forked from M-Labs/nac3
1
0
Fork 0

Compare commits

..

161 Commits

Author SHA1 Message Date
lyken 9b02e144b5
WIP: list assignment 2024-08-25 23:14:49 +08:00
lyken e62509ae67
core: change call_nac3_range_len to take Int Instances 2024-08-25 20:59:58 +08:00
lyken 58be4a8b09
core: add RustSlice::indices 2024-08-25 20:58:56 +08:00
lyken 52da6347ee
fixup! core: move Slice and RustSlice to its own file & genericize their IntKind 2024-08-25 20:40:28 +08:00
lyken a1410833bc
core: move gen_slice to object/slice.rs and refactor 2024-08-25 20:28:34 +08:00
lyken b38d9000f8
core: add RustRange 2024-08-25 20:28:30 +08:00
lyken a6e1d354b6
core: move Slice and RustSlice to its own file & genericize their IntKind 2024-08-25 20:19:07 +08:00
lyken f698b0c1fa
core/model: refactor CSlice and Exception with models 2024-08-25 17:01:44 +08:00
lyken 8eb9094d68
fix Struct const_struct comment 2024-08-25 17:01:44 +08:00
lyken 3f322de9a0
fix: model CheckTypeFieldTraversal comment 2024-08-25 17:01:44 +08:00
lyken 6528115d6a
core: refactor range with model and RangeObject 2024-08-25 17:01:44 +08:00
lyken b13b28cfe8
core: update insta after ndstrides
New type vars are introduced when programming new ndarray functions.
2024-08-25 16:58:27 +08:00
lyken 6c48adff4d
core/model/ptr: renaming and add notes on upgrading to LLVM 15 2024-08-25 14:21:46 +08:00
lyken 7701691794
core: remove old ndarray code and NDArray proxy
Nothing depends on the old ndarray implementation now.
2024-08-25 00:53:04 +08:00
lyken bca3313ad6
artiq: reimplement get_obj_value to use ndarray with strides 2024-08-25 00:52:41 +08:00
lyken 6d2ac3bd8a
artiq: reimplement polymorphic_print for ndarray 2024-08-25 00:52:41 +08:00
lyken b91994fcab
artiq: reimplement reformat_rpc_arg for ndarray 2024-08-25 00:52:41 +08:00
lyken 881cbc5142
standalone/ndarray: improve {reshape,broadcast_to,transpose} tests
Print their shapes and exhaustively print all contents.
2024-08-25 00:52:41 +08:00
lyken 55965dda9e
standalone/ndarray: add and organize view function tests 2024-08-25 00:52:41 +08:00
lyken 6285e67f3e
core/ndstrides: update builtin_fns to use ndarray with strides 2024-08-25 00:52:41 +08:00
lyken 9200ba2521
core/ndstrides: add NDArrayObject::to_any 2024-08-25 00:52:41 +08:00
lyken 040948543b
core/ndstrides: add ContiguousNDArray
Currently this is used to interop with nalgebra.
2024-08-25 00:52:41 +08:00
lyken 1165ac5e90
core/ndstrides: implement np_dot() for scalars and 1D 2024-08-25 00:52:41 +08:00
lyken 61ea014c61
core/ndstrides: implement general matmul 2024-08-25 00:52:41 +08:00
lyken fe3405f50d
core/ndstrides: implement cmpop 2024-08-25 00:52:41 +08:00
lyken 09875a2555
core/ndstrides: implement unary op 2024-08-25 00:52:41 +08:00
lyken 56e448a040
core/ndstrides: implement binop 2024-08-25 00:52:41 +08:00
lyken 58178223e7
core/ndstrides: add NDArrayOut, broadcast_map and map 2024-08-25 00:52:41 +08:00
lyken 1a4a6bc5f9
core/ndstrides: implement subscript assignment 2024-08-25 00:52:41 +08:00
lyken 19ee579226
core/ndstrides: add more ScalarOrNDArray and NDArrayObject utils 2024-08-25 00:52:41 +08:00
lyken 75ba01d547
core/ndstrides: implement np_transpose() (no axes argument)
The IRRT implementation knows how to handle axes. But the argument is
not in NAC3 yet.
2024-08-25 00:52:41 +08:00
lyken 25be81cc83
core/ndstrides: implement broadcasting & np_broadcast_to() 2024-08-25 00:52:41 +08:00
lyken 34709cf076
core/ndstrides: implement np_reshape() 2024-08-25 00:52:41 +08:00
lyken d37d0c8da4
core: categorize np_{transpose,reshape} as 'view functions' 2024-08-25 00:52:41 +08:00
lyken ee66cac8c2
core/ndstrides: implement np_size() 2024-08-25 00:52:41 +08:00
lyken 854a3eb6f0
core/ndstrides: implement np_shape() and np_strides()
These functions are not important, but they are handy for debugging +
implementing them takes little effort.

NOTE: `np.strides()` is not an actual NumPy function. You can only(?)
access them thru `ndarray.strides`.
2024-08-25 00:52:41 +08:00
lyken 72c2b9d840
core/ndstrides: implement ndarray.fill() and .copy() 2024-08-25 00:52:41 +08:00
lyken a004703ec2
core/ndstrides: implement np_identity() and np_eye() 2024-08-25 00:52:41 +08:00
lyken 0ec4d13735
core/ndstrides: implement np_array()
It also checks for inconsistent dimensions if the input is a list.
e.g., rejecting `[[1.0, 2.0], [3.0]]`. Previously it was a todo of
`np_array()`.
2024-08-25 00:52:41 +08:00
lyken dd1a19d97f
core/irrt: add List
Needed for implementing np_array()
2024-08-25 00:52:41 +08:00
lyken ea1410f9ff
core/ndstrides: add NDArrayObject::atleast_nd 2024-08-25 00:52:41 +08:00
lyken b175409a9b
core/ndstrides: add NDArrayObject::make_copy 2024-08-25 00:52:41 +08:00
lyken 7e22f09e6e
core/ndstrides: implement ndarray indexing
The functionality for `...` and `np.newaxis` is there in IRRT, but there
is no implementation of them for @kernel Python expressions because of
M-Labs/nac3#486.
2024-08-25 00:52:41 +08:00
lyken 494616f0d9
core/irrt: rename NDIndex to NDIndexInt
The name `NDIndex` is used in later commits.
2024-08-25 00:52:41 +08:00
lyken 2bbc619151
core/irrt: add Slice and Range
Needed for implementing general ndarray indexing.

Currently the IRRT slice and range have nothing to do with NAC3's slice
and range.
2024-08-25 00:52:41 +08:00
lyken e0d1e9a007
core/ndstrides: implement len(ndarray) & refactor len() 2024-08-25 00:52:41 +08:00
lyken 4929dcbf79
core/ndstrides: implement np_{zeros,ones,full,empty} 2024-08-25 00:52:41 +08:00
lyken 3d4c6b6ac0
core/model: add util::gen_for_model 2024-08-25 00:52:41 +08:00
lyken c5aa1616f8
core/object: add ListObject and TupleObject
Needed for implementing other ndarray utils.
2024-08-25 00:52:41 +08:00
lyken 98b65cf3e2
core/ndstrides: implement ndarray iterator NDIter 2024-08-25 00:52:41 +08:00
lyken 4a26a0e222
core/ndstrides: introduce NDArray
NDArray with strides.
2024-08-25 00:52:41 +08:00
lyken e927d1a308
core/toplevel/helper: add {extract,create}_ndims 2024-08-25 00:52:41 +08:00
lyken b6aae87bd3
core/object: introduce object
Small abstraction to simplify implementations.
2024-08-25 00:52:41 +08:00
lyken ff84c9bfaf
core/model: introduce models 2024-08-25 00:52:41 +08:00
lyken d75c5d460f
core/irrt/exceptions: add debug utils with exceptions 2024-08-24 15:35:00 +08:00
lyken cd69fa07a5
core/irrt/exceptions: allow irrt to raise exceptions
Achieved through defining all the needed Exception ID constants at link
time.

Secondly, since `Exception` is `size_t` dependent, `__nac3_raise()`
takes an opaque pointer to `Exception`, unless IRRT is compiled into
32-bit and 64-bit separately with a defined `size_t` type.
2024-08-24 15:29:04 +08:00
lyken 82671a4be7
core/irrt: build.rs capture IR defined constants 2024-08-24 15:29:04 +08:00
lyken 176cb992eb
core/irrt: build.rs capture IR defined types 2024-08-24 15:29:04 +08:00
lyken b743603a97
core/irrt: split irrt.cpp into headers 2024-08-24 15:29:04 +08:00
lyken 27a1fc7024
core/irrt: reformat 2024-08-24 15:29:04 +08:00
lyken b69d527752
core: add .clang-format 2024-08-24 15:29:04 +08:00
lyken 2c62b61363
core/irrt: comment build.rs & move irrt to its own dir
To prepare for future IRRT implementations, and to also make cargo
only have to watch a single directory.
2024-08-24 13:04:06 +08:00
David Mak c5ae0e7c36 [standalone] Add tests for tuple equality 2024-08-21 16:25:32 +08:00
David Mak b8dab6cf7c [standalone] Add tests for string equality 2024-08-21 16:25:32 +08:00
David Mak 4d80ba38b7 [core] codegen/expr: Implement comparison of tuples 2024-08-21 16:25:32 +08:00
David Mak 33929bda24 [core] typecheck/typedef: Add support for tuple methods 2024-08-21 16:25:32 +08:00
David Mak a8e92212c0 [core] codegen/expr: Implement string equality 2024-08-21 16:25:32 +08:00
David Mak 908271014a [core] typecheck/magic_methods: Add equality methods to string 2024-08-21 16:25:32 +08:00
David Mak c407622f5c [core] codegen/expr: Add compilation error for unsupported cmpop 2024-08-21 15:46:13 +08:00
David Mak d7952d0629 [core] codegen/expr: Fix assertions not generated for -O0 2024-08-21 15:36:54 +08:00
David Mak ca1395aed6 [core] codegen: Remove redundant return 2024-08-21 15:36:54 +08:00
David Mak 7799aa4987 [meta] Do not specify rev in dependency version 2024-08-21 15:36:54 +08:00
David Mak 76016a26ad [meta] Apply clippy suggestions 2024-08-21 13:07:57 +08:00
lyken 8532bf5206
standalone: add missing test_ndarray_ceil() run 2024-08-21 11:39:00 +08:00
lyken 2cf64d8608
apply clippy comment changes 2024-08-21 11:21:10 +08:00
lyken 706759adb2
artiq: apply cargo fmt 2024-08-21 11:21:10 +08:00
lyken b90cf2300b
core/fix: add missing lifetime in gen_for* 2024-08-21 11:05:30 +08:00
Sebastien Bourdeauducq 0fc26df29e flake: update nixpkgs 2024-08-19 23:53:15 +08:00
David Mak 0b074c2cf2 [artiq] symbol_resolver: Set private linkage for constants 2024-08-19 14:41:43 +08:00
Sébastien Bourdeauducq a0f6961e0e cargo: update dependencies 2024-08-19 13:15:03 +08:00
David Mak b1c5c2e1d4 [artiq] Fix RPC of ndarrays to host 2024-08-15 15:41:24 +08:00
David Mak 69320a6cf1 [artiq] Fix LLVM representation of strings
Should be `%str` rather than `[N x i8]`.
2024-08-14 09:30:08 +08:00
David Mak 9e0601837a core: Add compile-time feature to disable escape analysis 2024-08-14 09:29:48 +08:00
lyken 432c81a500
core: update insta after #489 2024-08-13 15:30:34 +08:00
David Mak 6beff7a268 [artiq] Implement core_log and rtio_log in terms of polymorphic_print
Implementation mostly references the original implementation in Python.
2024-08-13 15:19:03 +08:00
David Mak 6ca7aecd4a [artiq] Add core_log and rtio_log function declarations 2024-08-13 15:19:03 +08:00
David Mak 8fd7216243 [core] toplevel/composer: Add lateinit_builtins
This is required for the new core_log and rtio_log functions, which take
a generic type as its parameter. However, in ARTIQ builtins are
initialized using one unifier and then actually used by another unifier.

