().map(|input| input.as_ndarray(generator, ctx)).collect_vec();
|
||||
let ndarray = NDArrayObject::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&inputs,
|
||||
NDArrayOut::NewNDArray { dtype: ret_dtype },
|
||||
mapping,
|
||||
)?;
|
||||
Ok(ScalarOrNDArray::NDArray(ndarray))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn map<'a, G, Mapping>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ret_dtype: Type,
|
||||
mapping: Mapping,
|
||||
) -> Result<Self, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Mapping: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
AnyObject<'ctx>,
|
||||
) -> Result<AnyObject<'ctx>, String>,
|
||||
{
|
||||
ScalarOrNDArray::broadcasting_starmap(
|
||||
generator,
|
||||
ctx,
|
||||
&[*self],
|
||||
ret_dtype,
|
||||
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
|
||||
)
|
||||
}
|
||||
}
|
|
@ -1,831 +0,0 @@
|
|||
pub mod array;
|
||||
pub mod broadcast;
|
||||
pub mod factory;
|
||||
pub mod functions;
|
||||
pub mod indexing;
|
||||
pub mod mapping;
|
||||
pub mod nalgebra;
|
||||
pub mod nditer;
|
||||
pub mod product;
|
||||
pub mod scalar;
|
||||
pub mod shape_util;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
|
||||
call_nac3_ndarray_is_c_contiguous, call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
|
||||
call_nac3_ndarray_resolve_and_check_new_shape, call_nac3_ndarray_set_strides_by_shape,
|
||||
call_nac3_ndarray_size, call_nac3_ndarray_transpose,
|
||||
call_nac3_ndarray_util_assert_output_shape_same,
|
||||
},
|
||||
model::*,
|
||||
stmt::{gen_for_callback, BreakContinueHooks},
|
||||
structure::{NDArray, SimpleNDArray},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::{
|
||||
helper::{create_ndims, extract_ndims},
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
|
||||
},
|
||||
typecheck::typedef::Type,
|
||||
};
|
||||
use indexing::RustNDIndex;
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::BasicType,
|
||||
values::{BasicValue, PointerValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use nditer::NDIterHandle;
|
||||
use scalar::ScalarOrNDArray;
|
||||
use util::call_memcpy_model;
|
||||
|
||||
use super::{tuple::TupleObject, AnyObject};
|
||||
|
||||
/// A NAC3 Python ndarray object.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NDArrayObject<'ctx> {
|
||||
pub dtype: Type,
|
||||
pub ndims: u64,
|
||||
pub instance: Ptr<'ctx, StructModel<NDArray>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// Create an [`NDArrayObject`] from an LLVM value and its typechecker [`Type`].
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
|
||||
}
|
||||
|
||||
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
|
||||
/// `dtype` and `ndims`.
|
||||
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
value: V,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
let pndarray_model = PtrModel(StructModel(NDArray));
|
||||
let value = pndarray_model.check_value(generator, ctx.ctx, value).unwrap();
|
||||
NDArrayObject { dtype, ndims, instance: value }
|
||||
}
|
||||
|
||||
/// Forget that this is an ndarray and convert to an [`AnyObject`].
|
||||
pub fn to_any_object(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
|
||||
let ty = self.get_ndarray_type(ctx);
|
||||
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
|
||||
}
|
||||
|
||||
/// Create a [`SimpleNDArray`] from the contents of this ndarray.
|
||||
///
|
||||
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
|
||||
///
|
||||
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
|
||||
/// the returned [`SimpleNDArray`] and copy contents of this ndarray to there.
|
||||
///
|
||||
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`SimpleNDArray`]
|
||||
/// will have the same `data` field as this ndarray.
|
||||
///
|
||||
/// The `item_model` sets the [`Model`] of the returned [`SimpleNDArray`]'s `Item` model, and should match the
|
||||
/// `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics.
|
||||
pub fn make_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
item_model: Item,
|
||||
name: &str,
|
||||
) -> Ptr<'ctx, StructModel<SimpleNDArray<Item>>> {
|
||||
// Sanity check on `self.dtype` and `item_model`.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
|
||||
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
let simple_ndarray_model = StructModel(SimpleNDArray { item: item_model });
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
// Allocate and setup the resulting [`SimpleNDArray`].
|
||||
let result = simple_ndarray_model.alloca(generator, ctx, name);
|
||||
|
||||
// Set ndims and shape.
|
||||
let ndims = self.get_ndims(generator, ctx.ctx);
|
||||
result.set(ctx, |f| f.ndims, ndims);
|
||||
|
||||
let shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||
result.set(ctx, |f| f.shape, shape);
|
||||
|
||||
// Set data, but we do things differently if this ndarray is contiguous.
|
||||
let is_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb; This ndarray is contiguous.
|
||||
let data = self.instance.get(generator, ctx, |f| f.data, "");
|
||||
let data = data.pointer_cast(generator, ctx, item_model, "");
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
|
||||
// TODO: Reimplement this? This method does give us the contiguous `data`, but
|
||||
// this creates a few extra bytes of useless information because an entire NDArray
|
||||
// is allocated. Though this is super convenient.
|
||||
let data = self.make_copy(generator, ctx, "").instance.get(generator, ctx, |f| f.data, "");
|
||||
let data = data.pointer_cast(generator, ctx, item_model, "");
|
||||
result.set(ctx, |f| f.data, data);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition to end_bb for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
/// Create an [`NDArrayObject`] from a [`SimpleNDArray`].
|
||||
///
|
||||
/// This operation is super cheap. The newly created [`NDArray`] will not copy contents
|
||||
/// from `simple_ndarray`, but only having its `data` and `shape` pointing to `simple_array`.
|
||||
pub fn from_simple_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
simple_ndarray: Ptr<'ctx, StructModel<SimpleNDArray<Item>>>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
) -> Self {
|
||||
// Sanity check on `dtype` and `simple_array`'s `Item` model.
|
||||
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
|
||||
simple_ndarray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
|
||||
|
||||
let byte_model = IntModel(Byte);
|
||||
|
||||
// TODO: Check if `ndims` is consistent with that in `simple_array`?
|
||||
|
||||
// Allocate the resulting ndarray.
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims, "from_simple_ndarray");
|
||||
|
||||
// Set data, shape by simply copying addresses.
|
||||
let data = simple_ndarray
|
||||
.get(generator, ctx, |f| f.data, "")
|
||||
.pointer_cast(generator, ctx, byte_model, "data");
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
let shape = simple_ndarray.get(generator, ctx, |f| f.shape, "shape");
|
||||
ndarray.instance.set(ctx, |f| f.shape, shape);
|
||||
|
||||
// Set strides. We know `data` is contiguous.
|
||||
ndarray.update_strides_by_shape(generator, ctx);
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Get the typechecker ndarray type of this [`NDArrayObject`].
|
||||
pub fn get_ndarray_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
|
||||
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
|
||||
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
|
||||
}
|
||||
|
||||
/// Get the `np.size()` of this ndarray.
|
||||
pub fn size<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
call_nac3_ndarray_size(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `ndarray.nbytes` of this ndarray.
|
||||
pub fn nbytes<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the `len()` of this ndarray.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
call_nac3_ndarray_len(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Check if this ndarray is C-contiguous.
|
||||
///
|
||||
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
|
||||
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, Bool> {
|
||||
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
/// Get the pointer to the n-th (0-based) element.
|
||||
///
|
||||
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
|
||||
///
|
||||
/// There is no out-of-bounds check.
|
||||
pub fn get_nth_pointer<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Int<'ctx, SizeT>,
|
||||
name: &str,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
|
||||
|
||||
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), name)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Get the n-th (0-based) scalar.
|
||||
///
|
||||
/// There is no out-of-bounds check.
|
||||
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Int<'ctx, SizeT>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let p = self.get_nth_pointer(generator, ctx, nth, "value");
|
||||
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||
AnyObject { ty: self.dtype, value }
|
||||
}
|
||||
|
||||
/// Set the n-th (0-based) scalar.
|
||||
///
|
||||
/// There is no out-of-bounds check.
|
||||
pub fn set_nth_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
nth: Int<'ctx, SizeT>,
|
||||
scalar: AnyObject<'ctx>,
|
||||
) {
|
||||
// Sanity check on scalar's `dtype`
|
||||
assert!(ctx.unifier.unioned(scalar.ty, self.dtype));
|
||||
|
||||
let pscalar = self.get_nth_pointer(generator, ctx, nth, "pscalar");
|
||||
ctx.builder.build_store(pscalar, scalar.value).unwrap();
|
||||
}
|
||||
|
||||
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
|
||||
///
|
||||
/// Please refer to the IRRT implementation to see its purpose.