lateinit_builtins workaround this issue by deferring the initialization
of functions requiring type variables until the actual unifier is ready.
2024-08-13 15:19:03 +08:00
David Mak 4f5e417012 [core] codegen: Add function to get format constants for integers 2024-08-13 15:19:03 +08:00
David Mak a0614bad83 [core] codegen/expr: Make gen_string return `StructValue`
So that it is clear that the value itself is returned rather than a
pointer to the struct or its data.
2024-08-13 15:19:03 +08:00
David Mak 5539d144ed [core] Add `CodeGenContext::build_in_bounds_gep_and_load`
For safer accesses to `gep`-able values and faster fails.
2024-08-13 15:19:03 +08:00
David Mak b3891b9a0d standalone: Fix several issues post script refactoring
- Add helptext for check_demos.sh
- Add back support for using debug NAC3 for running tests
- Output error message when argument is not recognized
- Fixed last non-demo script argument being ignored
- Add back SSE2 requirement to NAC3 (required for mandelbrot)
2024-08-13 15:19:03 +08:00
David Mak 6fb8939179 [meta] Update dependencies 2024-08-13 15:19:03 +08:00
lyken 973dc5041a core/typecheck: Support tuple arg type in len() 2024-08-13 15:02:59 +08:00
David Mak d0da688aa7 standalone: Add tuple len test 2024-08-13 15:02:59 +08:00
David Mak 12c4e1cf48 core/toplevel/builtins: Add support for len() on tuples 2024-08-13 15:02:59 +08:00
David Mak 9b988647ed core/toplevel/builtins: Extract len() into builtin function 2024-08-13 15:02:59 +08:00
lyken 35a7cecc12
core/typecheck: fix np_array ndmin bug 2024-08-13 12:50:04 +08:00
lyken 7e3d87f841 core/codegen: fix bug in call_ceil function 2024-08-07 16:40:55 +08:00
David Mak ac0d83ef98 standalone: Add vararg.py 2024-08-06 11:48:42 +08:00
David Mak 3ff6db1a29 core/codegen: Add va_start and va_end intrinsics 2024-08-06 11:48:42 +08:00
David Mak d7b806afb4 core/codegen: Implement support for va_info on supported architectures 2024-08-06 11:48:40 +08:00
David Mak fac60c3974 core/codegen: Handle vararg in function generation 2024-08-06 11:46:00 +08:00
David Mak f5fb504a15 core/codegen/expr: Implement vararg handling in gen_call 2024-08-06 11:46:00 +08:00
David Mak faa3bb97ad core/typecheck/typedef: Add vararg to Unifier::stringify 2024-08-06 11:46:00 +08:00
David Mak 6a64c9d1de core/typecheck/typedef: Add is_vararg_ctx to TTuple 2024-08-06 11:45:54 +08:00
David Mak 3dc8498202 core/typecheck/typedef: Handle vararg parameters in unify_call 2024-08-06 11:43:13 +08:00
David Mak cbf79c5e9c core/typecheck/typedef: Add is_vararg to FuncArg, ConcreteFuncArg 2024-08-06 11:43:13 +08:00
David Mak b8aa17bf8c core/toplevel/composer: Add parsing for vararg parameter 2024-08-06 10:52:24 +08:00
David Mak f5b998cd9c core/codegen: Remove unnecessary mut from get_llvm*_type 2024-08-06 10:52:24 +08:00
David Mak c36f85ecb9 meta: Update dependencies 2024-08-06 10:52:24 +08:00
lyken 3a8c385e01 core/typecheck: fix missing ExprKind::Asterisk in fix_assignment_target_context 2024-08-05 19:30:48 +08:00
lyken 221de4d06a core/codegen: add missing comment 2024-08-05 19:30:48 +08:00
lyken fb9fe8edf2 core: reimplement assignment type inference and codegen
- distinguish between setitem and getitem
- allow starred assignment targets, but the assigned value would be a tuple
- allow both [...] and (...) to be target lists
2024-08-05 19:30:48 +08:00
lyken 894083c6a3 core/codegen: refactor gen_{for,comprehension} to match on iter type 2024-08-05 19:30:48 +08:00
Sébastien Bourdeauducq 669c6aca6b clean up and fix 32-bit demos 2024-08-05 19:04:25 +08:00
abdul124 63d2b49b09 core: remove np_linalg_matmul 2024-08-05 11:44:55 +08:00
abdul124 bf709889c4 standalone/demo: separate linalg functions from main workspace 2024-08-05 11:44:54 +08:00
abdul124 1c72698d02 core: add np_linalg_det and np_linalg_matrix_power functions 2024-07-31 18:02:54 +08:00
abdul124 54f883f0a5 core: implement np_dot using LLVM_IR 2024-07-31 15:53:51 +08:00
abdul124 4a6845dac6 standalone: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 00236f48bc core: add np.transpose and np.reshape functions 2024-07-31 13:23:07 +08:00
abdul124 a3e6bb2292 core/helper: add linalg section 2024-07-31 13:23:07 +08:00
abdul124 17171065b1 standalone: link linalg at runtime 2024-07-31 13:23:07 +08:00
abdul124 540b35ec84 standalone: move linalg functions to demo 2024-07-31 13:23:05 +08:00
abdul124 4bb00c52e3 core/builtin_fns: improve error reporting 2024-07-31 13:21:31 +08:00
abdul124 faf07527cb standalone: add runtime implementation for linalg functions 2024-07-31 13:21:28 +08:00
abdul124 d6a4d0a634 standalone: add linalg methods and tests 2024-07-29 16:48:06 +08:00
abdul124 2242c5af43 core: add linalg methods 2024-07-29 16:48:06 +08:00
David Mak 318a675ea6 standalone: Rename -m32 to -i386 2024-07-29 14:58:58 +08:00
David Mak 32e52ce198 standalone: Revert using uint32_t as slice length
Turns out list and str have always been size_t.
2024-07-29 14:58:29 +08:00
Sebastien Bourdeauducq 665ca8e32d cargo: update dependencies 2024-07-27 22:24:56 +08:00
Sebastien Bourdeauducq 12c12b1d80 flake: update nixpkgs 2024-07-27 22:22:20 +08:00
lyken 72972fa909 core/toplevel: add more numpy categories 2024-07-27 21:57:47 +08:00
lyken 142cd48594 core/toplevel: reorder PrimDef::details 2024-07-27 21:57:47 +08:00
lyken 8adfe781c5 core/toplevel: fix PrimDef method names 2024-07-27 21:57:47 +08:00
lyken 339b74161b core/toplevel: reorganize PrimDef 2024-07-27 21:57:47 +08:00
David Mak 8c5ba37d09 standalone: Add 32-bit execution tests to check_demo.sh 2024-07-26 13:35:40 +08:00
David Mak 05a8948ff2 core: Minor cleanup to use ListValue APIs 2024-07-26 13:35:40 +08:00
David Mak 6d171ec284 core: Add label name and hooks to gen_for functions 2024-07-26 13:35:40 +08:00
David Mak 0ba68f6657 core: Set target triple and datalayout for each module
Fixes an issue with inconsistent pointer sizes causing crashes.
2024-07-26 13:35:40 +08:00
David Mak 693b2a8863 core: Add support for 32-bit size_t on 64-bit targets 2024-07-26 13:35:40 +08:00
David Mak 5faeede0e5 Determine size_t using LLVM target machine 2024-07-26 13:35:38 +08:00
David Mak 266707df9d standalone: Add support for running 32-bit binaries 2024-07-26 13:32:38 +08:00
David Mak 3d3c258756 standalone: Remove support for --lli 2024-07-26 13:32:38 +08:00
David Mak ed1182cb24 standalone: Update format specifiers for exceptions
Use platform-agnostic identifiers instead.
2024-07-26 13:32:37 +08:00
David Mak fd025c1137 standalone: Use uint32_t for cslice length
Matching the expected type of string and list slices.
2024-07-26 13:32:21 +08:00
David Mak f139db9af9 meta: Update dependencies 2024-07-26 10:33:02 +08:00
lyken 44487b76ae standalone: interpret_demo.py remove duplicated section 2024-07-22 17:23:35 +08:00
lyken 1332f113e8 standalone: fix interpret_demo.py comments 2024-07-22 17:06:14 +08:00
Sébastien Bourdeauducq 7632d6f72a cargo: update dependencies 2024-07-21 11:00:25 +08:00
David Mak 4948395ca2 core/toplevel/type_annotation: Add handling for mismatching class def
Primitive types only contain fields in its Type and not its TopLevelDef.
This causes primitive object types to lack some fields.
2024-07-19 14:42:14 +08:00
David Mak 3db3061d99 artiq/symbol_resolver: Handle type of zero-length lists 2024-07-19 14:42:14 +08:00
David Mak 51c2175c80 core/codegen/stmt: Convert assertion values to i1 2024-07-19 14:42:14 +08:00
lyken 1a31a50b8a
standalone: fix __nac3_raise def in demo.c 2024-07-17 21:22:08 +08:00
lyken 6c10e3d056 core: cargo clippy 2024-07-12 21:18:53 +08:00
lyken 2dbc1ec659 cargo fmt 2024-07-12 21:16:38 +08:00
Sebastien Bourdeauducq c80378063a add np_argmin/argmax to interpret_demo environment 2024-07-12 13:27:52 +02:00
abdul124 513d30152b core: support raise exception short form 2024-07-12 18:58:34 +08:00
abdul124 45e9360c4d standalone: Add np_argmax and np_argmin tests 2024-07-12 18:19:56 +08:00
abdul124 2e01b77fc8 core: refactor np_max/np_min functions 2024-07-12 18:18:54 +08:00
abdul124 cea7cade51 core: add np_argmax/np_argmin functions 2024-07-12 18:18:28 +08:00
123 changed files with 14129 additions and 8665 deletions

3
.clang-format Normal file
View File

@ -0,0 +1,3 @@
BasedOnStyle: Microsoft
IndentWidth: 4
ReflowComments: false

1
.gitignore vendored
View File

@ -1,3 +1,4 @@
__pycache__ __pycache__
/target /target
/nac3standalone/demo/linalg/target
nix/windows/msys2 nix/windows/msys2

182
Cargo.lock generated
View File

@ -26,9 +26,9 @@ dependencies = [
[[package]] [[package]]
name = "anstream" name = "anstream"
version = "0.6.14" version = "0.6.15"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "418c75fa768af9c03be99d17643f93f79bbba589895012a80e3452a19ddda15b" checksum = "64e15c1ab1f89faffbf04a634d5e1962e9074f2741eef6d97f3c4e322426d526"
dependencies = [ dependencies = [
"anstyle", "anstyle",
"anstyle-parse", "anstyle-parse",
@ -41,36 +41,36 @@ dependencies = [
[[package]] [[package]]
name = "anstyle" name = "anstyle"
version = "1.0.7" version = "1.0.8"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "038dfcf04a5feb68e9c60b21c9625a54c2c0616e79b72b0fd87075a056ae1d1b" checksum = "1bec1de6f59aedf83baf9ff929c98f2ad654b97c9510f4e70cf6f661d49fd5b1"
[[package]] [[package]]
name = "anstyle-parse" name = "anstyle-parse"
version = "0.2.4" version = "0.2.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c03a11a9034d92058ceb6ee011ce58af4a9bf61491aa7e1e59ecd24bd40d22d4" checksum = "eb47de1e80c2b463c735db5b217a0ddc39d612e7ac9e2e96a5aed1f57616c1cb"
dependencies = [ dependencies = [
"utf8parse", "utf8parse",
] ]
[[package]] [[package]]
name = "anstyle-query" name = "anstyle-query"
version = "1.1.0" version = "1.1.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ad186efb764318d35165f1758e7dcef3b10628e26d41a44bc5550652e6804391" checksum = "6d36fc52c7f6c869915e99412912f22093507da8d9e942ceaf66fe4b7c14422a"
dependencies = [ dependencies = [
"windows-sys", "windows-sys 0.52.0",
] ]
[[package]] [[package]]
name = "anstyle-wincon" name = "anstyle-wincon"
version = "3.0.3" version = "3.0.4"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "61a38449feb7068f52bb06c12759005cf459ee52bb4adc1d5a7c4322d716fb19" checksum = "5bf74e1b6e971609db8ca7a9ce79fd5768ab6ae46441c572e46cf596f59e57f8"
dependencies = [ dependencies = [
"anstyle", "anstyle",
"windows-sys", "windows-sys 0.52.0",
] ]
[[package]] [[package]]
@ -117,9 +117,12 @@ checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"
[[package]] [[package]]
name = "cc" name = "cc"
version = "1.1.0" version = "1.1.13"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eaff6f8ce506b9773fa786672d63fc7a191ffea1be33f72bbd4aeacefca9ffc8" checksum = "72db2f7947ecee9b03b510377e8bb9077afa27176fdbff55c51027e976fdcc48"
dependencies = [
"shlex",
]
[[package]] [[package]]
name = "cfg-if" name = "cfg-if"
@ -129,9 +132,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]] [[package]]
name = "clap" name = "clap"
version = "4.5.9" version = "4.5.16"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "64acc1846d54c1fe936a78dc189c34e28d3f5afc348403f28ecf53660b9b8462" checksum = "ed6719fffa43d0d87e5fd8caeab59be1554fb028cd30edc88fc4369b17971019"
dependencies = [ dependencies = [
"clap_builder", "clap_builder",
"clap_derive", "clap_derive",
@ -139,9 +142,9 @@ dependencies = [
[[package]] [[package]]
name = "clap_builder" name = "clap_builder"
version = "4.5.9" version = "4.5.15"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6fb8393d67ba2e7bfaf28a23458e4e2b543cc73a99595511eb207fdb8aede942" checksum = "216aec2b177652e3846684cbfe25c9964d18ec45234f0f5da5157b207ed1aab6"
dependencies = [ dependencies = [
"anstream", "anstream",
"anstyle", "anstyle",
@ -151,27 +154,27 @@ dependencies = [
[[package]] [[package]]
name = "clap_derive" name = "clap_derive"
version = "4.5.8" version = "4.5.13"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2bac35c6dafb060fd4d275d9a4ffae97917c13a6327903a8be2153cd964f7085" checksum = "501d359d5f3dcaf6ecdeee48833ae73ec6e42723a1e52419c79abf9507eec0a0"
dependencies = [ dependencies = [
"heck 0.5.0", "heck 0.5.0",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
name = "clap_lex" name = "clap_lex"
version = "0.7.1" version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b82cf0babdbd58558212896d1a4272303a57bdb245c2bf1147185fb45640e70" checksum = "1462739cb27611015575c0c11df5df7601141071f07518d56fcc1be504cbec97"
[[package]] [[package]]
name = "colorchoice" name = "colorchoice"
version = "1.0.1" version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0b6a852b24ab71dffc585bcb46eaf7959d175cb865a7152e35b348d1b2960422" checksum = "d3fd119d74b830634cea2a0f58bbd0d54540518a14397557951e79340abc28c0"
[[package]] [[package]]
name = "console" name = "console"
@ -182,7 +185,7 @@ dependencies = [
"encode_unicode", "encode_unicode",
"lazy_static", "lazy_static",
"libc", "libc",
"windows-sys", "windows-sys 0.52.0",
] ]
[[package]] [[package]]
@ -302,7 +305,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba" checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba"
dependencies = [ dependencies = [
"libc", "libc",
"windows-sys", "windows-sys 0.52.0",
] ]
[[package]] [[package]]
@ -385,9 +388,9 @@ dependencies = [
[[package]] [[package]]
name = "indexmap" name = "indexmap"
version = "2.2.6" version = "2.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "168fb715dda47215e360912c096649d23d58bf392ac62f73919e831745e40f26" checksum = "93ead53efc7ea8ed3cfb0c79fc8023fbb782a5432b52830b6518941cebe6505c"
dependencies = [ dependencies = [
"equivalent", "equivalent",
"hashbrown 0.14.5", "hashbrown 0.14.5",
@ -421,7 +424,7 @@ checksum = "4fa4d8d74483041a882adaa9a29f633253a66dde85055f0495c121620ac484b2"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -440,9 +443,9 @@ dependencies = [
[[package]] [[package]]
name = "is_terminal_polyfill" name = "is_terminal_polyfill"
version = "1.70.0" version = "1.70.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f8478577c03552c21db0e2724ffb8986a5ce7af88107e6be5d2ee6e158c12800" checksum = "7943c866cc5cd64cbc25b2e01621d07fa8eb2a1a23160ee81ce38704e97b8ecf"
[[package]] [[package]]
name = "itertools" name = "itertools"
@ -507,15 +510,15 @@ checksum = "bbd2bcb4c963f2ddae06a2efc7e9f3591312473c50c6685e1f298068316e66fe"
[[package]] [[package]]
name = "libc" name = "libc"
version = "0.2.155" version = "0.2.157"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "97b3888a4aecf77e811145cadf6eef5901f4782c53886191b2f693f24761847c" checksum = "374af5f94e54fa97cf75e945cce8a6b201e88a1a07e688b47dfd2a59c66dbd86"
[[package]] [[package]]
name = "libloading" name = "libloading"
version = "0.8.4" version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e310b3a6b5907f99202fcdb4960ff45b93735d7c7d96b760fcff8db2dc0e103d" checksum = "4979f22fdb869068da03c9f7528f8297c6fd2606bc3a4affe42e6a823fdb8da4"
dependencies = [ dependencies = [
"cfg-if", "cfg-if",
"windows-targets", "windows-targets",
@ -616,7 +619,7 @@ name = "nac3core"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"crossbeam", "crossbeam",
"indexmap 2.2.6", "indexmap 2.4.0",
"indoc", "indoc",
"inkwell", "inkwell",
"insta", "insta",
@ -706,7 +709,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db" checksum = "b4c5cc86750666a3ed20bdaf5ca2a0344f9c67674cae0515bec2da16fbaa47db"
dependencies = [ dependencies = [
"fixedbitset", "fixedbitset",
"indexmap 2.2.6", "indexmap 2.4.0",
] ]
[[package]] [[package]]
@ -749,7 +752,7 @@ dependencies = [
"phf_shared 0.11.2", "phf_shared 0.11.2",
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -778,15 +781,18 @@ checksum = "5be167a7af36ee22fe3115051bc51f6e6c7054c9348e28deb4f49bd6f705a315"
[[package]] [[package]]
name = "portable-atomic" name = "portable-atomic"
version = "1.6.0" version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7170ef9988bc169ba16dd36a7fa041e5c4cbeb6a35b76d4c03daded371eae7c0" checksum = "da544ee218f0d287a911e9c99a39a8c9bc8fcad3cb8db5959940044ecfc67265"
[[package]] [[package]]
name = "ppv-lite86" name = "ppv-lite86"
version = "0.2.17" version = "0.2.20"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de" checksum = "77957b295656769bb8ad2b6a6b09d897d94f05c41b069aede1fcdaa675eaea04"
dependencies = [
"zerocopy",
]
[[package]] [[package]]
name = "precomputed-hash" name = "precomputed-hash"
@ -850,7 +856,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-macros-backend", "pyo3-macros-backend",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -863,7 +869,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"pyo3-build-config", "pyo3-build-config",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -927,9 +933,9 @@ dependencies = [
[[package]] [[package]]
name = "redox_syscall" name = "redox_syscall"
version = "0.5.2" version = "0.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c82cf8cff14456045f55ec4241383baeff27af886adb72ffb2162f99911de0fd" checksum = "2a908a6e00f1fdd0dfd9c0eb08ce85126f6d8bbda50017e74bc4a4b7d4a926a4"
dependencies = [ dependencies = [
"bitflags", "bitflags",
] ]
@ -947,9 +953,9 @@ dependencies = [
[[package]] [[package]]
name = "regex" name = "regex"
version = "1.10.5" version = "1.10.6"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b91213439dad192326a0d7c6ee3955910425f441d7038e0d6933b0aec5c4517f" checksum = "4219d74c6b67a3654a9fbebc4b419e22126d13d2f3c4a07ee0cb61ff79a79619"
dependencies = [ dependencies = [
"aho-corasick", "aho-corasick",
"memchr", "memchr",
@ -991,7 +997,7 @@ dependencies = [
"errno", "errno",
"libc", "libc",
"linux-raw-sys", "linux-raw-sys",
"windows-sys", "windows-sys 0.52.0",
] ]
[[package]] [[package]]
@ -1029,31 +1035,32 @@ checksum = "61697e0a1c7e512e84a621326239844a24d8207b4669b41bc18b32ea5cbf988b"
[[package]] [[package]]
name = "serde" name = "serde"
version = "1.0.204" version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bc76f558e0cbb2a839d37354c575f1dc3fdc6546b5be373ba43d95f231bf7c12" checksum = "cff085d2cb684faa248efb494c39b68e522822ac0de72ccf08109abde717cfb2"
dependencies = [ dependencies = [
"serde_derive", "serde_derive",
] ]
[[package]] [[package]]
name = "serde_derive" name = "serde_derive"
version = "1.0.204" version = "1.0.208"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e0cd7e117be63d3c3678776753929474f3b04a43a080c744d6b0ae2a8c28e222" checksum = "24008e81ff7613ed8e5ba0cfaf24e2c2f1e5b8a0495711e44fcd4882fca62bcf"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
name = "serde_json" name = "serde_json"
version = "1.0.120" version = "1.0.125"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4e0d21c9a8cae1235ad58a00c11cb40d4b1e5c784f1ef2c537876ed6ffd8b7c5" checksum = "83c8e735a073ccf5be70aa8066aa984eaf2fa000db6c8d0100ae605b366d31ed"
dependencies = [ dependencies = [
"itoa", "itoa",
"memchr",
"ryu", "ryu",
"serde", "serde",
] ]
@ -1071,10 +1078,16 @@ dependencies = [
] ]
[[package]] [[package]]
name = "similar" name = "shlex"
version = "2.5.0" version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fa42c91313f1d05da9b26f267f931cf178d4aba455b4c4622dd7355eb80c6640" checksum = "0fda2ff0d084019ba4d7c6f371c95d8fd75ce3524c3cb8fb653a3023f6323e64"
[[package]]
name = "similar"
version = "2.6.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1de1d4f81173b03af4c0cbed3c898f6bff5b870e4a7f5d6f4057d62a7a4b686e"
[[package]] [[package]]
name = "siphasher" name = "siphasher"
@ -1134,7 +1147,7 @@ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"rustversion", "rustversion",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -1150,9 +1163,9 @@ dependencies = [
[[package]] [[package]]
name = "syn" name = "syn"
version = "2.0.70" version = "2.0.75"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2f0209b68b3613b093e0ec905354eccaedcfe83b8cb37cbdeae64026c3064c16" checksum = "f6af063034fc1935ede7be0122941bafa9bacb949334d090b77ca98b5817c7d9"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
@ -1161,20 +1174,21 @@ dependencies = [
[[package]] [[package]]
name = "target-lexicon" name = "target-lexicon"
version = "0.12.15" version = "0.12.16"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4873307b7c257eddcb50c9bedf158eb669578359fb28428bef438fec8e6ba7c2" checksum = "61c41af27dd6d1e27b1b16b489db798443478cef1f06a660c96db617ba5de3b1"
[[package]] [[package]]
name = "tempfile" name = "tempfile"
version = "3.10.1" version = "3.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85b77fafb263dd9d05cbeac119526425676db3784113aa9295c88498cbf8bff1" checksum = "04cbcdd0c794ebb0d4cf35e88edd2f7d2c4c3e9a5a6dab322839b321c6a87a64"
dependencies = [ dependencies = [
"cfg-if", "cfg-if",
"fastrand", "fastrand",
"once_cell",
"rustix", "rustix",
"windows-sys", "windows-sys 0.59.0",
] ]
[[package]] [[package]]
@ -1203,22 +1217,22 @@ dependencies = [
[[package]] [[package]]
name = "thiserror" name = "thiserror"
version = "1.0.61" version = "1.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c546c80d6be4bc6a00c0f01730c08df82eaa7a7a61f11d656526506112cc1709" checksum = "c0342370b38b6a11b6cc11d6a805569958d54cfa061a29969c3b5ce2ea405724"
dependencies = [ dependencies = [
"thiserror-impl", "thiserror-impl",
] ]
[[package]] [[package]]
name = "thiserror-impl" name = "thiserror-impl"
version = "1.0.61" version = "1.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533" checksum = "a4558b58466b9ad7ca0f102865eccc95938dca1a74a856f2b57b6629050da261"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]
[[package]] [[package]]
@ -1336,9 +1350,9 @@ checksum = "06abde3611657adf66d383f00b093d7faecc7fa57071cce2578660c9f1010821"
[[package]] [[package]]
name = "version_check" name = "version_check"
version = "0.9.4" version = "0.9.5"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f" checksum = "0b928f33d975fc6ad9f86c8f283853ad26bdd5b10b7f1542aa2fa15e2289105a"
[[package]] [[package]]
name = "walkdir" name = "walkdir"
@ -1374,11 +1388,11 @@ checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]] [[package]]
name = "winapi-util" name = "winapi-util"
version = "0.1.8" version = "0.1.9"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d4cc384e1e73b93bafa6fb4f1df8c41695c8a91cf9c4c64358067d15a7b6c6b" checksum = "cf221c93e13a30d793f7645a0e7762c55d169dbb0a49671918a2319d289b10bb"
dependencies = [ dependencies = [
"windows-sys", "windows-sys 0.59.0",
] ]
[[package]] [[package]]
@ -1396,6 +1410,15 @@ dependencies = [
"windows-targets", "windows-targets",
] ]
[[package]]
name = "windows-sys"
version = "0.59.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e38bc4d79ed67fd075bcc251a1c39b32a1776bbe92e5bef1f0bf1f8c531853b"
dependencies = [
"windows-targets",
]
[[package]] [[package]]
name = "windows-targets" name = "windows-targets"
version = "0.52.6" version = "0.52.6"
@ -1475,6 +1498,7 @@ version = "0.7.35"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1b9b4fd18abc82b8136838da5d50bae7bdea537c574d8dc1a34ed098d6c166f0" checksum = "1b9b4fd18abc82b8136838da5d50bae7bdea537c574d8dc1a34ed098d6c166f0"
dependencies = [ dependencies = [
"byteorder",
"zerocopy-derive", "zerocopy-derive",
] ]
@ -1486,5 +1510,5 @@ checksum = "fa4f8080344d4671fb4e831a13ad1e68092748387dfc4f55e356242fae12ce3e"
dependencies = [ dependencies = [
"proc-macro2", "proc-macro2",
"quote", "quote",
"syn 2.0.70", "syn 2.0.75",
] ]

View File

@ -2,11 +2,11 @@
"nodes": { "nodes": {
"nixpkgs": { "nixpkgs": {
"locked": { "locked": {
"lastModified": 1720418205, "lastModified": 1723637854,
"narHash": "sha256-cPJoFPXU44GlhWg4pUk9oUPqurPlCFZ11ZQPk21GTPU=", "narHash": "sha256-med8+5DSWa2UnOqtdICndjDAEjxr5D7zaIiK4pn0Q7c=",
"owner": "NixOS", "owner": "NixOS",
"repo": "nixpkgs", "repo": "nixpkgs",
"rev": "655a58a72a6601292512670343087c2d75d859c1", "rev": "c3aa7b8938b17aebd2deecf7be0636000d62a2b9",
"type": "github" "type": "github"
}, },
"original": { "original": {

View File

@ -6,6 +6,7 @@
outputs = { self, nixpkgs }: outputs = { self, nixpkgs }:
let let
pkgs = import nixpkgs { system = "x86_64-linux"; }; pkgs = import nixpkgs { system = "x86_64-linux"; };
pkgs32 = import nixpkgs { system = "i686-linux"; };
in rec { in rec {
packages.x86_64-linux = rec { packages.x86_64-linux = rec {
llvm-nac3 = pkgs.callPackage ./nix/llvm {}; llvm-nac3 = pkgs.callPackage ./nix/llvm {};
@ -13,9 +14,24 @@
'' ''
mkdir -p $out/bin mkdir -p $out/bin
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
''; '';
demo-linalg-stub = pkgs.rustPlatform.buildRustPackage {
name = "demo-linalg-stub";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
demo-linalg-stub32 = pkgs32.rustPlatform.buildRustPackage {
name = "demo-linalg-stub32";
src = ./nac3standalone/demo/linalg;
cargoLock = {
lockFile = ./nac3standalone/demo/linalg/Cargo.lock;
};
doCheck = false;
};
nac3artiq = pkgs.python3Packages.toPythonModule ( nac3artiq = pkgs.python3Packages.toPythonModule (
pkgs.rustPlatform.buildRustPackage rec { pkgs.rustPlatform.buildRustPackage rec {
name = "nac3artiq"; name = "nac3artiq";
@ -24,9 +40,8 @@
cargoLock = { cargoLock = {
lockFile = ./Cargo.lock; lockFile = ./Cargo.lock;
}; };
cargoTestFlags = [ "--features" "test" ];
passthru.cargoLock = cargoLock; passthru.cargoLock = cargoLock;
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ]; nativeBuildInputs = [ pkgs.python3 (pkgs.wrapClangMulti pkgs.llvmPackages_14.clang) llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
buildInputs = [ pkgs.python3 llvm-nac3 ]; buildInputs = [ pkgs.python3 llvm-nac3 ];
checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ]; checkInputs = [ (pkgs.python3.withPackages(ps: [ ps.numpy ps.scipy ])) ];
checkPhase = checkPhase =
@ -34,7 +49,9 @@
echo "Checking nac3standalone demos..." echo "Checking nac3standalone demos..."
pushd nac3standalone/demo pushd nac3standalone/demo
patchShebangs . patchShebangs .
./check_demos.sh export DEMO_LINALG_STUB=${demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${demo-linalg-stub32}/lib/liblinalg.a
./check_demos.sh -i686
popd popd
echo "Running Cargo tests..." echo "Running Cargo tests..."
cargoCheckHook cargoCheckHook
@ -151,7 +168,7 @@
buildInputs = with pkgs; [ buildInputs = with pkgs; [
# build dependencies # build dependencies
packages.x86_64-linux.llvm-nac3 packages.x86_64-linux.llvm-nac3
llvmPackages_14.clang llvmPackages_14.llvm.out # for running nac3standalone demos (pkgs.wrapClangMulti llvmPackages_14.clang) llvmPackages_14.llvm.out # for running nac3standalone demos
packages.x86_64-linux.llvm-tools-irrt packages.x86_64-linux.llvm-tools-irrt
cargo cargo
rustc rustc
@ -163,10 +180,12 @@
clippy clippy
pre-commit pre-commit
rustfmt rustfmt
rust-analyzer
]; ];
# https://nixos.wiki/wiki/Rust#Shell.nix_example shellHook =
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}"; ''
export DEMO_LINALG_STUB=${packages.x86_64-linux.demo-linalg-stub}/lib/liblinalg.a
export DEMO_LINALG_STUB32=${packages.x86_64-linux.demo-linalg-stub32}/lib/liblinalg.a
'';
}; };
devShells.x86_64-linux.msys2 = pkgs.mkShell { devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2"; name = "nac3-dev-shell-msys2";

View File

@ -24,3 +24,4 @@ features = ["llvm14-0", "target-x86", "target-arm", "target-riscv", "no-libffi-l
[features] [features]
init-llvm-profile = [] init-llvm-profile = []
no-escape-analysis = ["nac3core/no-escape-analysis"]

View File

@ -0,0 +1,24 @@
from min_artiq import *
from numpy import int32
@nac3
class EmptyList:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@rpc
def get_empty(self) -> list[int32]:
return []
@kernel
def run(self):
a: list[int32] = self.get_empty()
if a != []:
raise ValueError
if __name__ == "__main__":
EmptyList().run()

26
nac3artiq/demo/str_abi.py Normal file
View File

@ -0,0 +1,26 @@
from min_artiq import *
from numpy import ndarray, zeros as np_zeros
@nac3
class StrFail:
core: KernelInvariant[Core]
def __init__(self):
self.core = Core()
@kernel
def hello(self, arg: str):
pass
@kernel
def consume_ndarray(self, arg: ndarray[str, 1]):
pass
def run(self):
self.hello("world")
self.consume_ndarray(np_zeros([10], dtype=str))
if __name__ == "__main__":
StrFail().run()