|
||||
pub fn update_strides_by_shape<G: CodeGenerator + ?Sized>(
|
||||
self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
/// Copy data from another ndarray.
|
||||
///
|
||||
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
|
||||
/// do not matter. The copying order is determined by how their flattened views look.
|
||||
///
|
||||
/// Panics if the `dtype`s of ndarrays are different.
|
||||
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
|
||||
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
|
||||
}
|
||||
|
||||
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
|
||||
///
|
||||
/// `shape` and `strides` will be automatically allocated on the stack.
|
||||
//e
|
||||
/// The returned ndarray's content will be:
|
||||
/// - `data`: set to `nullptr`.
|
||||
/// - `itemsize`: set to the `sizeof()` of `dtype`.
|
||||
/// - `ndims`: set to the value of `ndims`.
|
||||
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
|
||||
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
|
||||
pub fn alloca<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
ndims: u64,
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let ndarray_model = StructModel(NDArray);
|
||||
let ndarray_data_model = PtrModel(IntModel(Byte));
|
||||
|
||||
let pndarray = ndarray_model.alloca(generator, ctx, name);
|
||||
|
||||
let data = ndarray_data_model.nullptr(generator, ctx.ctx);
|
||||
pndarray.set(ctx, |f| f.data, data);
|
||||
|
||||
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
|
||||
let itemsize =
|
||||
sizet_model.s_extend_or_bit_cast(generator, ctx, itemsize, "alloca_itemsize");
|
||||
pndarray.set(ctx, |f| f.itemsize, itemsize);
|
||||
|
||||
let ndims_val = sizet_model.constant(generator, ctx.ctx, ndims);
|
||||
pndarray.set(ctx, |f| f.ndims, ndims_val);
|
||||
|
||||
let shape = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_shape");
|
||||
pndarray.set(ctx, |f| f.shape, shape);
|
||||
|
||||
let strides = sizet_model.array_alloca(generator, ctx, ndims_val.value, "alloca_strides");
|
||||
pndarray.set(ctx, |f| f.strides, strides);
|
||||
|
||||
NDArrayObject { dtype, ndims, instance: pndarray }
|
||||
}
|
||||
|
||||
/// Convenience function.
|
||||
/// Like [`NDArrayObject::alloca_uninitialized`] but directly takes the typechecker type of the ndarray.
|
||||
pub fn alloca_ndarray_type<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray_ty: Type,
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
|
||||
let ndims = extract_ndims(&ctx.unifier, ndims);
|
||||
Self::alloca(generator, ctx, dtype, ndims, name)
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[u64],
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
let dim = sizet_model.constant(generator, ctx.ctx, *dim);
|
||||
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
|
||||
///
|
||||
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
|
||||
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dtype: Type,
|
||||
shape: &[Int<'ctx, SizeT>],
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64, name);
|
||||
|
||||
// Write shape
|
||||
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||
for (i, dim) in shape.iter().enumerate() {
|
||||
dst_shape.offset_const(generator, ctx, i as u64, "").store(ctx, *dim);
|
||||
}
|
||||
|
||||
ndarray
|
||||
}
|
||||
|
||||
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
|
||||
///
|
||||
/// The new ndarray will own its data and will be C-contiguous.
|
||||
#[must_use]
|
||||
pub fn make_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
name: &str,
|
||||
) -> Self {
|
||||
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, name);
|
||||
|
||||
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx, "shape");
|
||||
clone.copy_shape_from_array(generator, ctx, shape);
|
||||
clone.create_data(generator, ctx);
|
||||
clone.copy_data_from(generator, ctx, *self);
|
||||
clone
|
||||
}
|
||||
|
||||
/// Get this ndarray's `ndims` as an LLVM constant.
|
||||
pub fn get_ndims<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &'ctx Context,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
sizet_model.constant(generator, ctx, self.ndims)
|
||||
}
|
||||
|
||||
/// Get if this ndarray's `np.size` is `0` - containing no content.
|
||||
pub fn is_empty<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, Bool> {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let size = self.size(generator, ctx);
|
||||
size.compare(ctx, IntPredicate::EQ, sizet_model.const_0(generator, ctx.ctx), "is_empty")
|
||||
}
|
||||
|
||||
/// Return true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
|
||||
///
|
||||
/// This is a staticially known property of ndarrays. This is why it is returning
|
||||
/// a Rust boolean instead of a [`BasicValue`].
|
||||
#[must_use]
|
||||
pub fn is_unsized(&self) -> bool {
|
||||
self.ndims == 0
|
||||
}
|
||||
|
||||
/// If this ndarray is unsized, return its sole value as a [`AnyObject`]. Otherwise, do nothing.
|
||||
pub fn split_unsized<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
if self.is_unsized() {
|
||||
// NOTE: `np.size(self) == 0` here is never possible.
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||
ScalarOrNDArray::Scalar(self.get_nth_scalar(generator, ctx, zero))
|
||||
} else {
|
||||
ScalarOrNDArray::NDArray(*self)
|
||||
}
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||
///
|
||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||
///
|
||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||
pub fn create_data<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
let byte_model = IntModel(Byte);
|
||||
|
||||
let nbytes = self.nbytes(generator, ctx);
|
||||
|
||||
let data = byte_model.array_alloca(generator, ctx, nbytes.value, "data");
|
||||
self.instance.set(ctx, |f| f.data, data);
|
||||
|
||||
self.update_strides_by_shape(generator, ctx);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an array.
|
||||
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) {
|
||||
let dst_shape = self.instance.get(generator, ctx, |f| f.shape, "dst_shape");
|
||||
let num_items = self.get_ndims(generator, ctx.ctx).value;
|
||||
call_memcpy_model(generator, ctx, dst_shape, src_shape, num_items);
|
||||
}
|
||||
|
||||
/// Copy shape dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape, "src_shape");
|
||||
self.copy_shape_from_array(generator, ctx, src_shape);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an array.
|
||||
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_strides: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) {
|
||||
let dst_strides = self.instance.get(generator, ctx, |f| f.strides, "dst_strides");
|
||||
let num_items = self.get_ndims(generator, ctx.ctx).value;
|
||||
call_memcpy_model(generator, ctx, dst_strides, src_strides, num_items);
|
||||
}
|
||||
|
||||
/// Copy strides dimensions from an ndarray.
|
||||
/// Panics if `ndims` mismatches.
|
||||
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
src_ndarray: NDArrayObject<'ctx>,
|
||||
) {
|
||||
assert_eq!(self.ndims, src_ndarray.ndims);
|
||||
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides, "src_strides");
|
||||
self.copy_strides_from_array(generator, ctx, src_strides);
|
||||
}
|
||||
|
||||
/// Iterate through every element in the ndarray.
|
||||
///
|
||||
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
|
||||
pub fn foreach<'a, G, F>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
NDIterHandle<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
Some("ndarray_foreach"),
|
||||
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|
||||
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|
||||
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|
||||
|generator, ctx, nditer| {
|
||||
nditer.next(generator, ctx);
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Make sure the ndarray is at least `ndmin`-dimensional.
|
||||
///
|
||||
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
|
||||
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
|
||||
#[must_use]
|
||||
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndmin: u64,
|
||||
) -> Self {
|
||||
if self.ndims < ndmin {
|
||||
let mut indices = vec![];
|
||||
for _ in self.ndims..ndmin {
|
||||
indices.push(RustNDIndex::NewAxis);
|
||||
}
|
||||
indices.push(RustNDIndex::Ellipsis);
|
||||
self.index(generator, ctx, &indices, "atleast_nd_ndarray")
|
||||
} else {
|
||||
*self
|
||||
}
|
||||
}
|
||||
|
||||
/// Fill the ndarray with a scalar.
|
||||
///
|
||||
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
|
||||
pub fn fill<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
scalar: AnyObject<'ctx>,
|
||||
) {
|
||||
// Sanity check on scalar's type.
|
||||
assert!(ctx.unifier.unioned(self.dtype, scalar.ty));
|
||||
|
||||
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
|
||||
let p = nditer.get_pointer(generator, ctx);
|
||||
ctx.builder.build_store(p, scalar.value).unwrap();
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Create a reshaped view on this ndarray like `np.reshape()`.