View File

@ -1,8 +1,11 @@
use nac3core::{ use nac3core::{
codegen::{ codegen::{
classes::{ListValue, UntypedArrayLikeAccessor},
expr::gen_call, expr::gen_call,
llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave}, llvm_intrinsics::{call_int_smax, call_stackrestore, call_stacksave},
stmt::{gen_block, gen_with}, model::*,
object::{any::AnyObject, ndarray::NDArrayObject, range::RangeObject, str::str_model},
stmt::{gen_block, gen_for_callback_incrementing, gen_if_callback, gen_with},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
symbol_resolver::ValueEnum, symbol_resolver::ValueEnum,
@ -13,7 +16,11 @@ use nac3core::{
use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef}; use nac3parser::ast::{Expr, ExprKind, Located, Stmt, StmtKind, StrRef};
use inkwell::{ use inkwell::{
context::Context, module::Linkage, types::IntType, values::BasicValueEnum, AddressSpace, context::Context,
module::Linkage,
types::IntType,
values::{BasicValueEnum, PointerValue, StructValue},
AddressSpace, IntPredicate,
}; };
use pyo3::{ use pyo3::{
@ -23,10 +30,12 @@ use pyo3::{
use crate::{symbol_resolver::InnerResolver, timeline::TimeFns}; use crate::{symbol_resolver::InnerResolver, timeline::TimeFns};
use itertools::Itertools;
use std::{ use std::{
collections::hash_map::DefaultHasher, collections::{hash_map::DefaultHasher, HashMap},
collections::HashMap,
hash::{Hash, Hasher}, hash::{Hash, Hasher},
iter::once,
mem,
sync::Arc, sync::Arc,
}; };
@ -119,7 +128,7 @@ impl<'a> ArtiqCodeGenerator<'a> {
/// (possibly indirect) `parallel` block. /// (possibly indirect) `parallel` block.
/// ///
/// * `store_name` - The LLVM value name for the pointer to `end`. `.addr` will be appended to /// * `store_name` - The LLVM value name for the pointer to `end`. `.addr` will be appended to
/// the end of the provided value name. /// the end of the provided value name.
fn timeline_update_end_max( fn timeline_update_end_max(
&mut self, &mut self,
ctx: &mut CodeGenContext<'_, '_>, ctx: &mut CodeGenContext<'_, '_>,
@ -386,7 +395,7 @@ fn gen_rpc_tag(
} else { } else {
let ty_enum = ctx.unifier.get_ty(ty); let ty_enum = ctx.unifier.get_ty(ty);
match &*ty_enum { match &*ty_enum {
TTuple { ty } => { TTuple { ty, is_vararg_ctx: false } => {
buffer.push(b't'); buffer.push(b't');
buffer.push(ty.len() as u8); buffer.push(ty.len() as u8);
for ty in ty { for ty in ty {
@ -414,7 +423,10 @@ fn gen_rpc_tag(
} else { } else {
unreachable!() unreachable!()
}; };
assert!((0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims)); assert!(
(0u64..=u64::from(u8::MAX)).contains(&ndarray_ndims),
"Only NDArrays of sizes between 0 and 255 can be RPCed"
);
buffer.push(b'a'); buffer.push(b'a');
buffer.push((ndarray_ndims & 0xFF) as u8); buffer.push((ndarray_ndims & 0xFF) as u8);
@ -426,6 +438,77 @@ fn gen_rpc_tag(
Ok(()) Ok(())
} }
/// Formats an RPC argument to conform to the expected format required by `send_value`.
///
/// See `artiq/firmware/libproto_artiq/rpc_proto.rs` for the expected format.
fn format_rpc_arg<'ctx>(
generator: &mut dyn CodeGenerator,
ctx: &mut CodeGenContext<'ctx, '_>,
(arg, arg_ty, arg_idx): (BasicValueEnum<'ctx>, Type, usize),
) -> PointerValue<'ctx> {
let llvm_i8 = ctx.ctx.i8_type();
let llvm_pi8 = llvm_i8.ptr_type(AddressSpace::default());
let arg_slot = match &*ctx.unifier.get_ty_immutable(arg_ty) {
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
// NAC3: NDArray = { usize, usize*, T* }
// libproto_artiq: NDArray = [data[..], dim_sz[..]]
let ndarray = AnyObject { ty: arg_ty, value: arg };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let dtype = ctx.get_llvm_type(generator, ndarray.dtype);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// `ndarray.data` is possibly not contiguous, and we need it to be contiguous for
// the reader.
let carray = ndarray.make_contiguous_ndarray(generator, ctx, Any(dtype));
let sizeof_sizet = Int(SizeT).sizeof(generator, ctx.ctx);
let sizeof_sizet = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_sizet);
let sizeof_pdata = Ptr(Any(dtype)).sizeof(generator, ctx.ctx);
let sizeof_pdata = Int(SizeT).truncate_or_bit_cast(generator, ctx, sizeof_pdata);
let sizeof_buf_shape = sizeof_sizet.mul(ctx, ndims);
let sizeof_buf = sizeof_buf_shape.add(ctx, sizeof_pdata);
// buf = { data: void*, shape: [size_t; ndims]; }
let buf = Int(Byte).array_alloca(generator, ctx, sizeof_buf.value);
let buf_data = buf;
let buf_shape = buf_data.offset(ctx, sizeof_pdata.value);
// Write to `buf->data`
let carray_data = carray.get(generator, ctx, |f| f.data); // has type Ptr<Any>
let carray_data = carray_data.pointer_cast(generator, ctx, Int(Byte));
buf_data.copy_from(generator, ctx, carray_data, sizeof_pdata.value);
// Write to `buf->shape`
let carray_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let carray_shape_i8 = carray_shape.pointer_cast(generator, ctx, Int(Byte));
buf_shape.copy_from(generator, ctx, carray_shape_i8, sizeof_buf_shape.value);
buf.value
}
_ => {
let arg_slot = generator
.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{arg_idx}")))
.unwrap();
ctx.builder.build_store(arg_slot, arg).unwrap();
ctx.builder
.build_bitcast(arg_slot, llvm_pi8, "rpc.arg")
.map(BasicValueEnum::into_pointer_value)
.unwrap()
}
};
debug_assert_eq!(arg_slot.get_type(), llvm_pi8);
arg_slot
}
fn rpc_codegen_callback_fn<'ctx>( fn rpc_codegen_callback_fn<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
obj: Option<(Type, ValueEnum<'ctx>)>, obj: Option<(Type, ValueEnum<'ctx>)>,
@ -433,10 +516,10 @@ fn rpc_codegen_callback_fn<'ctx>(
args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>, args: Vec<(Option<StrRef>, ValueEnum<'ctx>)>,
generator: &mut dyn CodeGenerator, generator: &mut dyn CodeGenerator,
) -> Result<Option<BasicValueEnum<'ctx>>, String> { ) -> Result<Option<BasicValueEnum<'ctx>>, String> {
let ptr_type = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let size_type = generator.get_size_type(ctx.ctx);
let int8 = ctx.ctx.i8_type(); let int8 = ctx.ctx.i8_type();
let int32 = ctx.ctx.i32_type(); let int32 = ctx.ctx.i32_type();
let size_type = generator.get_size_type(ctx.ctx);
let ptr_type = int8.ptr_type(AddressSpace::default());
let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false); let tag_ptr_type = ctx.ctx.struct_type(&[ptr_type.into(), size_type.into()], false);
let service_id = int32.const_int(fun.1 .0 as u64, false); let service_id = int32.const_int(fun.1 .0 as u64, false);
@ -509,22 +592,25 @@ fn rpc_codegen_callback_fn<'ctx>(
.0 .0
.args .args
.iter() .iter()
.map(|arg| mapping.remove(&arg.name).unwrap().to_basic_value_enum(ctx, generator, arg.ty)) .map(|arg| {
.collect::<Result<Vec<_>, _>>()?; mapping
.remove(&arg.name)
.unwrap()
.to_basic_value_enum(ctx, generator, arg.ty)
.map(|llvm_val| (llvm_val, arg.ty))
})
.collect::<Result<Vec<(_, _)>, _>>()?;
if let Some(obj) = obj { if let Some(obj) = obj {
if let ValueEnum::Static(obj) = obj.1 { if let ValueEnum::Static(obj_val) = obj.1 {
real_params.insert(0, obj.get_const_obj(ctx, generator)); real_params.insert(0, (obj_val.get_const_obj(ctx, generator), obj.0));
} else { } else {
// should be an error here... // should be an error here...
panic!("only host object is allowed"); panic!("only host object is allowed");
} }
} }
for (i, arg) in real_params.iter().enumerate() { for (i, (arg, arg_ty)) in real_params.iter().enumerate() {
let arg_slot = let arg_slot = format_rpc_arg(generator, ctx, (*arg, *arg_ty, i));
generator.gen_var_alloc(ctx, arg.get_type(), Some(&format!("rpc.arg{i}"))).unwrap();
ctx.builder.build_store(arg_slot, *arg).unwrap();
let arg_slot = ctx.builder.build_bitcast(arg_slot, ptr_type, "rpc.arg").unwrap();
let arg_ptr = unsafe { let arg_ptr = unsafe {
ctx.builder.build_gep( ctx.builder.build_gep(
args_ptr, args_ptr,
@ -700,6 +786,7 @@ pub fn attributes_writeback(
name: i.to_string().into(), name: i.to_string().into(),
ty: *ty, ty: *ty,
default_value: None, default_value: None,
is_vararg: false,
}) })
.collect(), .collect(),
ret: ctx.primitives.none, ret: ctx.primitives.none,
@ -723,3 +810,470 @@ pub fn rpc_codegen_callback() -> Arc<GenCall> {
rpc_codegen_callback_fn(ctx, obj, fun, args, generator) rpc_codegen_callback_fn(ctx, obj, fun, args, generator)
}))) })))
} }
/// Returns the `fprintf` format constant for the given [`llvm_int_t`][`IntType`] on a platform with
/// [`llvm_usize`] as its native word size.
///
/// Note that, similar to format constants in `<inttypes.h>`, these constants need to be prepended
/// with `%`.
#[must_use]
fn get_fprintf_format_constant<'ctx>(
llvm_usize: IntType<'ctx>,
llvm_int_t: IntType<'ctx>,
is_unsigned: bool,
) -> String {
debug_assert!(matches!(llvm_usize.get_bit_width(), 8 | 16 | 32 | 64));
let conv_spec = if is_unsigned { 'u' } else { 'd' };
// https://en.cppreference.com/w/c/language/arithmetic_types
// Note that NAC3 does **not** support LP32 and LLP64 configurations
match llvm_int_t.get_bit_width() {
8 => format!("hh{conv_spec}"),
16 => format!("h{conv_spec}"),
32 => conv_spec.to_string(),
64 => format!("{}{conv_spec}", if llvm_usize.get_bit_width() == 64 { "l" } else { "ll" }),
_ => todo!(
"Not yet implemented for i{} on {}-bit platform",
llvm_int_t.get_bit_width(),
llvm_usize.get_bit_width()
),
}
}
/// Prints one or more `values` to `core_log` or `rtio_log`.
///
/// * `separator` - The separator between multiple values.
/// * `suffix` - String to terminate the printed string, if any.
/// * `as_repr` - Whether the `repr()` output of values instead of `str()`.
/// * `as_rtio` - Whether to print to `rtio_log` instead of `core_log`.
fn polymorphic_print<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
values: &[(Type, ValueEnum<'ctx>)],
separator: &str,
suffix: Option<&str>,
as_repr: bool,
as_rtio: bool,
) -> Result<(), String> {
let printf = |ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
fmt: String,
args: Vec<BasicValueEnum<'ctx>>| {
debug_assert!(!fmt.is_empty());
debug_assert_eq!(fmt.as_bytes().last().unwrap(), &0u8);
let fn_name = if as_rtio { "rtio_log" } else { "core_log" };
let print_fn = ctx.module.get_function(fn_name).unwrap_or_else(|| {
let llvm_pi8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
let fn_t = if as_rtio {
let llvm_void = ctx.ctx.void_type();
llvm_void.fn_type(&[llvm_pi8.into()], true)
} else {
let llvm_i32 = ctx.ctx.i32_type();
llvm_i32.fn_type(&[llvm_pi8.into()], true)
};
ctx.module.add_function(fn_name, fn_t, None)
});
let fmt = ctx.gen_string(generator, fmt);
let fmt = fmt.get_field(generator, ctx.ctx, |f| f.base);
ctx.builder
.build_call(
print_fn,
&once(fmt.value.into()).chain(args).map(BasicValueEnum::into).collect_vec(),
"",
)
.unwrap();
};
let llvm_i32 = ctx.ctx.i32_type();
let llvm_i64 = ctx.ctx.i64_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let suffix = suffix.unwrap_or_default();
let mut fmt = String::new();
let mut args = Vec::new();
let flush = |ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
fmt: &mut String,
args: &mut Vec<BasicValueEnum<'ctx>>| {
if !fmt.is_empty() {
fmt.push('\0');
printf(ctx, generator, mem::take(fmt), mem::take(args));
}
};
for (ty, value) in values {
let ty = *ty;
let value = value.clone().to_basic_value_enum(ctx, generator, ty).unwrap();
if !fmt.is_empty() {
fmt.push_str(separator);
}
match &*ctx.unifier.get_ty_immutable(ty) {
TypeEnum::TTuple { ty: tys, is_vararg_ctx: false } => {
let pvalue = {
let pvalue = generator.gen_var_alloc(ctx, value.get_type(), None).unwrap();
ctx.builder.build_store(pvalue, value).unwrap();
pvalue
};
fmt.push('(');
flush(ctx, generator, &mut fmt, &mut args);
let tuple_vals = tys
.iter()
.enumerate()
.map(|(i, ty)| {
(*ty, {
let pfield =
ctx.builder.build_struct_gep(pvalue, i as u32, "").unwrap();
ValueEnum::from(ctx.builder.build_load(pfield, "").unwrap())
})
})
.collect_vec();
polymorphic_print(ctx, generator, &tuple_vals, ", ", None, true, as_rtio)?;
if tuple_vals.len() == 1 {
fmt.push_str(",)");
} else {
fmt.push(')');
}
}
TypeEnum::TFunc { .. } => todo!(),
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::None.id() => {
fmt.push_str("None");
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Bool.id() => {
fmt.push_str("%.*s");
let true_str = ctx.gen_string(generator, "True");
let false_str = ctx.gen_string(generator, "False");
let true_data = true_str.get_field(generator, ctx.ctx, |f| f.base);
let true_len = true_str.get_field(generator, ctx.ctx, |f| f.len);
let false_data = false_str.get_field(generator, ctx.ctx, |f| f.base);
let false_len = false_str.get_field(generator, ctx.ctx, |f| f.len);
let bool_val = generator.bool_to_i1(ctx, value.into_int_value());
args.extend([
ctx.builder
.build_select(bool_val, true_len.value, false_len.value, "")
.unwrap(),
ctx.builder
.build_select(bool_val, true_data.value, false_data.value, "")
.unwrap(),
]);
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == PrimDef::Int32.id()
|| *obj_id == PrimDef::Int64.id()
|| *obj_id == PrimDef::UInt32.id()
|| *obj_id == PrimDef::UInt64.id() =>
{
let is_unsigned =
*obj_id == PrimDef::UInt32.id() || *obj_id == PrimDef::UInt64.id();
let llvm_int_t = value.get_type().into_int_type();
debug_assert!(matches!(llvm_usize.get_bit_width(), 32 | 64));
debug_assert!(matches!(llvm_int_t.get_bit_width(), 32 | 64));
let fmt_spec = format!(
"%{}",
get_fprintf_format_constant(llvm_usize, llvm_int_t, is_unsigned)
);
fmt.push_str(fmt_spec.as_str());
args.push(value);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Float.id() => {
fmt.push_str("%g");
args.push(value);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Str.id() => {
if as_repr {
fmt.push_str("\"%.*s\"");
} else {
fmt.push_str("%.*s");
}
let str = str_model().check_value(generator, ctx.ctx, value).unwrap();
let str_data = str.get_field(generator, ctx.ctx, |f| f.base);
let str_len = str.get_field(generator, ctx.ctx, |f| f.len);
args.extend(&[str_len.value.into(), str_data.value.into()]);
}
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::List.id() => {
let elem_ty = *params.iter().next().unwrap().1;
fmt.push('[');
flush(ctx, generator, &mut fmt, &mut args);
let val = ListValue::from_ptr_val(value.into_pointer_value(), llvm_usize, None);
let len = val.load_size(ctx, None);
let last =
ctx.builder.build_int_sub(len, llvm_usize.const_int(1, false), "").unwrap();
gen_for_callback_incrementing(
generator,
ctx,
None,
llvm_usize.const_zero(),
(len, false),
|generator, ctx, _, i| {
let elem = unsafe { val.data().get_unchecked(ctx, generator, &i, None) };
polymorphic_print(
ctx,
generator,
&[(elem_ty, elem.into())],
"",
None,
true,
as_rtio,
)?;
gen_if_callback(
generator,
ctx,
|_, ctx| {
Ok(ctx
.builder
.build_int_compare(IntPredicate::ULT, i, last, "")
.unwrap())
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
Ok(())
},
llvm_usize.const_int(1, false),
)?;
fmt.push(']');
flush(ctx, generator, &mut fmt, &mut args);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
fmt.push_str("array([");
flush(ctx, generator, &mut fmt, &mut args);
let ndarray = AnyObject { ty, value };
let ndarray = NDArrayObject::from_object(generator, ctx, ndarray);
let num_0 = Int(SizeT).const_0(generator, ctx.ctx);
// Print `ndarray` as a flat list delimited by interspersed with ", \0"
ndarray.foreach(generator, ctx, |generator, ctx, _, hdl| {
let i = hdl.get_index(generator, ctx);
let scalar = hdl.get_scalar(generator, ctx);
// if (i != 0) { puts(", "); }
gen_if_callback(
generator,
ctx,
|_, ctx| {
let not_first = i.compare(ctx, IntPredicate::NE, num_0);
Ok(not_first.value)
},
|generator, ctx| {
printf(ctx, generator, ", \0".into(), Vec::default());
Ok(())
},
|_, _| Ok(()),
)?;
// Print element
polymorphic_print(
ctx,
generator,
&[(scalar.ty, scalar.value.into())],
"",
None,
true,
as_rtio,
)?;
Ok(())
})?;
fmt.push_str(")]");
flush(ctx, generator, &mut fmt, &mut args);
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Range.id() => {
fmt.push_str("range(");
flush(ctx, generator, &mut fmt, &mut args);
let range = AnyObject { ty, value };
let range = RangeObject::from_object(generator, ctx, range);
let (start, stop, step) = range.instance.destructure(generator, ctx);
let start = start.value;
let stop = stop.value;
let step = step.value;
polymorphic_print(
ctx,
generator,
&[
(ctx.primitives.int32, start.into()),
(ctx.primitives.int32, stop.into()),
(ctx.primitives.int32, step.into()),
],
", ",
None,
false,
as_rtio,
)?;
fmt.push(')');
}
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::Exception.id() => {
let fmt_str = format!(
"%{}(%{}, %{1:}, %{1:})",
get_fprintf_format_constant(llvm_usize, llvm_i32, false),
get_fprintf_format_constant(llvm_usize, llvm_i64, false),
);
let exn = value.into_pointer_value();
let name = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_zero()],
None,
)
.into_int_value();
let param0 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(6, false)],
None,
)
.into_int_value();
let param1 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(7, false)],
None,
)
.into_int_value();
let param2 = ctx
.build_in_bounds_gep_and_load(
exn,
&[llvm_i32.const_zero(), llvm_i32.const_int(8, false)],
None,
)
.into_int_value();
fmt.push_str(fmt_str.as_str());
args.extend_from_slice(&[name.into(), param0.into(), param1.into(), param2.into()]);
}
_ => unreachable!(
"Unsupported object type for polymorphic_print: {}",
ctx.unifier.stringify(ty)
),
}
}
fmt.push_str(suffix);
flush(ctx, generator, &mut fmt, &mut args);
Ok(())
}
/// Invokes the `core_log` intrinsic function.
pub fn call_core_log_impl<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
arg: (Type, BasicValueEnum<'ctx>),
) -> Result<(), String> {
let (arg_ty, arg_val) = arg;
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\n"), false, false)?;
Ok(())
}
/// Invokes the `rtio_log` intrinsic function.
pub fn call_rtio_log_impl<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
generator: &mut dyn CodeGenerator,
channel: StructValue<'ctx>,
arg: (Type, BasicValueEnum<'ctx>),
) -> Result<(), String> {
let (arg_ty, arg_val) = arg;
polymorphic_print(
ctx,
generator,
&[(ctx.primitives.str, channel.into())],
" ",
Some("\x1E"),
false,
true,
)?;
polymorphic_print(ctx, generator, &[(arg_ty, arg_val.into())], " ", Some("\x1D"), false, true)?;
Ok(())
}
/// Generates a call to `core_log`.
pub fn gen_core_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
let value_ty = fun.0.args[0].ty;
let value_arg = args[0].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
call_core_log_impl(ctx, generator, (value_ty, value_arg))
}
/// Generates a call to `rtio_log`.
pub fn gen_rtio_log<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<(), String> {
assert!(obj.is_none());
assert_eq!(args.len(), 2);
let channel_ty = fun.0.args[0].ty;
assert!(ctx.unifier.unioned(channel_ty, ctx.primitives.str));
let channel_arg =
args[0].1.clone().to_basic_value_enum(ctx, generator, channel_ty)?.into_struct_value();
let value_ty = fun.0.args[1].ty;
let value_arg = args[1].1.clone().to_basic_value_enum(ctx, generator, value_ty)?;
call_rtio_log_impl(ctx, generator, channel_arg, (value_ty, value_arg))
}