|
||||
///
|
||||
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
|
||||
///
|
||||
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
|
||||
///
|
||||
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
|
||||
/// * `new_shape` - The target shape to do `np.reshape()`.
|
||||
#[must_use]
|
||||
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
new_ndims: u64,
|
||||
new_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) -> Self {
|
||||
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
|
||||
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
|
||||
// without copying data. Look into how numpy does it.
|
||||
|
||||
let current_bb = ctx.builder.get_insert_block().unwrap();
|
||||
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
|
||||
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
|
||||
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
|
||||
|
||||
let dst_ndarray =
|
||||
NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims, "reshaped_ndarray");
|
||||
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
|
||||
|
||||
// Reolsve negative indices
|
||||
let size = self.size(generator, ctx);
|
||||
let dst_ndims = dst_ndarray.get_ndims(generator, ctx.ctx);
|
||||
let dst_shape =
|
||||
dst_ndarray.instance.get(generator, ctx, |f| f.shape, "reshaped_ndarray_shape");
|
||||
call_nac3_ndarray_resolve_and_check_new_shape(generator, ctx, size, dst_ndims, dst_shape);
|
||||
|
||||
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
|
||||
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
|
||||
|
||||
// Inserting into then_bb: reshape is possible without copying
|
||||
ctx.builder.position_at_end(then_bb);
|
||||
dst_ndarray.update_strides_by_shape(generator, ctx);
|
||||
dst_ndarray.instance.set(
|
||||
ctx,
|
||||
|f| f.data,
|
||||
self.instance.get(generator, ctx, |f| f.data, "data"),
|
||||
);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Inserting into else_bb: reshape is impossible without copying
|
||||
ctx.builder.position_at_end(else_bb);
|
||||
dst_ndarray.create_data(generator, ctx);
|
||||
dst_ndarray.copy_data_from(generator, ctx, *self);
|
||||
ctx.builder.build_unconditional_branch(end_bb).unwrap();
|
||||
|
||||
// Reposition for continuation
|
||||
ctx.builder.position_at_end(end_bb);
|
||||
|
||||
dst_ndarray
|
||||
}
|
||||
|
||||
/// Create a flattened view of this ndarray, like `np.ravel()`.
|
||||
///
|
||||
/// Uses [`NDArrayObject::reshape_or_copy`] under-the-hood so ndarray may or may not be copied.
|
||||
#[must_use]
|
||||
pub fn ravel_or_copy<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Self {
|
||||
// Define models
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let num0 = sizet_model.const_0(generator, ctx.ctx);
|
||||
let num1 = sizet_model.const_1(generator, ctx.ctx);
|
||||
let num_neg1 = sizet_model.const_all_1s(generator, ctx.ctx);
|
||||
|
||||
// Create `[-1]` and pass to `reshape_or_copy`.
|
||||
let new_shape = sizet_model.array_alloca(generator, ctx, num1.value, "new_shape");
|
||||
new_shape.offset(generator, ctx, num0.value, "").store(ctx, num_neg1);
|
||||
|
||||
self.reshape_or_copy(generator, ctx, 1, new_shape)
|
||||
}
|
||||
|
||||
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
|
||||
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
|
||||
#[must_use]
|
||||
pub fn transpose<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
axes: Option<Ptr<'ctx, IntModel<SizeT>>>,
|
||||
) -> Self {
|
||||
// Define models
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let transposed_ndarray =
|
||||
NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims, "transposed_ndarray");
|
||||
|
||||
let num_axes = self.get_ndims(generator, ctx.ctx);
|
||||
|
||||
// `axes = nullptr` if `axes` is unspecified.
|
||||
let axes = axes.unwrap_or_else(|| PtrModel(sizet_model).nullptr(generator, ctx.ctx));
|
||||
|
||||
call_nac3_ndarray_transpose(
|
||||
generator,
|
||||
ctx,
|
||||
self.instance,
|
||||
transposed_ndarray.instance,
|
||||
num_axes,
|
||||
axes,
|
||||
);
|
||||
|
||||
transposed_ndarray
|
||||
}
|
||||
|
||||
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
|
||||
///
|
||||
/// Raise an exception if the shapes do not match.
|
||||
pub fn check_can_be_written_by_out<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
out_ndims: u64,
|
||||
out_shape: Ptr<'ctx, IntModel<SizeT>>,
|
||||
) {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let ndarray_ndims = self.get_ndims(generator, ctx.ctx);
|
||||
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape, "shape");
|
||||
|
||||
let output_ndims = sizet_model.constant(generator, ctx.ctx, out_ndims);
|
||||
let output_shape = out_shape;
|
||||
|
||||
call_nac3_ndarray_util_assert_output_shape_same(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray_ndims,
|
||||
ndarray_shape,
|
||||
output_ndims,
|
||||
output_shape,
|
||||
);
|
||||
}
|
||||
|
||||
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Don't return a tuple of int32s.
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.shape, "")
|
||||
.offset_const(generator, ctx, i, "")
|
||||
.load(generator, ctx, "dim");
|
||||
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::create(generator, ctx, objects, "shape")
|
||||
}
|
||||
|
||||
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
|
||||
///
|
||||
/// The returned integers in the tuple are in int32.
|
||||
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> TupleObject<'ctx> {
|
||||
// TODO: Don't return a tuple of int32s.
|
||||
|
||||
let mut objects = Vec::with_capacity(self.ndims as usize);
|
||||
|
||||
for i in 0..self.ndims {
|
||||
let dim = self
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.strides, "")
|
||||
.offset_const(generator, ctx, i, "")
|
||||
.load(generator, ctx, "dim");
|
||||
let dim = dim.truncate(generator, ctx, Int32, "dim"); // TODO: keep using SizeT
|
||||
|
||||
objects.push(AnyObject {
|
||||
ty: ctx.primitives.int32,
|
||||
value: dim.value.as_basic_value_enum(),
|
||||
});
|
||||
}
|
||||
|
||||
TupleObject::create(generator, ctx, objects, "strides")
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO: Document me
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum NDArrayOut<'ctx> {
|
||||
NewNDArray { dtype: Type },
|
||||
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
|
||||
}
|
|
@ -1,53 +0,0 @@
|
|||
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||
|
||||
use crate::codegen::{model::*, structure::SimpleNDArray, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
pub fn perform_nalgebra_call<'ctx, 'a, const NUM_INPUTS: usize, const NUM_OUTPUTS: usize, G, F>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
inputs: [NDArrayObject<'ctx>; NUM_INPUTS],
|
||||
output_ndims: [u64; NUM_OUTPUTS],
|
||||
invoke_function: F,
|
||||
) -> [NDArrayObject<'ctx>; NUM_OUTPUTS]
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: FnOnce(
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
[BasicValueEnum<'ctx>; NUM_INPUTS],
|
||||
[BasicValueEnum<'ctx>; NUM_OUTPUTS],
|
||||
),
|
||||
{
|
||||
// TODO: Allow stacked inputs. See NumPy docs.
|
||||
|
||||
let f64_model = FloatModel(Float64);
|
||||
let simple_ndarray_model = StructModel(SimpleNDArray { item: f64_model });
|
||||
|
||||
// Prepare inputs & outputs and invoke
|
||||
let inputs = inputs.map(|input| {
|
||||
// Sanity check. Typechecker ensures this.