View File

@ -24,6 +24,7 @@ use std::rc::Rc;
use std::sync::Arc; use std::sync::Arc;
use inkwell::{ use inkwell::{
context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::{Linkage, Module}, module::{Linkage, Module},
passes::PassBuilderOptions, passes::PassBuilderOptions,
@ -32,9 +33,10 @@ use inkwell::{
OptimizationLevel, OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use nac3core::codegen::irrt::setup_irrt_exceptions;
use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions}; use nac3core::codegen::{gen_func_impl, CodeGenLLVMOptions, CodeGenTargetMachineOptions};
use nac3core::toplevel::builtins::get_exn_constructor; use nac3core::toplevel::builtins::get_exn_constructor;
use nac3core::typecheck::typedef::{TypeEnum, Unifier, VarMap}; use nac3core::typecheck::typedef::{into_var_map, TypeEnum, Unifier, VarMap};
use nac3parser::{ use nac3parser::{
ast::{ExprKind, Stmt, StmtKind, StrRef}, ast::{ExprKind, Stmt, StmtKind, StrRef},
parser::parse_program, parser::parse_program,
@ -50,7 +52,7 @@ use nac3core::{
codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry}, codegen::{concrete_type::ConcreteTypeStore, CodeGenTask, WithCall, WorkerRegistry},
symbol_resolver::SymbolResolver, symbol_resolver::SymbolResolver,
toplevel::{ toplevel::{
composer::{ComposerConfig, TopLevelComposer}, composer::{BuiltinFuncCreator, BuiltinFuncSpec, ComposerConfig, TopLevelComposer},
DefinitionId, GenCall, TopLevelDef, DefinitionId, GenCall, TopLevelDef,
}, },
typecheck::typedef::{FunSignature, FuncArg}, typecheck::typedef::{FunSignature, FuncArg},
@ -59,13 +61,13 @@ use nac3core::{
use nac3ld::Linker; use nac3ld::Linker;
use tempfile::{self, TempDir};
use crate::codegen::attributes_writeback;
use crate::{ use crate::{
codegen::{rpc_codegen_callback, ArtiqCodeGenerator}, codegen::{
attributes_writeback, gen_core_log, gen_rtio_log, rpc_codegen_callback, ArtiqCodeGenerator,
},
symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver}, symbol_resolver::{DeferredEvaluationStore, InnerResolver, PythonHelper, Resolver},
}; };
use tempfile::{self, TempDir};
mod codegen; mod codegen;
mod symbol_resolver; mod symbol_resolver;
@ -126,7 +128,7 @@ struct Nac3 {
isa: Isa, isa: Isa,
time_fns: &'static (dyn TimeFns + Sync), time_fns: &'static (dyn TimeFns + Sync),
primitive: PrimitiveStore, primitive: PrimitiveStore,
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>, builtins: Vec<BuiltinFuncSpec>,
pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>, pyid_to_def: Arc<RwLock<HashMap<u64, DefinitionId>>>,
primitive_ids: PrimitivePythonId, primitive_ids: PrimitivePythonId,
working_directory: TempDir, working_directory: TempDir,
@ -264,7 +266,7 @@ impl Nac3 {
arg_names.len(), arg_names.len(),
)); ));
} }
for (i, FuncArg { ty, default_value, name }) in args.iter().enumerate() { for (i, FuncArg { ty, default_value, name, .. }) in args.iter().enumerate() {
let in_name = match arg_names.get(i) { let in_name = match arg_names.get(i) {
Some(n) => n, Some(n) => n,
None if default_value.is_none() => { None if default_value.is_none() => {
@ -300,6 +302,64 @@ impl Nac3 {
None None
} }
/// Returns a [`Vec`] of builtins that needs to be initialized during method compilation time.
fn get_lateinit_builtins() -> Vec<Box<BuiltinFuncCreator>> {
vec![
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"core_log".into(),
FunSignature {
args: vec![FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
}],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_core_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
Box::new(|primitives, unifier| {
let arg_ty = unifier.get_fresh_var(Some("T".into()), None);
(
"rtio_log".into(),
FunSignature {
args: vec![
FuncArg {
name: "channel".into(),
ty: primitives.str,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "arg".into(),
ty: arg_ty.ty,
default_value: None,
is_vararg: false,
},
],
ret: primitives.none,
vars: into_var_map([arg_ty]),
},
Arc::new(GenCall::new(Box::new(move |ctx, obj, fun, args, generator| {
gen_rtio_log(ctx, &obj, fun, &args, generator)?;
Ok(None)
}))),
)
}),
]
}
fn compile_method<T>( fn compile_method<T>(
&self, &self,
obj: &PyAny, obj: &PyAny,
@ -312,6 +372,7 @@ impl Nac3 {
let size_t = self.isa.get_size_type(); let size_t = self.isa.get_size_type();
let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new( let (mut composer, mut builtins_def, mut builtins_ty) = TopLevelComposer::new(
self.builtins.clone(), self.builtins.clone(),
Self::get_lateinit_builtins(),
ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" }, ComposerConfig { kernel_ann: Some("Kernel"), kernel_invariant_ann: "KernelInvariant" },
size_t, size_t,
); );
@ -497,6 +558,11 @@ impl Nac3 {
.register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false) .register_top_level(synthesized.pop().unwrap(), Some(resolver.clone()), "", false)
.unwrap(); .unwrap();
// Process IRRT
let context = inkwell::context::Context::create();
let irrt = load_irrt(&context);
setup_irrt_exceptions(&context, &irrt, resolver.as_ref());
let fun_signature = let fun_signature =
FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() }; FunSignature { args: vec![], ret: self.primitive.none, vars: VarMap::new() };
let mut store = ConcreteTypeStore::new(); let mut store = ConcreteTypeStore::new();
@ -625,7 +691,9 @@ impl Nac3 {
let buffer = buffer.as_slice().into(); let buffer = buffer.as_slice().into();
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}))); })));
let size_t = if self.isa == Isa::Host { 64 } else { 32 }; let size_t = Context::create()
.ptr_sized_int_type(&self.get_llvm_target_machine().get_target_data(), None)
.get_bit_width();
let num_threads = if is_multithreaded() { 4 } else { 1 }; let num_threads = if is_multithreaded() { 4 } else { 1 };
let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect(); let thread_names: Vec<String> = (0..num_threads).map(|_| "main".to_string()).collect();
let threads: Vec<_> = thread_names let threads: Vec<_> = thread_names
@ -644,6 +712,9 @@ impl Nac3 {
ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns); ArtiqCodeGenerator::new("attributes_writeback".to_string(), size_t, self.time_fns);
let context = inkwell::context::Context::create(); let context = inkwell::context::Context::create();
let module = context.create_module("attributes_writeback"); let module = context.create_module("attributes_writeback");
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
let builder = context.create_builder(); let builder = context.create_builder();
let (_, module, _) = gen_func_impl( let (_, module, _) = gen_func_impl(
&context, &context,
@ -662,7 +733,7 @@ impl Nac3 {
membuffer.lock().push(buffer); membuffer.lock().push(buffer);
}); });
let context = inkwell::context::Context::create(); // Link all modules into `main`.
let buffers = membuffers.lock(); let buffers = membuffers.lock();
let main = context let main = context
.create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main")) .create_module_from_ir(MemoryBuffer::create_from_memory_range(&buffers[0], "main"))
@ -691,8 +762,7 @@ impl Nac3 {
) )
.unwrap(); .unwrap();
main.link_in_module(load_irrt(&context)) main.link_in_module(irrt).map_err(|err| CompileError::new_err(err.to_string()))?;
.map_err(|err| CompileError::new_err(err.to_string()))?;
let mut function_iter = main.get_first_function(); let mut function_iter = main.get_first_function();
while let Some(func) = function_iter { while let Some(func) = function_iter {
@ -847,7 +917,7 @@ impl Nac3 {
Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS, Isa::RiscV32IMA => &timeline::NOW_PINNING_TIME_FNS,
Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS, Isa::CortexA9 | Isa::Host => &timeline::EXTERN_TIME_FNS,
}; };
let primitive: PrimitiveStore = TopLevelComposer::make_primitives(isa.get_size_type()).0; let (primitive, _) = TopLevelComposer::make_primitives(isa.get_size_type());
let builtins = vec![ let builtins = vec![
( (
"now_mu".into(), "now_mu".into(),
@ -863,6 +933,7 @@ impl Nac3 {
name: "t".into(), name: "t".into(),
ty: primitive.int64, ty: primitive.int64,
default_value: None, default_value: None,
is_vararg: false,
}], }],
ret: primitive.none, ret: primitive.none,
vars: VarMap::new(), vars: VarMap::new(),
@ -882,6 +953,7 @@ impl Nac3 {
name: "dt".into(), name: "dt".into(),
ty: primitive.int64, ty: primitive.int64,
default_value: None, default_value: None,
is_vararg: false,
}], }],
ret: primitive.none, ret: primitive.none,
vars: VarMap::new(), vars: VarMap::new(),

View File

@ -1,12 +1,15 @@
use crate::PrimitivePythonId;
use inkwell::{ use inkwell::{
types::{BasicType, BasicTypeEnum}, module::Linkage,
values::BasicValueEnum, types::BasicType,
values::{BasicValue, BasicValueEnum},
AddressSpace, AddressSpace,
}; };
use itertools::Itertools; use itertools::Itertools;
use nac3core::{ use nac3core::{
codegen::{ codegen::{
classes::{NDArrayType, ProxyType}, model::*,
object::ndarray::{make_contiguous_strides, NDArray},
CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}, },
symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum}, symbol_resolver::{StaticValue, SymbolResolver, SymbolValue, ValueEnum},
@ -24,7 +27,7 @@ use nac3parser::ast::{self, StrRef};
use parking_lot::{Mutex, RwLock}; use parking_lot::{Mutex, RwLock};
use pyo3::{ use pyo3::{
types::{PyDict, PyTuple}, types::{PyDict, PyTuple},
PyAny, PyObject, PyResult, Python, PyAny, PyErr, PyObject, PyResult, Python,
}; };
use std::{ use std::{
collections::{HashMap, HashSet}, collections::{HashMap, HashSet},
@ -34,8 +37,6 @@ use std::{
}, },
}; };
use crate::PrimitivePythonId;
pub enum PrimitiveValue { pub enum PrimitiveValue {
I32(i32), I32(i32),
I64(i64), I64(i64),
@ -133,6 +134,8 @@ impl StaticValue for PythonValue {
format!("{}_const", self.id).as_str(), format!("{}_const", self.id).as_str(),
); );
global.set_constant(true); global.set_constant(true);
// Set linkage of global to private to avoid name collisions
global.set_linkage(Linkage::Private);
global.set_initializer(&ctx.ctx.const_struct( global.set_initializer(&ctx.ctx.const_struct(
&[ctx.ctx.i32_type().const_int(u64::from(id), false).into()], &[ctx.ctx.i32_type().const_int(u64::from(id), false).into()],
false, false,
@ -163,7 +166,7 @@ impl StaticValue for PythonValue {
PrimitiveValue::Bool(val) => { PrimitiveValue::Bool(val) => {
ctx.ctx.i8_type().const_int(u64::from(*val), false).into() ctx.ctx.i8_type().const_int(u64::from(*val), false).into()
} }
PrimitiveValue::Str(val) => ctx.ctx.const_string(val.as_bytes(), true).into(), PrimitiveValue::Str(val) => ctx.gen_string(generator, val).value.into(),
}); });
} }
if let Some(global) = ctx.module.get_global(&self.id.to_string()) { if let Some(global) = ctx.module.get_global(&self.id.to_string()) {
@ -351,7 +354,7 @@ impl InnerResolver {
Ok(Ok((ndarray, false))) Ok(Ok((ndarray, false)))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
// do not handle type var param and concrete check here // do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false))) Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![], is_vararg_ctx: false }), false)))
} else if ty_id == self.primitive_ids.option { } else if ty_id == self.primitive_ids.option {
Ok(Ok((primitives.option, false))) Ok(Ok((primitives.option, false)))
} else if ty_id == self.primitive_ids.none { } else if ty_id == self.primitive_ids.none {
@ -555,7 +558,10 @@ impl InnerResolver {
Err(err) => return Ok(Err(err)), Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string())) _ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
}; };
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true))) Ok(Ok((
unifier.add_ty(TypeEnum::TTuple { ty: args, is_vararg_ctx: false }),
true,
)))
} }
TypeEnum::TObj { params, obj_id, .. } => { TypeEnum::TObj { params, obj_id, .. } => {
let subst = { let subst = {
@ -797,7 +803,9 @@ impl InnerResolver {
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives)) .map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect(); .collect();
let types = types?; let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types }))) Ok(types.map(|types| {
unifier.add_ty(TypeEnum::TTuple { ty: types, is_vararg_ctx: false })
}))
} }
// special handling for option type since its class member layout in python side // special handling for option type since its class member layout in python side
// is special and cannot be mapped directly to a nac3 type as below // is special and cannot be mapped directly to a nac3 type as below
@ -972,7 +980,7 @@ impl InnerResolver {
} else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ { } else if ty_id == self.primitive_ids.string || ty_id == self.primitive_ids.np_str_ {
let val: String = obj.extract().unwrap(); let val: String = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone())); self.id_to_primitive.write().insert(id, PrimitiveValue::Str(val.clone()));
Ok(Some(ctx.ctx.const_string(val.as_bytes(), true).into())) Ok(Some(ctx.gen_string(generator, val).value.into()))
} else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 { } else if ty_id == self.primitive_ids.float || ty_id == self.primitive_ids.float64 {
let val: f64 = obj.extract().unwrap(); let val: f64 = obj.extract().unwrap();
self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val)); self.id_to_primitive.write().insert(id, PrimitiveValue::F64(val));
@ -991,8 +999,15 @@ impl InnerResolver {
} }
_ => unreachable!("must be list"), _ => unreachable!("must be list"),
}; };
let ty = ctx.get_llvm_type(generator, elem_ty);
let size_t = generator.get_size_type(ctx.ctx); let size_t = generator.get_size_type(ctx.ctx);
let ty = if len == 0
&& matches!(&*ctx.unifier.get_ty_immutable(elem_ty), TypeEnum::TVar { .. })
{
// The default type for zero-length lists of unknown element type is size_t
size_t.into()
} else {
ctx.get_llvm_type(generator, elem_ty)
};
let arr_ty = ctx let arr_ty = ctx
.ctx .ctx
.struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false); .struct_type(&[ty.ptr_type(AddressSpace::default()).into(), size_t.into()], false);
@ -1072,15 +1087,12 @@ impl InnerResolver {
let (ndarray_dtype, ndarray_ndims) = let (ndarray_dtype, ndarray_ndims) =
unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty); unpack_ndarray_var_tys(&mut ctx.unifier, ndarray_ty);
let llvm_usize = generator.get_size_type(ctx.ctx); let dtype = Any(ctx.get_llvm_type(generator, ndarray_dtype));
let ndarray_dtype_llvm_ty = ctx.get_llvm_type(generator, ndarray_dtype);
let ndarray_llvm_ty = NDArrayType::new(generator, ctx.ctx, ndarray_dtype_llvm_ty);
{ {
if self.global_value_ids.read().contains_key(&id) { if self.global_value_ids.read().contains_key(&id) {
let global = ctx.module.get_global(&id_str).unwrap_or_else(|| { let global = ctx.module.get_global(&id_str).unwrap_or_else(|| {
ctx.module.add_global( ctx.module.add_global(
ndarray_llvm_ty.as_underlying_type(), Struct(NDArray).get_type(generator, ctx.ctx),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
) )
@ -1100,103 +1112,143 @@ impl InnerResolver {
} else { } else {
todo!("Unpacking literal of more than one element unimplemented") todo!("Unpacking literal of more than one element unimplemented")
}; };
let Ok(ndarray_ndims) = u64::try_from(ndarray_ndims) else { let Ok(ndims) = u64::try_from(ndarray_ndims) else {
unreachable!("Expected u64 value for ndarray_ndims") unreachable!("Expected u64 value for ndarray_ndims")
}; };
// Obtain the shape of the ndarray // Obtain the shape of the ndarray
let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?; let shape_tuple: &PyTuple = obj.getattr("shape")?.downcast()?;
assert_eq!(shape_tuple.len(), ndarray_ndims as usize); assert_eq!(shape_tuple.len(), ndims as usize);
let shape_values: Result<Option<Vec<_>>, _> = shape_tuple
// The Rust type inferencer cannot figure this out
let shape_values: Result<Vec<Instance<'ctx, Int<SizeT>>>, PyErr> = shape_tuple
.iter() .iter()
.enumerate() .enumerate()
.map(|(i, elem)| { .map(|(i, elem)| {
self.get_obj_value(py, elem, ctx, generator, ctx.primitives.usize()).map_err( let value = self
|e| super::CompileError::new_err(format!("Error getting element {i}: {e}")), .get_obj_value(py, elem, ctx, generator, ctx.primitives.usize())
) .map_err(|e| {
super::CompileError::new_err(format!("Error getting element {i}: {e}"))
})?
.unwrap();
let value = Int(SizeT).check_value(generator, ctx.ctx, value).unwrap();
Ok(value)
}) })
.collect(); .collect();
let shape_values = shape_values?.unwrap(); let shape_values = shape_values?;
let shape_values = llvm_usize.const_array(
&shape_values.into_iter().map(BasicValueEnum::into_int_value).collect_vec(), // Also use this opportunity to get the constant values of `shape_values` for calculating strides.
); let shape_u64s = shape_values
.iter()
.map(|dim| {
assert!(dim.value.is_const());
dim.value.get_zero_extended_constant().unwrap()
})
.collect_vec();
let shape_values = Int(SizeT).const_array(generator, ctx.ctx, &shape_values);
// create a global for ndarray.shape and initialize it using the shape // create a global for ndarray.shape and initialize it using the shape
let shape_global = ctx.module.add_global( let shape_global = ctx.module.add_global(
llvm_usize.array_type(ndarray_ndims as u32), Array { len: AnyLen(ndims as u32), item: Int(SizeT) }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".shape"), &(id_str.clone() + ".shape"),
); );
shape_global.set_initializer(&shape_values); shape_global.set_initializer(&shape_values.value);
// Obtain the (flattened) elements of the ndarray // Obtain the (flattened) elements of the ndarray
let sz: usize = obj.getattr("size")?.extract()?; let sz: usize = obj.getattr("size")?.extract()?;
let data: Result<Option<Vec<_>>, _> = (0..sz) let data_values: Vec<Instance<'ctx, Any>> = (0..sz)
.map(|i| { .map(|i| {
obj.getattr("flat")?.get_item(i).and_then(|elem| { obj.getattr("flat")?.get_item(i).and_then(|elem| {
self.get_obj_value(py, elem, ctx, generator, ndarray_dtype).map_err(|e| { let value = self
super::CompileError::new_err(format!("Error getting element {i}: {e}")) .get_obj_value(py, elem, ctx, generator, ndarray_dtype)
}) .map_err(|e| {
super::CompileError::new_err(format!(
"Error getting element {i}: {e}"
))
})?
.unwrap();
let value = dtype.check_value(generator, ctx.ctx, value).unwrap();
Ok(value)
}) })
}) })
.collect(); .try_collect()?;
let data = data?.unwrap().into_iter(); let data = dtype.const_array(generator, ctx.ctx, &data_values);
let data = match ndarray_dtype_llvm_ty {
BasicTypeEnum::ArrayType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_array_value).collect_vec())
}
BasicTypeEnum::FloatType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_float_value).collect_vec())
}
BasicTypeEnum::IntType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_int_value).collect_vec())
}
BasicTypeEnum::PointerType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_pointer_value).collect_vec())
}
BasicTypeEnum::StructType(ty) => {
ty.const_array(&data.map(BasicValueEnum::into_struct_value).collect_vec())
}
BasicTypeEnum::VectorType(_) => unreachable!(),
};
// create a global for ndarray.data and initialize it using the elements // create a global for ndarray.data and initialize it using the elements
//
// NOTE: NDArray's `data` is `u8*`. Here, `data_global` is an array of `dtype`.
// We will have to cast it to an `u8*` later.
let data_global = ctx.module.add_global( let data_global = ctx.module.add_global(
ndarray_dtype_llvm_ty.array_type(sz as u32), Array { len: AnyLen(sz as u32), item: dtype }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&(id_str.clone() + ".data"), &(id_str.clone() + ".data"),
); );
data_global.set_initializer(&data); data_global.set_initializer(&data.value);
// Get the constant itemsize.
let itemsize = dtype.get_type(generator, ctx.ctx).size_of().unwrap();
let itemsize = itemsize.get_zero_extended_constant().unwrap();
// Create the strides needed for ndarray.strides
let strides = make_contiguous_strides(itemsize, ndims, &shape_u64s);
let strides = strides
.into_iter()
.map(|stride| Int(SizeT).const_int(generator, ctx.ctx, stride))
.collect_vec();
let strides = Int(SizeT).const_array(generator, ctx.ctx, &strides);
// create a global for ndarray.strides and initialize it
let strides_global = ctx.module.add_global(
Array { len: AnyLen(ndims as u32), item: Int(Byte) }.get_type(generator, ctx.ctx),
Some(AddressSpace::default()),
&(id_str.clone() + ".strides"),
);
strides_global.set_initializer(&strides.value);
// create a global for the ndarray object and initialize it // create a global for the ndarray object and initialize it
let value = ndarray_llvm_ty.as_underlying_type().const_named_struct(&[ // We are also doing [`Model::check_value`] instead of [`Model::believe_value`] to catch bugs.
llvm_usize.const_int(ndarray_ndims, false).into(),
shape_global
.as_pointer_value()
.const_cast(llvm_usize.ptr_type(AddressSpace::default()))
.into(),
data_global
.as_pointer_value()
.const_cast(ndarray_dtype_llvm_ty.ptr_type(AddressSpace::default()))
.into(),
]);
let ndarray = ctx.module.add_global( // NOTE: data_global is an array of dtype, we want a `u8*`.
ndarray_llvm_ty.as_underlying_type(), let ndarray_data = Ptr(dtype).check_value(generator, ctx.ctx, data_global).unwrap();
let ndarray_data = Ptr(Int(Byte)).pointer_cast(generator, ctx, ndarray_data.value);
let ndarray_itemsize = Int(SizeT).const_int(generator, ctx.ctx, itemsize);
let ndarray_ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims);
let ndarray_shape =
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, shape_global).unwrap();
let ndarray_strides =
Ptr(Int(SizeT)).check_value(generator, ctx.ctx, strides_global).unwrap();
let ndarray = Struct(NDArray).const_struct(
generator,
ctx.ctx,
&[
ndarray_data.value.as_basic_value_enum(),
ndarray_itemsize.value.as_basic_value_enum(),
ndarray_ndims.value.as_basic_value_enum(),
ndarray_shape.value.as_basic_value_enum(),
ndarray_strides.value.as_basic_value_enum(),
],
);
let ndarray_global = ctx.module.add_global(
Struct(NDArray).get_type(generator, ctx.ctx),
Some(AddressSpace::default()), Some(AddressSpace::default()),
&id_str, &id_str,
); );
ndarray.set_initializer(&value); ndarray_global.set_initializer(&ndarray.value);
Ok(Some(ndarray.as_pointer_value().into())) Ok(Some(ndarray_global.as_pointer_value().into()))
} else if ty_id == self.primitive_ids.tuple { } else if ty_id == self.primitive_ids.tuple {
let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty); let expected_ty_enum = ctx.unifier.get_ty_immutable(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty_enum.as_ref() else { unreachable!() }; let TypeEnum::TTuple { ty, is_vararg_ctx: false } = expected_ty_enum.as_ref() else {
unreachable!()
};
let tup_tys = ty.iter(); let tup_tys = ty.iter();
let elements: &PyTuple = obj.downcast()?; let elements: &PyTuple = obj.downcast()?;

View File

@ -1,12 +1,12 @@
[features]
test = []
[package] [package]
name = "nac3core" name = "nac3core"
version = "0.1.0" version = "0.1.0"
authors = ["M-Labs"] authors = ["M-Labs"]
edition = "2021" edition = "2021"
[features]
no-escape-analysis = []
[dependencies] [dependencies]
itertools = "0.13" itertools = "0.13"
crossbeam = "0.8" crossbeam = "0.8"
@ -14,8 +14,8 @@ indexmap = "2.2"
parking_lot = "0.12" parking_lot = "0.12"
rayon = "1.8" rayon = "1.8"
nac3parser = { path = "../nac3parser" } nac3parser = { path = "../nac3parser" }
strum = "0.26.2" strum = "0.26"
strum_macros = "0.26.4" strum_macros = "0.26"
[dependencies.inkwell] [dependencies.inkwell]
version = "0.4" version = "0.4"