|
||||
assert!(ctx.unifier.unioned(input.dtype, ctx.primitives.float));
|
||||
|
||||
input
|
||||
.make_simple_ndarray(generator, ctx, FloatModel(Float64), "nalgebra_input")
|
||||
.value
|
||||
.as_basic_value_enum()
|
||||
});
|
||||
let outputs = [simple_ndarray_model.alloca(generator, ctx, "nalgebra_output"); NUM_OUTPUTS];
|
||||
invoke_function(ctx, inputs, outputs.map(|output| output.value.as_basic_value_enum()));
|
||||
|
||||
// Turn the outputs into strided NDArrays
|
||||
let mut output_i = 0;
|
||||
outputs.map(|output| {
|
||||
let out = NDArrayObject::from_simple_ndarray(
|
||||
generator,
|
||||
ctx,
|
||||
output,
|
||||
ctx.primitives.float,
|
||||
output_ndims[output_i],
|
||||
);
|
||||
output_i += 1;
|
||||
out
|
||||
})
|
||||
}
|
|
@ -1,88 +0,0 @@
|
|||
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
|
||||
model::*,
|
||||
object::AnyObject,
|
||||
structure::NDIter,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NDIterHandle<'ctx> {
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
instance: Ptr<'ctx, StructModel<NDIter>>,
|
||||
indices: Ptr<'ctx, IntModel<SizeT>>,
|
||||
}
|
||||
|
||||
impl<'ctx> NDIterHandle<'ctx> {
|
||||
pub fn new<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayObject<'ctx>,
|
||||
) -> Self {
|
||||
let nditer = StructModel(NDIter).alloca(generator, ctx, "nditer");
|
||||
let ndims = ndarray.get_ndims(generator, ctx.ctx);
|
||||
let indices = IntModel(SizeT).array_alloca(generator, ctx, ndims.value, "indices");
|
||||
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
|
||||
NDIterHandle { ndarray, instance: nditer, indices }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn has_next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, Bool> {
|
||||
call_nac3_nditer_has_next(generator, ctx, self.instance)
|
||||
}
|
||||
|
||||
pub fn next<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) {
|
||||
call_nac3_nditer_next(generator, ctx, self.instance);
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_pointer<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
|
||||
|
||||
let p = self.instance.get(generator, ctx, |f| f.element, "element");
|
||||
ctx.builder
|
||||
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_scalar<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> AnyObject<'ctx> {
|
||||
let p = self.get_pointer(generator, ctx);
|
||||
let value = ctx.builder.build_load(p, "value").unwrap();
|
||||
AnyObject { ty: self.ndarray.dtype, value }
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_index<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
self.instance.get(generator, ctx, |f| f.nth, "index")
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn get_indices(&self) -> Ptr<'ctx, IntModel<SizeT>> {
|
||||
self.indices
|
||||
}
|
||||
}
|
|
@ -1,159 +0,0 @@
|
|||
use std::cmp::max;
|
||||
|
||||
use crate::codegen::{
|
||||
irrt::{
|
||||
call_nac3_ndarray_float64_matmul_at_least_2d, call_nac3_ndarray_matmul_calculate_shapes,
|
||||
},
|
||||
model::*,
|
||||
object::ndarray::indexing::RustNDIndex,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
use super::{NDArrayObject, NDArrayOut};
|
||||
|
||||
impl<'ctx> NDArrayObject<'ctx> {
|
||||
/// TODO: Document me
|
||||
fn matmul_helper<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a: Self,
|
||||
b: Self,
|
||||
) -> Self {
|
||||
assert!(a.ndims >= 2);
|
||||
assert!(b.ndims >= 2);
|
||||
|
||||
assert!(ctx.unifier.unioned(ctx.primitives.float, a.dtype));
|
||||
assert!(ctx.unifier.unioned(ctx.primitives.float, b.dtype));
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let final_ndims_int = max(a.ndims, b.ndims);
|
||||
|
||||
let a_ndims = a.get_ndims(generator, ctx.ctx);
|
||||
let a_shape = a.instance.get(generator, ctx, |f| f.shape, "a_shape");
|
||||
let b_ndims = b.get_ndims(generator, ctx.ctx);
|
||||
let b_shape = b.instance.get(generator, ctx, |f| f.shape, "b_shape");
|
||||
let final_ndims = sizet_model.constant(generator, ctx.ctx, final_ndims_int);
|
||||
let new_a_shape =
|
||||
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_a_shape");
|
||||
let new_b_shape =
|
||||
sizet_model.array_alloca(generator, ctx, final_ndims.value, "new_b_shape");
|
||||
let dst_shape = sizet_model.array_alloca(generator, ctx, final_ndims.value, "dst_shape");
|
||||
|
||||
call_nac3_ndarray_matmul_calculate_shapes(
|
||||
generator,
|
||||
ctx,
|
||||
a_ndims,
|
||||
a_shape,
|
||||
b_ndims,
|
||||
b_shape,
|
||||
final_ndims,
|
||||
new_a_shape,
|
||||
new_b_shape,
|
||||
dst_shape,
|
||||
);
|
||||
|
||||
let new_a = a.broadcast_to(generator, ctx, final_ndims_int, new_a_shape);
|
||||
let new_b = b.broadcast_to(generator, ctx, final_ndims_int, new_b_shape);
|
||||
let dst = NDArrayObject::alloca(
|
||||
generator,
|
||||
ctx,
|
||||
ctx.primitives.float,
|
||||
final_ndims_int,
|
||||
"matmul_result",
|
||||
);
|
||||
dst.copy_shape_from_array(generator, ctx, dst_shape);
|
||||
dst.create_data(generator, ctx);
|
||||
|
||||
call_nac3_ndarray_float64_matmul_at_least_2d(
|
||||
generator,
|
||||
ctx,
|
||||
new_a.instance,
|
||||
new_b.instance,
|
||||
dst.instance,
|
||||
);
|
||||
|
||||
dst
|
||||
}
|
||||
|
||||
/// Perform `np.matmul` according to the rules in
|
||||
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
|
||||
///
|
||||
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`].
|
||||
pub fn matmul<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
a: Self,
|
||||
b: Self,
|
||||
out: NDArrayOut<'ctx>,
|
||||
) -> Self {
|
||||
// Sanity check, but type inference should prevent this.
|
||||
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
|
||||
|
||||
/*
|
||||
If both arguments are 2-D they are multiplied like conventional matrices.
|
||||
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
|
||||
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
|
||||
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
|
||||
*/
|
||||
|
||||
let new_a = if a.ndims == 1 {
|
||||
// Prepend 1 to its dimensions
|
||||
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis], "new_a")
|
||||
} else {
|
||||
a
|
||||
};
|
||||
|
||||
let new_b = if b.ndims == 1 {
|
||||
// Append 1 to its dimensions
|
||||
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis], "new_a")
|
||||
} else {
|
||||
b
|
||||
};
|
||||
|
||||
// NOTE: `result` will always be a newly allocated ndarray.
|
||||
// Current implementation cannot do in-place matrix muliplication.
|
||||
let mut result = NDArrayObject::matmul_helper(generator, ctx, new_a, new_b);
|
||||
|
||||
let i32_model = IntModel(Int32); // TODO: Upgrade to SizeT
|
||||
let zero = i32_model.const_0(generator, ctx.ctx);
|
||||
|
||||
if a.ndims == 1 {
|
||||
// Remove the prepended 1
|
||||
result = result.index(
|
||||
generator,
|
||||
ctx,
|
||||
&[RustNDIndex::SingleElement(zero), RustNDIndex::Ellipsis],
|
||||
"result_no_prepend_1",
|
||||
);
|
||||
}
|
||||
|
||||
if b.ndims == 1 {
|
||||
// Remove the appended 1
|
||||
result = result.index(
|
||||
generator,
|
||||
ctx,
|
||||
&[RustNDIndex::Ellipsis, RustNDIndex::SingleElement(zero)],
|
||||
"result_no_append_1",
|
||||
);
|
||||
}
|
||||
|
||||
match out {
|
||||
NDArrayOut::NewNDArray { dtype } => {
|
||||
// We don't support auto-casting right now, nor anything other than float64.
|
||||
// Force the output dtype to be float64.
|
||||
assert!(ctx.unifier.unioned(ctx.primitives.float, dtype));
|
||||
result
|
||||
}
|
||||
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
|
||||
// TODO: It is possible to check the shapes before computing the matmul to save resources.
|
||||
let result_shape = result.instance.get(generator, ctx, |f| f.shape, "result_shape");
|
||||
out_ndarray.check_can_be_written_by_out(generator, ctx, result.ndims, result_shape);
|
||||
|
||||
// TODO: We can just set `out_ndarray.data` to `result.data`. Should we?
|
||||
out_ndarray.copy_data_from(generator, ctx, result);
|
||||
out_ndarray
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,131 +0,0 @@
|
|||
use inkwell::values::{BasicValue, BasicValueEnum};
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, object::AnyObject, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::NDArrayObject;
|
||||
|
||||
impl<'ctx> AnyObject<'ctx> {
|
||||
/// Promote this scalar to an unsized ndarray (like doing `np.asarray`).
|
||||
///
|
||||
/// The scalar value is allocated onto the stack, and the ndarray's `data` will point to that
|
||||
/// allocated value.
|
||||
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
let pbyte_model = PtrModel(IntModel(Byte));
|
||||
|
||||
// We have to put the value on the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(self.value.get_type(), "as_ndarray_scalar").unwrap();
|
||||
ctx.builder.build_store(data, self.value).unwrap();
|
||||
let data = pbyte_model.pointer_cast(generator, ctx, data, "data");
|
||||
|
||||
let ndarray = NDArrayObject::alloca(generator, ctx, self.ty, 0, "scalar_ndarray");
|
||||
ndarray.instance.set(ctx, |f| f.data, data);
|
||||
ndarray
|
||||
}
|
||||
}
|
||||
|
||||
/// A convenience enum for implementing scalar/ndarray agnostic utilities.