View File

@ -7,39 +7,51 @@ use std::{
process::{Command, Stdio}, process::{Command, Stdio},
}; };
fn compile_irrt(irrt_dir: &Path, out_dir: &Path) { fn main() {
// Define relevant directories
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("irrt");
let irrt_cpp_path = irrt_dir.join("irrt.cpp"); let irrt_cpp_path = irrt_dir.join("irrt.cpp");
/* /*
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode. * HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
* Compiling for WASM32 and filtering the output with regex is the closest we can get. * Compiling for WASM32 and filtering the output with regex is the closest we can get.
*/ */
let flags: &[&str] = &[ let mut flags: Vec<&str> = vec![
"--target=wasm32", "--target=wasm32",
irrt_cpp_path.to_str().unwrap(),
"-x", "-x",
"c++", "c++",
"-fno-discard-value-names", "-fno-discard-value-names",
"-fno-exceptions", "-fno-exceptions",
"-fno-rtti", "-fno-rtti",
match env::var("PROFILE").as_deref() {
Ok("debug") => "-O0",
Ok("release") => "-O3",
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
},
"-emit-llvm", "-emit-llvm",
"-S", "-S",
"-Wall", "-Wall",
"-Wextra", "-Wextra",
"-Werror=return-type",
"-I",
irrt_dir.to_str().unwrap(),
"-o", "-o",
"-", "-",
"-I",
irrt_dir.to_str().unwrap(),
irrt_cpp_path.to_str().unwrap(),
]; ];
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap()); match env::var("PROFILE").as_deref() {
Ok("debug") => {
flags.push("-O0");
flags.push("-DIRRT_DEBUG_ASSERT");
}
Ok("release") => {
flags.push("-O3");
}
flavor => panic!("Unknown or missing build flavor {flavor:?}"),
}
// Tell Cargo to rerun if any file under `irrt_dir` (recursive) changes
println!("cargo:rerun-if-changed={}", irrt_dir.to_str().unwrap());
// Compile IRRT and capture the LLVM IR output
let output = Command::new("clang-irrt") let output = Command::new("clang-irrt")
.args(flags) .args(flags)
.output() .output()
@ -53,11 +65,17 @@ fn compile_irrt(irrt_dir: &Path, out_dir: &Path) {
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n"); let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
let mut filtered_output = String::with_capacity(output.len()); let mut filtered_output = String::with_capacity(output.len());
// (?ms:^define.*?\}$) to capture `define` blocks // Filter out irrelevant IR
// (?m:^declare.*?$) to capture `declare` blocks //
// (?m:^%.+?=\s*type\s*\{.+?\}$) to capture `type` declarations // Regex:
let regex_filter = // - `(?ms:^define.*?\}$)` captures LLVM `define` blocks
Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)").unwrap(); // - `(?m:^declare.*?$)` captures LLVM `declare` lines
// - `(?m:^%.+?=\s*type\s*\{.+?\}$)` captures LLVM `type` declarations
// - `(?m:^@.+?=.+$)` captures global constants
let regex_filter = Regex::new(
r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)|(?m:^@.+?=.+$)",
)
.unwrap();
for f in regex_filter.captures_iter(&output) { for f in regex_filter.captures_iter(&output) {
assert_eq!(f.len(), 1); assert_eq!(f.len(), 1);
filtered_output.push_str(&f[0]); filtered_output.push_str(&f[0]);
@ -68,14 +86,20 @@ fn compile_irrt(irrt_dir: &Path, out_dir: &Path) {
.unwrap() .unwrap()
.replace_all(&filtered_output, ""); .replace_all(&filtered_output, "");
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT"); // For debugging
if env::var("DEBUG_DUMP_IRRT").is_ok() { // Doing `DEBUG_DUMP_IRRT=1 cargo build -p nac3core` dumps the LLVM IR generated
const DEBUG_DUMP_IRRT: &str = "DEBUG_DUMP_IRRT";
println!("cargo:rerun-if-env-changed={DEBUG_DUMP_IRRT}");
if env::var(DEBUG_DUMP_IRRT).is_ok() {
let mut file = File::create(out_dir.join("irrt.ll")).unwrap(); let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
file.write_all(output.as_bytes()).unwrap(); file.write_all(output.as_bytes()).unwrap();
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap(); let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
file.write_all(filtered_output.as_bytes()).unwrap(); file.write_all(filtered_output.as_bytes()).unwrap();
} }
// Assemble the emitted and filtered IR to .bc
// That .bc will be integrated into nac3core's codegen
let mut llvm_as = Command::new("llvm-as-irrt") let mut llvm_as = Command::new("llvm-as-irrt")
.stdin(Stdio::piped()) .stdin(Stdio::piped())
.arg("-o") .arg("-o")
@ -85,50 +109,3 @@ fn compile_irrt(irrt_dir: &Path, out_dir: &Path) {
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap(); llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
assert!(llvm_as.wait().unwrap().success()); assert!(llvm_as.wait().unwrap().success());
} }
fn compile_irrt_test(irrt_dir: &Path, out_dir: &Path) {
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
let exe_path = out_dir.join("irrt_test.out");
let flags: &[&str] = &[
irrt_test_cpp_path.to_str().unwrap(),
"-x",
"c++",
"-I",
irrt_dir.to_str().unwrap(),
"-g",
"-fno-discard-value-names",
"-O0",
"-Wall",
"-Wextra",
"-Werror=return-type",
"-lm", // for `tgamma()`, `lgamma()`
"-o",
exe_path.to_str().unwrap(),
];
Command::new("clang-irrt-test")
.args(flags)
.output()
.map(|o| {
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
o
})
.unwrap();
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap());
}
fn main() {
let out_dir = env::var("OUT_DIR").unwrap();
let out_dir = Path::new(&out_dir);
let irrt_dir = Path::new("./irrt");
compile_irrt(irrt_dir, out_dir);
// https://github.com/rust-lang/cargo/issues/2549
// `cargo test -F test` to also build `irrt_test.cpp
if cfg!(feature = "test") {
compile_irrt_test(irrt_dir, out_dir);
}
}

View File

@ -1,5 +1,16 @@
#include "irrt_everything.hpp" #include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
/* #include <irrt/list.hpp>
This file will be read by `clang-irrt` to conveniently produce LLVM IR for `nac3core/codegen`. #include <irrt/math_util.hpp>
*/ #include <irrt/ndarray/array.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/ndarray/indexing.hpp>
#include <irrt/ndarray/iter.hpp>
#include <irrt/ndarray/matmul.hpp>
#include <irrt/ndarray/reshape.hpp>
#include <irrt/ndarray/transpose.hpp>
#include <irrt/original.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>

View File

@ -1,437 +0,0 @@
#ifndef IRRT_DONT_TYPEDEF_INTS
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
#endif
// NDArray indices are always `uint32_t`.
typedef uint32_t NDIndex;
// The type of an index or a value describing the length of a range/slice is
// always `int32_t`.
typedef int32_t SliceIndex;
template <typename T>
static T max(T a, T b) {
return a > b ? a : b;
}
template <typename T>
static T min(T a, T b) {
return a > b ? b : a;
}
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
static T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
template <typename SizeT>
static SizeT __nac3_ndarray_calc_size_impl(
const SizeT *list_data,
SizeT list_len,
SizeT begin_idx,
SizeT end_idx
) {
__builtin_assume(end_idx <= list_len);
SizeT num_elems = 1;
for (SizeT i = begin_idx; i < end_idx; ++i) {
SizeT val = list_data[i];
__builtin_assume(val > 0);
num_elems *= val;
}
return num_elems;
}
template <typename SizeT>
static void __nac3_ndarray_calc_nd_indices_impl(
SizeT index,
const SizeT *dims,
SizeT num_dims,
NDIndex *idxs
) {
SizeT stride = 1;
for (SizeT dim = 0; dim < num_dims; dim++) {
SizeT i = num_dims - dim - 1;
__builtin_assume(dims[i] > 0);
idxs[i] = (index / stride) % dims[i];
stride *= dims[i];
}
}
template <typename SizeT>
static SizeT __nac3_ndarray_flatten_index_impl(
const SizeT *dims,
SizeT num_dims,
const NDIndex *indices,
SizeT num_indices
) {
SizeT idx = 0;
SizeT stride = 1;
for (SizeT i = 0; i < num_dims; ++i) {
SizeT ri = num_dims - i - 1;
if (ri < num_indices) {
idx += stride * indices[ri];
}
__builtin_assume(dims[i] > 0);
stride *= dims[ri];
}
return idx;
}
template <typename SizeT>
static void __nac3_ndarray_calc_broadcast_impl(
const SizeT *lhs_dims,
SizeT lhs_ndims,
const SizeT *rhs_dims,
SizeT rhs_ndims,
SizeT *out_dims
) {
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
for (SizeT i = 0; i < max_ndims; ++i) {
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
SizeT *out_dim = &out_dims[max_ndims - i - 1];
if (lhs_dim_sz == nullptr) {
*out_dim = *rhs_dim_sz;
} else if (rhs_dim_sz == nullptr) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == 1) {
*out_dim = *rhs_dim_sz;
} else if (*rhs_dim_sz == 1) {
*out_dim = *lhs_dim_sz;
} else if (*lhs_dim_sz == *rhs_dim_sz) {
*out_dim = *lhs_dim_sz;
} else {
__builtin_unreachable();
}
}
}
template <typename SizeT>
static void __nac3_ndarray_calc_broadcast_idx_impl(
const SizeT *src_dims,
SizeT src_ndims,
const NDIndex *in_idx,
NDIndex *out_idx
) {
for (SizeT i = 0; i < src_ndims; ++i) {
SizeT src_i = src_ndims - i - 1;
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
}
}
template<typename SizeT>
static void __nac3_ndarray_strides_from_shape_impl(
SizeT ndims,
SizeT *shape,
SizeT *dst_strides
) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndims; i++) {
int dim_i = ndims - i - 1;
dst_strides[dim_i] = stride_product;
stride_product *= shape[dim_i];
}
}
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) {\
return __nac3_int_exp_impl(base, exp);\
}
DEF_nac3_int_exp_(int32_t)
DEF_nac3_int_exp_(int64_t)
DEF_nac3_int_exp_(uint32_t)
DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(
const SliceIndex start,
const SliceIndex end,
const SliceIndex step
) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t *dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t *src_arr,
SliceIndex src_arr_len,
const SliceIndex size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)
);
if (need_alloca) {
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
uint32_t __nac3_ndarray_calc_size(
const uint32_t *list_data,
uint32_t list_len,
uint32_t begin_idx,
uint32_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
uint64_t __nac3_ndarray_calc_size64(
const uint64_t *list_data,
uint64_t list_len,
uint64_t begin_idx,
uint64_t end_idx
) {
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
}
void __nac3_ndarray_calc_nd_indices(
uint32_t index,
const uint32_t* dims,
uint32_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
void __nac3_ndarray_calc_nd_indices64(
uint64_t index,
const uint64_t* dims,
uint64_t num_dims,
NDIndex* idxs
) {
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
}
uint32_t __nac3_ndarray_flatten_index(
const uint32_t* dims,
uint32_t num_dims,
const NDIndex* indices,
uint32_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
uint64_t __nac3_ndarray_flatten_index64(
const uint64_t* dims,
uint64_t num_dims,
const NDIndex* indices,
uint64_t num_indices
) {
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
}
void __nac3_ndarray_calc_broadcast(
const uint32_t *lhs_dims,
uint32_t lhs_ndims,
const uint32_t *rhs_dims,
uint32_t rhs_ndims,
uint32_t *out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast64(
const uint64_t *lhs_dims,
uint64_t lhs_ndims,
const uint64_t *rhs_dims,
uint64_t rhs_ndims,
uint64_t *out_dims
) {
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
}
void __nac3_ndarray_calc_broadcast_idx(
const uint32_t *src_dims,
uint32_t src_ndims,
const NDIndex *in_idx,
NDIndex *out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_calc_broadcast_idx64(
const uint64_t *src_dims,
uint64_t src_ndims,
const NDIndex *in_idx,
NDIndex *out_idx
) {
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
}
void __nac3_ndarray_strides_from_shape(uint32_t ndims, uint32_t* shape, uint32_t* dst_strides) {
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
}
void __nac3_ndarray_strides_from_shape64(uint64_t ndims, uint64_t* shape, uint64_t* dst_strides) {
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
}
}

View File

@ -0,0 +1,9 @@
#pragma once
#include <irrt/int_types.hpp>
template <typename SizeT> struct CSlice
{
uint8_t *base;
SizeT len;
};

View File

@ -0,0 +1,20 @@
#pragma once
#include <irrt/int_types.hpp>
namespace cstr
{
/**
* @brief Implementation of `strlen()`.
*/
uint32_t length(const char *str)
{
uint32_t length = 0;
while (*str != '\0')
{
length++;
str++;
}
return length;
}
} // namespace cstr

View File

@ -0,0 +1,22 @@
#pragma once
#ifdef IRRT_DEBUG_ASSERT
#define IRRT_DEBUG_ASSERT_BOOL true
#else
#define IRRT_DEBUG_ASSERT_BOOL false
#endif
#define raise_debug_assert(SizeT, msg, param1, param2, param3) \
raise_exception(SizeT, EXN_ASSERTION_ERROR, "IRRT debug assert failed: " msg, param1, param2, param3);
#define debug_assert_eq(SizeT, lhs, rhs) \
if (IRRT_DEBUG_ASSERT_BOOL && (lhs) != (rhs)) \
{ \
raise_debug_assert(SizeT, "LHS = {0}. RHS = {1}", lhs, rhs, NO_PARAM); \
}
#define debug_assert(SizeT, expr) \
if (IRRT_DEBUG_ASSERT_BOOL && !(expr)) \
{ \
raise_debug_assert(SizeT, "Got false.", NO_PARAM, NO_PARAM, NO_PARAM); \
}

View File

@ -0,0 +1,80 @@
#pragma once
#include <irrt/cslice.hpp>
#include <irrt/cstr_util.hpp>
#include <irrt/int_types.hpp>
/**
* @brief The int type of ARTIQ exception IDs.
*/
typedef int32_t ExceptionId;
/*
* Set of exceptions C++ IRRT can use.
* Must be synchronized with `setup_irrt_exceptions` in `nac3core/src/codegen/irrt/mod.rs`.
*/
extern "C"
{
ExceptionId EXN_INDEX_ERROR;
ExceptionId EXN_VALUE_ERROR;
ExceptionId EXN_ASSERTION_ERROR;
ExceptionId EXN_TYPE_ERROR;
}
/**
* @brief Extern function to `__nac3_raise`
*
* The parameter `err` could be `Exception<int32_t>` or `Exception<int64_t>`. The caller
* must make sure to pass `Exception`s with the correct `SizeT` depending on the `size_t` of the runtime.
*/
extern "C" void __nac3_raise(void *err);
namespace
{
/**
* @brief NAC3's Exception struct
*/
template <typename SizeT> struct Exception
{
ExceptionId id;
CSlice<SizeT> filename;
int32_t line;
int32_t column;
CSlice<SizeT> function;
CSlice<SizeT> msg;
int64_t params[3];
};
const int64_t NO_PARAM = 0;
template <typename SizeT>
void _raise_exception_helper(ExceptionId id, const char *filename, int32_t line, const char *function, const char *msg,
int64_t param0, int64_t param1, int64_t param2)
{
Exception<SizeT> e = {
.id = id,
.filename = {.base = (uint8_t *)filename, .len = (int32_t)cstr::length(filename)},
.line = line,
.column = 0,
.function = {.base = (uint8_t *)function, .len = (int32_t)cstr::length(function)},
.msg = {.base = (uint8_t *)msg, .len = (int32_t)cstr::length(msg)},
};
e.params[0] = param0;
e.params[1] = param1;
e.params[2] = param2;
__nac3_raise((void *)&e);
__builtin_unreachable();
}
/**
* @brief Raise an exception with location details (location in the IRRT source files).
* @param SizeT The runtime `size_t` type.
* @param id The ID of the exception to raise.
* @param msg A global constant C-string of the error message.
*
* `param0` and `param2` are optional format arguments of `msg`. They should be set to
* `NO_PARAM` to indicate they are unused.
*/
#define raise_exception(SizeT, id, msg, param0, param1, param2) \
_raise_exception_helper<SizeT>(id, __FILE__, __LINE__, __FUNCTION__, msg, param0, param1, param2)
} // namespace

View File

@ -0,0 +1,8 @@
#pragma once
using int8_t = _BitInt(8);
using uint8_t = unsigned _BitInt(8);
using int32_t = _BitInt(32);
using uint32_t = unsigned _BitInt(32);
using int64_t = _BitInt(64);
using uint64_t = unsigned _BitInt(64);

View File

@ -0,0 +1,59 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/slice.hpp>
namespace
{
/**
* @brief A list in NAC3.
*
* The `items` field is opaque. You must rely on external contexts to
* know how to interpret it.
*/
template <typename SizeT> struct List
{
uint8_t *items;
SizeT len;
};
namespace list
{
template <typename SizeT> void range_assign(List<SizeT> *dst, SizeT itemsize, Range<SizeT> *range, List<SizeT> *src)
{
debug_assert(range->step != 0);
SizeT assign_len = range->len();
if (assign_len < src->len)
{
// Encountered things like
// ```
// xs = [1, 2, 3, 4, 5]
// xs[1:3] = [999, 1000, 1001, 1002] # Note that step has to be 1.
// xs = [1, 999, 1000, 1001, 1002, 4, 5] # xs is longer
// ```
//
// We do not support extending lists since that requires allocation.
raise_exception(SizeT, EXN_VALUE_ERROR,
"List assignment does not support list extension. Attempting to assign {0} item(s) into a "
"space of {1} item(s).",
src->len, assign_len, NO_PARAM);
}
if (range->step == 1)
{
// Assigning into a contiguous region. Optimized with memmove.
uint8_t* p1 = dst->items + range->start * itemsize;
uint8_t* p2 = dst->items + range->start * itemsize + assign_len * itemsize;
__builtin_memmove(cursor, src->items, assign_len * itemsize);
cursor += range_len * itemsize;
__builtin_memmove(cursor, );
}
}
} // namespace list
} // namespace

View File

@ -0,0 +1,14 @@
#pragma once
namespace
{
template <typename T> const T &max(const T &a, const T &b)
{
return a > b ? a : b;
}
template <typename T> const T &min(const T &a, const T &b)
{
return a > b ? b : a;
}
} // namespace

View File

@ -0,0 +1,130 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/list.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace array
{
template <typename SizeT>
void set_and_validate_list_shape_helper(SizeT axis, List<SizeT> *list, SizeT ndims, SizeT *shape)
{
if (shape[axis] == -1)
{
// Dimension is unspecified. Set it.
shape[axis] = list->len;
}
else
{
// Dimension is specified. Check.
if (shape[axis] != list->len)
{
// Mismatch, throw an error.
// NOTE: NumPy's error message is more complex and needs more PARAMS to display.
raise_exception(SizeT, EXN_VALUE_ERROR,
"The requested array has an inhomogenous shape "
"after {0} dimension(s).",
axis, shape[axis], list->len);
}
}
if (axis + 1 == ndims)
{
// `list` has type `list[ItemType]`
// Do nothing
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
set_and_validate_list_shape_helper<SizeT>(axis + 1, lists[i], ndims, shape);
}
}
}
// TODO: Document me
template <typename SizeT> void set_and_validate_list_shape(List<SizeT> *list, SizeT ndims, SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
shape[axis] = -1; // Sentinel to say this dimension is unspecified.
}
set_and_validate_list_shape_helper<SizeT>(0, list, ndims, shape);
}
template <typename SizeT>
void write_list_to_array_helper(SizeT axis, SizeT *index, List<SizeT> *list, NDArray<SizeT> *ndarray)
{
debug_assert_eq(SizeT, list->len, ndarray->shape[axis]);
if (IRRT_DEBUG_ASSERT_BOOL)
{
if (!ndarray::basic::is_c_contiguous(ndarray))
{
raise_debug_assert(SizeT, "ndarray is not C-contiguous", ndarray->strides[0], ndarray->strides[1],
NO_PARAM);
}
}
if (axis + 1 == ndarray->ndims)
{
// `list` has type `list[ItemType]`
// `ndarray` is contiguous, so we can do this, and this is fast.
uint8_t *dst = ndarray->data + (ndarray->itemsize * (*index));
__builtin_memcpy(dst, list->items, ndarray->itemsize * list->len);
*index += list->len;
}
else
{
// `list` has type `list[list[...]]`
List<SizeT> **lists = (List<SizeT> **)(list->items);
for (SizeT i = 0; i < list->len; i++)
{
write_list_to_array_helper<SizeT>(axis + 1, index, lists[i], ndarray);
}
}
}
// TODO: Document me
template <typename SizeT> void write_list_to_array(List<SizeT> *list, NDArray<SizeT> *ndarray)
{
SizeT index = 0;
write_list_to_array_helper<SizeT>((SizeT)0, &index, list, ndarray);
}
} // namespace array
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::array;
void __nac3_ndarray_array_set_and_validate_list_shape(List<int32_t> *list, int32_t ndims, int32_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_set_and_validate_list_shape64(List<int64_t> *list, int64_t ndims, int64_t *shape)
{
set_and_validate_list_shape(list, ndims, shape);
}
void __nac3_ndarray_array_write_list_to_array(List<int32_t> *list, NDArray<int32_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
void __nac3_ndarray_array_write_list_to_array64(List<int64_t> *list, NDArray<int64_t> *ndarray)
{
write_list_to_array(list, ndarray);
}
}

View File

@ -0,0 +1,380 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace basic
{
/**
* @brief Asserts that `shape` does not contain negative dimensions.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape to check on
*/
template <typename SizeT> void assert_shape_no_negative(SizeT ndims, const SizeT *shape)
{
for (SizeT axis = 0; axis < ndims; axis++)
{
if (shape[axis] < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"negative dimensions are not allowed; axis {0} "
"has dimension {1}",
axis, shape[axis], NO_PARAM);
}
}
}
/**
* @brief Check two shapes are the same in the context of writing outputting to an ndarray.
*
* This function throws error messages for output shape mismatches.
*/
template <typename SizeT>
void assert_output_shape_same(SizeT ndarray_ndims, const SizeT *ndarray_shape, SizeT output_ndims,
const SizeT *output_shape)
{
if (ndarray_ndims != output_ndims)
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot write output of ndims {0} to an ndarray with ndims {1}",
output_ndims, ndarray_ndims, NO_PARAM);
}
for (SizeT axis = 0; axis < ndarray_ndims; axis++)
{
if (ndarray_shape[axis] != output_shape[axis])
{
// There is no corresponding NumPy error message like this.
raise_exception(SizeT, EXN_VALUE_ERROR,
"Mismatched dimensions on axis {0}, output has "
"dimension {1}, but destination ndarray has dimension {2}.",
axis, output_shape[axis], ndarray_shape[axis]);
}
}
}
/**
* @brief Returns the number of elements of an ndarray given its shape.
*
* @param ndims Number of dimensions in `shape`
* @param shape The shape of the ndarray
*/
template <typename SizeT> SizeT calc_size_from_shape(SizeT ndims, const SizeT *shape)
{
SizeT size = 1;
for (SizeT axis = 0; axis < ndims; axis++)
size *= shape[axis];
return size;
}
/**
* @brief Compute the array indices of the `nth` (0-based) element of an ndarray given only its shape.
*
* @param ndims Number of elements in `shape` and `indices`
* @param shape The shape of the ndarray
* @param indices The returned indices indexing the ndarray with shape `shape`.
* @param nth The index of the element of interest.
*/
template <typename SizeT> void set_indices_by_nth(SizeT ndims, const SizeT *shape, SizeT *indices, SizeT nth)
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
SizeT dim = shape[axis];
indices[axis] = nth % dim;
nth /= dim;
}
}
/**
* @brief Return the number of elements of an `ndarray`
*
* This function corresponds to `<an_ndarray>.size`
*/
template <typename SizeT> SizeT size(const NDArray<SizeT> *ndarray)
{
return calc_size_from_shape(ndarray->ndims, ndarray->shape);
}
/**
* @brief Return of the number of its content of an `ndarray`.
*
* This function corresponds to `<an_ndarray>.nbytes`.
*/
template <typename SizeT> SizeT nbytes(const NDArray<SizeT> *ndarray)
{
return size(ndarray) * ndarray->itemsize;
}
/**
* @brief Get the `len()` of an ndarray, and asserts that `ndarray` is a sized object.
*
* This function corresponds to `<an_ndarray>.__len__`.
*
* @param dst_length The returned result
*/
template <typename SizeT> SizeT len(const NDArray<SizeT> *ndarray)
{
// numpy prohibits `__len__` on unsized objects
if (ndarray->ndims == 0)
{
raise_exception(SizeT, EXN_TYPE_ERROR, "len() of unsized object", NO_PARAM, NO_PARAM, NO_PARAM);
}
else
{
return ndarray->shape[0];
}
}
/**
* @brief Return a boolean indicating if `ndarray` is (C-)contiguous.
*
* You may want to see: ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
*/
template <typename SizeT> bool is_c_contiguous(const NDArray<SizeT> *ndarray)
{
// Other references:
// - tinynumpy's implementation: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L102
// - ndarray's flags["C_CONTIGUOUS"]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
// - ndarray's rules for C-contiguity: https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45
// From https://github.com/numpy/numpy/blob/df256d0d2f3bc6833699529824781c58f9c6e697/numpy/core/src/multiarray/flagsobject.c#L95C1-L99C45:
//
// The traditional rule is that for an array to be flagged as C contiguous,
// the following must hold:
//
// strides[-1] == itemsize
// strides[i] == shape[i+1] * strides[i + 1]
// [...]
// According to these rules, a 0- or 1-dimensional array is either both
// C- and F-contiguous, or neither; and an array with 2+ dimensions
// can be C- or F- contiguous, or neither, but not both. Though there
// there are exceptions for arrays with zero or one item, in the first
// case the check is relaxed up to and including the first dimension
// with shape[i] == 0. In the second case `strides == itemsize` will
// can be true for all dimensions and both flags are set.
if (ndarray->ndims == 0)
{
return true;
}
if (ndarray->strides[ndarray->ndims - 1] != ndarray->itemsize)
{
return false;
}
for (SizeT i = 1; i < ndarray->ndims; i++)
{
SizeT axis_i = ndarray->ndims - i - 1;
if (ndarray->strides[axis_i] != ndarray->shape[axis_i + 1] * ndarray->strides[axis_i + 1])
{
return false;
}
}
return true;
}
/**
* @brief Return the pointer to the element indexed by `indices`.
*/
template <typename SizeT> uint8_t *get_pelement_by_indices(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
uint8_t *element = ndarray->data;
for (SizeT dim_i = 0; dim_i < ndarray->ndims; dim_i++)
element += indices[dim_i] * ndarray->strides[dim_i];
return element;
}
/**
* @brief Convenience function. Like `get_pelement_by_indices` but
* reinterprets the element pointer.
*/
template <typename SizeT, typename T> T *get_ptr(const NDArray<SizeT> *ndarray, const SizeT *indices)
{
return (T *)get_pelement_by_indices(ndarray, indices);
}
/**
* @brief Return the pointer to the nth (0-based) element in a flattened view of `ndarray`.
*
* This function does no bound check.
*/
template <typename SizeT> uint8_t *get_nth_pelement(const NDArray<SizeT> *ndarray, SizeT nth)
{
uint8_t *element = ndarray->data;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
SizeT dim = ndarray->shape[axis];
element += ndarray->strides[axis] * (nth % dim);
nth /= dim;
}
return element;
}
/**
* @brief Update the strides of an ndarray given an ndarray `shape`
* and assuming that the ndarray is fully c-contagious.
*
* You might want to read https://ajcr.net/stride-guide-part-1/.
*/
template <typename SizeT> void set_strides_by_shape(NDArray<SizeT> *ndarray)
{
SizeT stride_product = 1;
for (SizeT i = 0; i < ndarray->ndims; i++)
{
SizeT axis = ndarray->ndims - i - 1;
ndarray->strides[axis] = stride_product * ndarray->itemsize;
stride_product *= ndarray->shape[axis];
}
}
/**
* @brief Set an element in `ndarray`.
*
* @param pelement Pointer to the element in `ndarray` to be set.
* @param pvalue Pointer to the value `pelement` will be set to.
*/
template <typename SizeT> void set_pelement_value(NDArray<SizeT> *ndarray, uint8_t *pelement, const uint8_t *pvalue)
{
__builtin_memcpy(pelement, pvalue, ndarray->itemsize);
}
/**
* @brief Copy data from one ndarray to another of the exact same size and itemsize.
*
* Both ndarrays will be viewed in their flatten views when copying the elements.
*/
template <typename SizeT> void copy_data(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// TODO: Make this faster with memcpy
debug_assert_eq(SizeT, src_ndarray->itemsize, dst_ndarray->itemsize);
for (SizeT i = 0; i < size(src_ndarray); i++)
{
auto src_element = ndarray::basic::get_nth_pelement(src_ndarray, i);
auto dst_element = ndarray::basic::get_nth_pelement(dst_ndarray, i);
ndarray::basic::set_pelement_value(dst_ndarray, dst_element, src_element);
}
}
} // namespace basic
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::basic;
void __nac3_ndarray_util_assert_shape_no_negative(int32_t ndims, int32_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_shape_no_negative64(int64_t ndims, int64_t *shape)
{
assert_shape_no_negative(ndims, shape);
}
void __nac3_ndarray_util_assert_output_shape_same(int32_t ndarray_ndims, const int32_t *ndarray_shape,
int32_t output_ndims, const int32_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
void __nac3_ndarray_util_assert_output_shape_same64(int64_t ndarray_ndims, const int64_t *ndarray_shape,
int64_t output_ndims, const int64_t *output_shape)
{
assert_output_shape_same(ndarray_ndims, ndarray_shape, output_ndims, output_shape);
}
uint32_t __nac3_ndarray_size(NDArray<int32_t> *ndarray)
{
return size(ndarray);
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t> *ndarray)
{
return size(ndarray);
}
uint32_t __nac3_ndarray_nbytes(NDArray<int32_t> *ndarray)
{
return nbytes(ndarray);
}
uint64_t __nac3_ndarray_nbytes64(NDArray<int64_t> *ndarray)
{
return nbytes(ndarray);
}
int32_t __nac3_ndarray_len(NDArray<int32_t> *ndarray)
{
return len(ndarray);
}
int64_t __nac3_ndarray_len64(NDArray<int64_t> *ndarray)
{
return len(ndarray);
}
bool __nac3_ndarray_is_c_contiguous(NDArray<int32_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
bool __nac3_ndarray_is_c_contiguous64(NDArray<int64_t> *ndarray)
{
return is_c_contiguous(ndarray);
}
uint8_t *__nac3_ndarray_get_nth_pelement(const NDArray<int32_t> *ndarray, int32_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_nth_pelement64(const NDArray<int64_t> *ndarray, int64_t nth)
{
return get_nth_pelement(ndarray, nth);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices(const NDArray<int32_t> *ndarray, int32_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
uint8_t *__nac3_ndarray_get_pelement_by_indices64(const NDArray<int64_t> *ndarray, int64_t *indices)
{
return get_pelement_by_indices(ndarray, indices);
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t> *ndarray)
{
set_strides_by_shape(ndarray);
}
void __nac3_ndarray_copy_data(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_copy_data64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
copy_data(src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,188 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
namespace
{
template <typename SizeT> struct ShapeEntry
{
SizeT ndims;
SizeT *shape;
};
} // namespace
namespace
{
namespace ndarray
{
namespace broadcast
{
/**
* @brief Return true if `src_shape` can broadcast to `dst_shape`.
*
* See https://numpy.org/doc/stable/user/basics.broadcasting.html
*/
template <typename SizeT>
bool can_broadcast_shape_to(SizeT target_ndims, const SizeT *target_shape, SizeT src_ndims, const SizeT *src_shape)
{
if (src_ndims > target_ndims)
{
return false;
}
for (SizeT i = 0; i < src_ndims; i++)
{
SizeT target_dim = target_shape[target_ndims - i - 1];
SizeT src_dim = src_shape[src_ndims - i - 1];
if (!(src_dim == 1 || target_dim == src_dim))
{
return false;
}
}
return true;
}
/**