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub enum ScalarOrNDArray<'ctx> {
|
||||
Scalar(AnyObject<'ctx>),
|
||||
NDArray(NDArrayObject<'ctx>),
|
||||
}
|
||||
|
||||
impl<'ctx> ScalarOrNDArray<'ctx> {
|
||||
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
|
||||
#[must_use]
|
||||
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.value,
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn into_scalar(&self) -> AnyObject<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(_ndarray) => panic!("Got NDArray"),
|
||||
ScalarOrNDArray::Scalar(scalar) => *scalar,
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn into_ndarray(&self) -> NDArrayObject<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||
ScalarOrNDArray::Scalar(_scalar) => panic!("Got Scalar"),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
|
||||
/// - If this is an ndarray, the ndarray is returned.
|
||||
/// - If this is a scalar, an unsized ndarray view is created on it.
|
||||
pub fn as_ndarray<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> NDArrayObject<'ctx> {
|
||||
match self {
|
||||
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.as_ndarray(generator, ctx),
|
||||
}
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn dtype(&self) -> Type {
|
||||
match self {
|
||||
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
|
||||
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
|
||||
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
|
||||
type Error = ();
|
||||
|
||||
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
|
||||
match value {
|
||||
ScalarOrNDArray::Scalar(_scalar) => Err(()),
|
||||
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Split an [`AnyObject`] into a [`ScalarOrNDArray`] depending on its [`Type`].
|
||||
pub fn split_scalar_or_ndarray<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> ScalarOrNDArray<'ctx> {
|
||||
// TODO: Automatically convert a list into an ndarray?
|
||||
|
||||
match &*ctx.unifier.get_ty(object.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let ndarray = NDArrayObject::from_object(generator, ctx, object);
|
||||
ScalarOrNDArray::NDArray(ndarray)
|
||||
}
|
||||
_ => {
|
||||
let scalar = AnyObject { ty: object.ty, value: object.value };
|
||||
ScalarOrNDArray::Scalar(scalar)
|
||||
}
|
||||
}
|
||||
}
|
|
@ -1,111 +0,0 @@
|
|||
use util::gen_for_model_auto;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
model::*,
|
||||
object::{list::ListObject, tuple::TupleObject, AnyObject},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
typecheck::typedef::TypeEnum,
|
||||
};
|
||||
|
||||
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
|
||||
///
|
||||
/// * `sequence` - The `sequence` parameter.
|
||||
/// * `sequence_ty` - The typechecker type of `sequence`
|
||||
///
|
||||
/// The `sequence` argument type may only be one of the following:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// All `int32` values will be sign-extended to `SizeT`.
|
||||
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
input_sequence: AnyObject<'ctx>,
|
||||
) -> (Int<'ctx, SizeT>, Ptr<'ctx, IntModel<SizeT>>) {
|
||||
let sizet_model = IntModel(SizeT);
|
||||
|
||||
let zero = sizet_model.const_0(generator, ctx.ctx);
|
||||
let one = sizet_model.const_1(generator, ctx.ctx);
|
||||
|
||||
// The result `list` to return.
|
||||
match &*ctx.unifier.get_ty(input_sequence.ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// Check `input_sequence`
|
||||
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
|
||||
|
||||
let len = input_sequence.instance.gep(ctx, |f| f.len).load(generator, ctx, "len");
|
||||
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||
|
||||
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
|
||||
gen_for_model_auto(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
|
||||
// Load the i-th int32 in the input sequence
|
||||
let int = input_sequence
|
||||
.instance
|
||||
.get(generator, ctx, |f| f.items, "")
|
||||
.offset(generator, ctx, i.value, "")
|
||||
.load(generator, ctx, "")
|
||||
.value
|
||||
.into_int_value();
|
||||
|
||||
// Cast to SizeT
|
||||
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
|
||||
|
||||
// Store
|
||||
result.offset(generator, ctx, i.value, "int").store(ctx, int);
|
||||
|
||||
Ok(())
|
||||
})
|
||||
.unwrap();
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TTuple { .. } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
let input_sequence = TupleObject::from_object(ctx, input_sequence);
|
||||
|
||||
let len_int = input_sequence.len_static();
|
||||
let len = sizet_model.constant(generator, ctx.ctx, len_int as u64);
|
||||
|
||||
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||
|
||||
for i in 0..len_int {
|
||||
// Get the i-th element off of the tuple and load it into `result`.
|
||||
let int = input_sequence.get(ctx, i, "dim").value.into_int_value();
|
||||
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, int, "int");
|
||||
|
||||
let offset = sizet_model.constant(generator, ctx.ctx, i as u64);
|
||||
result.offset(generator, ctx, offset.value, "int").store(ctx, int);
|
||||
}
|
||||
|
||||
(len, result)
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
let input_int = input_sequence.value.into_int_value();
|
||||
|
||||
let len = sizet_model.const_1(generator, ctx.ctx);
|
||||
let result = sizet_model.array_alloca(generator, ctx, len.value, "int_sequence");
|
||||
|
||||
let int = sizet_model.s_extend_or_bit_cast(generator, ctx, input_int, "int");
|
||||
|
||||
// Storing into result[0]
|
||||
result.store(ctx, int);
|
||||
|
||||
(len, result)
|
||||
}
|
||||
_ => panic!(
|
||||
"encountered unknown sequence type: {}",
|
||||
ctx.unifier.stringify(input_sequence.ty)
|
||||
),
|
||||
}
|
||||
}
|
|
@ -1,41 +0,0 @@
|
|||
use crate::codegen::{
|
||||
irrt::calculate_len_for_slice_range, model::*, structure::RangeModel, CodeGenContext,
|
||||
CodeGenerator,
|
||||
};
|
||||
|
||||
use super::AnyObject;
|
||||
|
||||
/// A `range` in NAC3
|
||||
pub struct RangeObject<'ctx> {
|
||||
pub instance: Ptr<'ctx, RangeModel>,
|
||||
}
|
||||
|
||||
impl<'ctx> RangeObject<'ctx> {
|
||||
pub fn from_object<G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
object: AnyObject<'ctx>,
|
||||
) -> Self {
|
||||
assert!(ctx.unifier.unioned(ctx.primitives.range, object.ty)); // Sanity check on type.
|
||||
|
||||
let model = PtrModel(RangeModel::default());
|
||||
let instance = model.check_value(generator, ctx.ctx, object.value).unwrap();
|
||||
RangeObject { instance }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this range.
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, Int32> {
|
||||
let start = self.instance.gep_start(generator, ctx, "").load(generator, ctx, "start");
|
||||
let stop = self.instance.gep_stop(generator, ctx, "").load(generator, ctx, "stop");
|
||||
let step = self.instance.gep_step(generator, ctx, "").load(generator, ctx, "step");
|
||||
|
||||
// TODO: Refactor this
|
||||
let len =
|
||||
calculate_len_for_slice_range(generator, ctx, start.value, stop.value, step.value);
|
||||
IntModel(Int32).check_value(generator, ctx.ctx, len).unwrap()
|
||||
}
|
||||
}
|
|
@ -1,113 +0,0 @@
|
|||
use core::panic;
|
||||
|
||||
use inkwell::values::StructValue;
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
codegen::{model::*, CodeGenContext, CodeGenerator},
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
use super::AnyObject;
|
||||
|
||||
/// A NAC3 tuple object.
|
||||
///
|
||||
/// NOTE: This struct has no copy trait.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct TupleObject<'ctx> {
|
||||
/// The type of the tuple.
|
||||
pub tys: Vec<Type>,
|
||||
/// The underlying LLVM value of this tuple.
|
||||
pub value: StructValue<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> TupleObject<'ctx> {
|
||||
// NOTE: There is no Model abstraction for Tuples with arbitrary lengths.
|
||||
// Everything has to be done raw with Inkwell.
|
||||
|
||||
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
|
||||
// TODO: Keep `is_vararg_ctx` from TTuple?
|
||||
|
||||
// Sanity check on object type.
|
||||
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
|
||||
panic!(
|
||||
"Expected type to be a TypeEnum::TTuple, got {}",
|
||||
ctx.unifier.stringify(object.ty)
|
||||
);
|
||||
};
|
||||
|
||||
let value = object.value.into_struct_value();
|
||||
let value_num_fields = value.get_type().count_fields() as usize;
|
||||
assert!(
|
||||
value_num_fields == tys.len(),
|
||||
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
|
||||
tys.len(),
|
||||
value_num_fields
|
||||
);
|
||||
|
||||
TupleObject { tys: tys.clone(), value }
|
||||
}
|
||||
|
||||
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
|
||||
pub fn create<I, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
objects: I,
|
||||
name: &str,
|
||||
) -> Self
|
||||
where
|
||||
I: IntoIterator<Item = AnyObject<'ctx>>,
|
||||
{
|
||||
let (values, tys): (Vec<_>, Vec<_>) =
|
||||
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
|
||||
|
||||
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
|
||||
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
|
||||
|
||||
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
|
||||
for (i, val) in values.into_iter().enumerate() {
|
||||
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
|
||||
ctx.builder.build_store(pval, val).unwrap();
|
||||
}
|
||||
|
||||
let value = ctx.builder.build_load(pllvm_tuple, name).unwrap().into_struct_value();
|
||||
TupleObject { tys, value }
|
||||
}
|
||||
|
||||
/// Get the `len()` of this tuple statically.
|
||||
///
|
||||
/// We statically know the lengths of tuples in NAC3 when compiling.
|
||||
#[must_use]
|
||||
pub fn len_static(&self) -> usize {
|
||||
self.tys.len()
|
||||
}
|
||||
|
||||
/// Get the `len()` of this tuple.
|
||||
#[must_use]
|
||||
pub fn len<G: CodeGenerator + ?Sized>(
|
||||
&self,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
) -> Int<'ctx, SizeT> {
|
||||
IntModel(SizeT).constant(generator, ctx.ctx, self.len_static() as u64)
|
||||
}
|
||||
|
||||
/// Check if this tuple is an empty/unit tuple.
|
||||
#[must_use]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.len_static() == 0
|
||||
}
|
||||
|
||||
/// Get the `i`-th (0-based) object in this tuple.
|
||||
pub fn get(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize, name: &str) -> AnyObject<'ctx> {
|
||||
assert!(
|
||||
i < self.len_static(),
|
||||
"Tuple object with length {} have index {i}",
|
||||
self.len_static()
|
||||
);
|
||||
|
||||
let value = ctx.builder.build_extract_value(self.value, i as u32, name).unwrap();
|
||||
let ty = self.tys[i];
|
||||
AnyObject { ty, value }
|
||||
}
|
||||
}
|
|
@ -1,27 +1,3 @@
|
|||
use super::model::*;
|
||||
use super::object::ndarray::indexing::util::gen_ndarray_subscript_ndindexes;
|
||||
use super::object::ndarray::scalar::split_scalar_or_ndarray;
|
||||
use super::object::ndarray::NDArrayObject;
|
||||
use super::object::AnyObject;
|
||||
use super::{
|
||||
super::symbol_resolver::ValueEnum,
|
||||
expr::destructure_range,
|
||||
irrt::{handle_slice_indices, list_slice_assignment},
|
||||
structure::{CSlice, Exception},
|
||||
CodeGenContext, CodeGenerator, Int32, IntModel, Ptr, StructModel,
|
||||
};
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||
expr::gen_binop_expr,
|
||||
gen_in_range_check,
|
||||
},
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
basic_block::BasicBlock,
|
||||
|
@ -30,10 +6,28 @@ use inkwell::{
|
|||
IntPredicate,
|
||||
};
|
||||
use itertools::{izip, Itertools};
|
||||
|
||||
use nac3parser::ast::{
|
||||
Constant, ExcepthandlerKind, Expr, ExprKind, Location, Stmt, StmtKind, StrRef,
|
||||
};
|
||||
|
||||
use super::{
|
||||
expr::{destructure_range, gen_binop_expr},
|
||||
gen_in_range_check,
|
||||
irrt::{handle_slice_indices, list_slice_assignment},
|
||||
macros::codegen_unreachable,
|
||||
values::{ArrayLikeIndexer, ArraySliceValue, ListValue, RangeValue},
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
use crate::{
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, TopLevelDef},
|
||||
typecheck::{
|
||||
magic_methods::Binop,
|
||||
typedef::{iter_type_vars, FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
|
||||
/// See [`CodeGenerator::gen_var_alloc`].
|
||||
pub fn gen_var<'ctx>(
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
|
@ -127,7 +121,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
|||
return Ok(None);
|
||||
};
|
||||
let BasicValueEnum::PointerValue(ptr) = val else {
|
||||
unreachable!();
|
||||
codegen_unreachable!(ctx);
|
||||
};
|
||||
unsafe {
|
||||
ctx.builder.build_in_bounds_gep(
|
||||
|
@ -141,7 +135,7 @@ pub fn gen_store_target<'ctx, G: CodeGenerator>(
|
|||
}
|
||||
.unwrap()
|
||||
}
|
||||
_ => unreachable!(),
|
||||
_ => codegen_unreachable!(ctx),
|
||||
}))
|
||||
}
|
||||
|
||||
|
@ -182,6 +176,14 @@ pub fn gen_assign<'ctx, G: CodeGenerator>(
|
|||
}
|
||||
}
|
||||
let val = value.to_basic_value_enum(ctx, generator, target.custom.unwrap())?;
|
||||
|
||||
// Perform i1 <-> i8 conversion as needed
|
||||
let val = if ctx.unifier.unioned(target.custom.unwrap(), ctx.primitives.bool) {
|
||||
generator.bool_to_i8(ctx, val.into_int_value()).into()
|
||||
} else {
|
||||
val
|
||||
};
|
||||
|
||||
ctx.builder.build_store(ptr, val).unwrap();
|
||||
}
|
||||
};
|
||||
|
@ -199,12 +201,12 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
|
|||
// Deconstruct the tuple `value`
|
||||
let BasicValueEnum::StructValue(tuple) = value.to_basic_value_enum(ctx, generator, value_ty)?
|
||||
else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
|
||||
// NOTE: Currently, RHS's type is forced to be a Tuple by the type inferencer.
|
||||
let TypeEnum::TTuple { ty: tuple_tys, .. } = &*ctx.unifier.get_ty(value_ty) else {
|
||||
unreachable!();
|
||||
codegen_unreachable!(ctx);
|
||||
};
|
||||
|
||||
assert_eq!(tuple.get_type().count_fields() as usize, tuple_tys.len());
|
||||
|
@ -264,7 +266,7 @@ pub fn gen_assign_target_list<'ctx, G: CodeGenerator>(
|
|||
// Now assign with that sub-tuple to the starred target.
|
||||
generator.gen_assign(ctx, target, ValueEnum::Dynamic(sub_tuple_val), sub_tuple_ty)?;
|
||||
} else {
|
||||
unreachable!() // The typechecker ensures this
|
||||
codegen_unreachable!(ctx) // The typechecker ensures this
|
||||
}
|
||||
|
||||
// Handle assignment after the starred target
|
||||
|
@ -308,11 +310,13 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
|||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?
|
||||
.into_pointer_value();
|
||||
let target = ListValue::from_ptr_val(target, llvm_usize, None);
|
||||
let target = ListValue::from_pointer_value(target, llvm_usize, None);
|
||||
|
||||
if let ExprKind::Slice { .. } = &key.node {
|
||||
// Handle assigning to a slice
|
||||
let ExprKind::Slice { lower, upper, step } = &key.node else { unreachable!() };
|
||||
let ExprKind::Slice { lower, upper, step } = &key.node else {
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
let Some((start, end, step)) = handle_slice_indices(
|
||||
lower,
|
||||
upper,
|
||||
|
@ -327,7 +331,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
|||
|
||||
let value =
|
||||
value.to_basic_value_enum(ctx, generator, value_ty)?.into_pointer_value();
|
||||
let value = ListValue::from_ptr_val(value, llvm_usize, None);
|
||||
let value = ListValue::from_pointer_value(value, llvm_usize, None);
|
||||
|
||||
let target_item_ty = ctx.get_llvm_type(generator, target_item_ty);
|
||||
let Some(src_ind) = handle_slice_indices(
|
||||
|
@ -407,45 +411,7 @@ pub fn gen_setitem<'ctx, G: CodeGenerator>(
|
|||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// Handle NDArray item assignment
|
||||
// Process target
|
||||
let target = generator
|
||||
.gen_expr(ctx, target)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, target_ty)?;
|
||||
let target = AnyObject { value: target, ty: target_ty };
|
||||
|
||||
// Process key
|
||||
let key = gen_ndarray_subscript_ndindexes(generator, ctx, key)?;
|
||||
|
||||
// Process value
|
||||
let value = value.to_basic_value_enum(ctx, generator, value_ty)?;
|
||||
let value = AnyObject { value, ty: value_ty };
|
||||
|
||||
/*
|
||||
Reference code:
|
||||
```python
|
||||
target = target[key]
|
||||
value = np.asarray(value)
|
||||
|
||||
shape = np.broadcast_shape((target, value))
|
||||
|
||||
target = np.broadcast_to(target, shape)
|
||||
value = np.broadcast_to(value, shape)
|
||||
|
||||
...and finally copy 1-1 from value to target.
|
||||
```
|
||||
*/
|
||||
let target = NDArrayObject::from_object(generator, ctx, target);
|
||||
let target = target.index(generator, ctx, &key, "assign_target_ndarray");
|
||||
|
||||
let value = split_scalar_or_ndarray(generator, ctx, value).as_ndarray(generator, ctx);
|
||||
|
||||
let broadcast_result = NDArrayObject::broadcast(generator, ctx, &[target, value]);
|
||||
|
||||
let target = broadcast_result.ndarrays[0];
|
||||
let value = broadcast_result.ndarrays[1];
|
||||
|
||||
target.copy_data_from(generator, ctx, value);
|
||||
todo!("ndarray subscript assignment is not yet implemented");
|
||||
}
|
||||
_ => {
|
||||
panic!("encountered unknown target type: {}", ctx.unifier.stringify(target_ty));
|
||||
|
@ -460,7 +426,9 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
stmt: &Stmt<Option<Type>>,
|
||||
) -> Result<(), String> {
|
||||
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else { unreachable!() };
|
||||
let StmtKind::For { iter, target, body, orelse, .. } = &stmt.node else {
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
|
||||
// var_assignment static values may be changed in another branch
|
||||
// if so, remove the static value as it may not be correct in this branch
|
||||
|
@ -495,14 +463,15 @@ pub fn gen_for<G: CodeGenerator>(
|
|||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.range.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let iter_val = RangeValue::from_ptr_val(iter_val.into_pointer_value(), Some("range"));
|
||||
let iter_val =
|
||||
RangeValue::from_pointer_value(iter_val.into_pointer_value(), Some("range"));
|
||||
// Internal variable for loop; Cannot be assigned
|
||||
let i = generator.gen_var_alloc(ctx, int32.into(), Some("for.i.addr"))?;
|
||||
// Variable declared in "target" expression of the loop; Can be reassigned *or* shadowed
|
||||
let Some(target_i) =
|
||||
generator.gen_store_target(ctx, target, Some("for.target.addr"))?
|
||||
else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
let (start, stop, step) = destructure_range(ctx, iter_val);
|
||||
|
||||
|
@ -847,7 +816,7 @@ where
|
|||
BodyFn: FnOnce(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, 'a>,
|
||||
BreakContinueHooks,
|
||||
BreakContinueHooks<'ctx>,
|
||||
IntValue<'ctx>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
|
@ -945,7 +914,7 @@ pub fn gen_while<G: CodeGenerator>(
|
|||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
stmt: &Stmt<Option<Type>>,
|
||||
) -> Result<(), String> {
|
||||
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { unreachable!() };
|
||||
let StmtKind::While { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
|
||||
|
||||
// var_assignment static values may be changed in another branch
|
||||
// if so, remove the static value as it may not be correct in this branch
|
||||
|
@ -975,7 +944,7 @@ pub fn gen_while<G: CodeGenerator>(
|
|||
|
||||
return Ok(());
|
||||
};
|
||||
let BasicValueEnum::IntValue(test) = test else { unreachable!() };
|
||||
let BasicValueEnum::IntValue(test) = test else { codegen_unreachable!(ctx) };
|
||||
|
||||
ctx.builder
|
||||
.build_conditional_branch(generator.bool_to_i1(ctx, test), body_bb, orelse_bb)
|
||||
|
@ -1123,7 +1092,7 @@ pub fn gen_if<G: CodeGenerator>(
|
|||
ctx: &mut CodeGenContext<'_, '_>,
|
||||
stmt: &Stmt<Option<Type>>,
|
||||
) -> Result<(), String> {
|
||||
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { unreachable!() };
|
||||
let StmtKind::If { test, body, orelse, .. } = &stmt.node else { codegen_unreachable!(ctx) };
|
||||
|
||||
// var_assignment static values may be changed in another branch
|
||||
// if so, remove the static value as it may not be correct in this branch
|
||||
|
@ -1246,11 +1215,11 @@ pub fn exn_constructor<'ctx>(
|
|||
let zelf_id = if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(zelf_ty) {
|
||||
obj_id.0
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
let defs = ctx.top_level.definitions.read();
|
||||
let def = defs[zelf_id].read();
|
||||
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { unreachable!() };
|
||||
let TopLevelDef::Class { name: zelf_name, .. } = &*def else { codegen_unreachable!(ctx) };
|
||||
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(zelf_id), zelf_name);
|
||||
unsafe {
|
||||
let id_ptr = ctx.builder.build_in_bounds_gep(zelf, &[zero, zero], "exn.id").unwrap();
|
||||
|
@ -1307,36 +1276,47 @@ pub fn exn_constructor<'ctx>(
|
|||
pub fn gen_raise<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
exception: Option<Ptr<'ctx, StructModel<Exception>>>,
|
||||
exception: Option<&BasicValueEnum<'ctx>>,
|
||||
loc: Location,
|
||||
) {
|
||||
if let Some(pexn) = exception {
|
||||
let i32_model = IntModel(Int32);
|
||||
let cslice_model = StructModel(CSlice);
|
||||
if let Some(exception) = exception {
|
||||
unsafe {
|
||||
let int32 = ctx.ctx.i32_type();
|
||||
let zero = int32.const_zero();
|
||||
let exception = exception.into_pointer_value();
|
||||
let file_ptr = ctx
|
||||
.builder
|
||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(1, false)], "file_ptr")
|
||||
.unwrap();
|
||||
let filename = ctx.gen_string(generator, loc.file.0);
|
||||
ctx.builder.build_store(file_ptr, filename).unwrap();
|
||||
let row_ptr = ctx
|
||||
.builder
|
||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(2, false)], "row_ptr")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(row_ptr, int32.const_int(loc.row as u64, false)).unwrap();
|
||||
let col_ptr = ctx
|
||||
.builder
|
||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(3, false)], "col_ptr")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(col_ptr, int32.const_int(loc.column as u64, false)).unwrap();
|
||||
|
||||
// Get and store filename
|
||||
let filename = loc.file.0;
|
||||
let filename = ctx.gen_string(generator, &String::from(filename)).value;
|
||||
let filename = cslice_model.check_value(generator, ctx.ctx, filename).unwrap();
|
||||
pexn.set(ctx, |f| f.filename, filename);
|
||||
|
||||
let row = i32_model.constant(generator, ctx.ctx, loc.row as u64);
|
||||
pexn.set(ctx, |f| f.line, row);
|
||||
|
||||
let column = i32_model.constant(generator, ctx.ctx, loc.column as u64);
|
||||
pexn.set(ctx, |f| f.column, column);
|
||||
|
||||
let current_fn = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let fn_name = ctx.gen_string(generator, current_fn.get_name().to_str().unwrap());
|
||||
pexn.set(ctx, |f| f.function, fn_name);
|
||||
let current_fun = ctx.builder.get_insert_block().unwrap().get_parent().unwrap();
|
||||
let fun_name = ctx.gen_string(generator, current_fun.get_name().to_str().unwrap());
|
||||
let name_ptr = ctx
|
||||
.builder
|
||||
.build_in_bounds_gep(exception, &[zero, int32.const_int(4, false)], "name_ptr")
|
||||
.unwrap();
|
||||
ctx.builder.build_store(name_ptr, fun_name).unwrap();
|
||||
}
|
||||
|
||||
let raise = get_builtins(generator, ctx, "__nac3_raise");
|
||||
ctx.build_call_or_invoke(raise, &[pexn.value.into()], "raise");
|
||||
let exception = *exception;
|
||||
ctx.build_call_or_invoke(raise, &[exception], "raise");
|
||||
} else {
|
||||
let resume = get_builtins(generator, ctx, "__nac3_resume");
|
||||
ctx.build_call_or_invoke(resume, &[], "resume");
|
||||
}
|
||||
|
||||
ctx.builder.build_unreachable().unwrap();
|
||||
}
|
||||
|
||||
|
@ -1347,7 +1327,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
|
|||
target: &Stmt<Option<Type>>,
|
||||
) -> Result<(), String> {
|
||||
let StmtKind::Try { body, handlers, orelse, finalbody, .. } = &target.node else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
|
||||
// if we need to generate anything related to exception, we must have personality defined
|
||||
|
@ -1424,7 +1404,7 @@ pub fn gen_try<'ctx, 'a, G: CodeGenerator>(
|
|||
if let TypeEnum::TObj { obj_id, .. } = &*ctx.unifier.get_ty(type_.custom.unwrap()) {
|
||||
*obj_id
|
||||
} else {
|
||||
unreachable!()
|
||||
codegen_unreachable!(ctx)
|
||||
};
|
||||
let exception_name = format!("{}:{}", ctx.resolver.get_exception_id(obj_id.0), exn_name);
|
||||
let exn_id = ctx.resolver.get_string_id(&exception_name);
|
||||
|
@ -1696,6 +1676,23 @@ pub fn gen_return<G: CodeGenerator>(
|
|||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// Remap boolean return type into i1
|
||||
let value = value.map(|ret_val| {
|
||||
// The "return type" of a sret function is in the first parameter
|
||||
let expected_ty = if ctx.need_sret {
|
||||
func.get_type().get_param_types()[0]
|
||||
} else {
|
||||
func.get_type().get_return_type().unwrap()
|
||||
};
|
||||
|
||||
if matches!(expected_ty, BasicTypeEnum::IntType(ty) if ty.get_bit_width() == 1) {
|
||||
generator.bool_to_i1(ctx, ret_val.into_int_value()).into()
|
||||
} else {
|
||||
ret_val
|
||||
}
|
||||
});
|
||||
|
||||
if let Some(return_target) = ctx.return_target {
|
||||
if let Some(value) = value {
|
||||
ctx.builder.build_store(ctx.return_buffer.unwrap(), value).unwrap();
|
||||
|
@ -1706,25 +1703,6 @@ pub fn gen_return<G: CodeGenerator>(
|
|||
ctx.builder.build_store(ctx.return_buffer.unwrap(), value.unwrap()).unwrap();
|
||||
ctx.builder.build_return(None).unwrap();
|
||||
} else {
|
||||
// Remap boolean return type into i1
|
||||
let value = value.map(|v| {
|
||||
let expected_ty = func.get_type().get_return_type().unwrap();
|
||||
let ret_val = v.as_basic_value_enum();
|
||||
|
||||
if expected_ty.is_int_type() && ret_val.is_int_value() {
|
||||
let ret_type = expected_ty.into_int_type();
|
||||
let ret_val = ret_val.into_int_value();
|
||||
|
||||
if ret_type.get_bit_width() == 1 && ret_val.get_type().get_bit_width() != 1 {
|
||||
generator.bool_to_i1(ctx, ret_val)
|
||||
} else {
|
||||
ret_val
|
||||
}
|
||||
.into()
|
||||
} else {
|
||||
ret_val
|
||||
}
|
||||
});
|
||||
let value = value.as_ref().map(|v| v as &dyn BasicValue);
|
||||
ctx.builder.build_return(value).unwrap();
|
||||
}
|
||||
|
@ -1793,52 +1771,95 @@ pub fn gen_stmt<G: CodeGenerator>(
|
|||
StmtKind::Try { .. } => gen_try(generator, ctx, stmt)?,
|
||||
StmtKind::Raise { exc, .. } => {
|
||||
if let Some(exc) = exc {
|
||||
let exc = if let Some(v) = generator.gen_expr(ctx, exc)? {
|
||||
let exn = if let ExprKind::Name { id, .. } = &exc.node {
|
||||
// Handle "raise Exception" short form
|
||||
let def_id = ctx.resolver.get_identifier_def(*id).map_err(|e| {
|
||||
format!("{} (at {})", e.iter().next().unwrap(), exc.location)
|
||||
})?;
|
||||
let def = ctx.top_level.definitions.read();
|
||||
let TopLevelDef::Class { constructor, .. } = *def[def_id.0].read() else {
|
||||
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
|
||||
};
|
||||
|
||||
let TypeEnum::TFunc(signature) =
|
||||
ctx.unifier.get_ty(constructor.unwrap()).as_ref().clone()
|
||||
else {
|
||||
return Err(format!("Failed to resolve symbol {id} (at {})", exc.location));
|
||||
};
|
||||
|
||||
generator
|
||||
.gen_call(ctx, None, (&signature, def_id), Vec::default())?
|
||||
.map(Into::into)
|
||||
} else {
|
||||
generator.gen_expr(ctx, exc)?
|
||||
};
|
||||
|
||||
let exc = if let Some(v) = exn {
|
||||
v.to_basic_value_enum(ctx, generator, exc.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let pexn_model = PtrModel(StructModel(Exception));
|
||||
let exn = pexn_model.check_value(generator, ctx.ctx, exc).unwrap();
|
||||
|
||||
gen_raise(generator, ctx, Some(exn), stmt.location);
|
||||
gen_raise(generator, ctx, Some(&exc), stmt.location);
|
||||
} else {
|
||||
gen_raise(generator, ctx, None, stmt.location);
|
||||
}
|
||||
}
|
||||
StmtKind::Assert { test, msg, .. } => {
|
||||
let byte_model = IntModel(Byte);
|
||||
let cslice_model = StructModel(CSlice);
|
||||
|
||||
let Some(test) = generator.gen_expr(ctx, test)? else {
|
||||
let test = if let Some(v) = generator.gen_expr(ctx, test)? {
|
||||
v.to_basic_value_enum(ctx, generator, test.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(());
|
||||
};
|
||||
let test = test.to_basic_value_enum(ctx, generator, ctx.primitives.bool)?;
|
||||
let test = byte_model.check_value(generator, ctx.ctx, test).unwrap(); // Python `bool` is represented as `i8` in nac3core
|
||||
|
||||
// Check `msg`
|
||||
let err_msg = match msg {
|
||||
Some(msg) => {
|
||||
let Some(msg) = generator.gen_expr(ctx, msg)? else {
|
||||
if let Some(v) = generator.gen_expr(ctx, msg)? {
|
||||
v.to_basic_value_enum(ctx, generator, msg.custom.unwrap())?
|
||||
} else {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let msg = msg.to_basic_value_enum(ctx, generator, ctx.primitives.str)?;
|
||||
cslice_model.check_value(generator, ctx.ctx, msg).unwrap()
|
||||
}
|
||||
None => ctx.gen_string(generator, ""),
|
||||
}
|
||||
None => ctx.gen_string(generator, "").into(),
|
||||
};
|
||||
|
||||
ctx.make_assert_impl(
|
||||
generator,
|
||||
test.value,
|
||||
generator.bool_to_i1(ctx, test.into_int_value()),
|
||||
"0:AssertionError",
|
||||
err_msg,
|
||||
[None, None, None],
|
||||
stmt.location,
|
||||
);
|
||||
}
|
||||
StmtKind::Global { names, .. } => {
|
||||
let registered_globals = ctx
|
||||
.top_level
|
||||
.definitions
|
||||
.read()
|
||||
.iter()
|
||||
.filter_map(|def| {
|
||||
if let TopLevelDef::Variable { simple_name, ty, .. } = &*def.read() {
|
||||
Some((*simple_name, *ty))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
})
|
||||
.collect_vec();
|
||||
|
||||
for id in names {
|
||||
let Some((_, ty)) = registered_globals.iter().find(|(name, _)| name == id) else {
|
||||
return Err(format!("{id} is not a global at {}", stmt.location));
|
||||
};
|
||||
|
||||
let resolver = ctx.resolver.clone();
|
||||
let ptr = resolver
|
||||
.get_symbol_value(*id, ctx, generator)
|
||||
.map(|val| val.to_basic_value_enum(ctx, generator, *ty))
|
||||
.transpose()?
|
||||
.map(BasicValueEnum::into_pointer_value)
|
||||
.unwrap();
|
||||
|
||||
ctx.var_assignment.insert(*id, (ptr, None, 0));
|
||||
}
|
||||
}
|
||||
_ => unimplemented!(),
|
||||
};
|
||||
Ok(())
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue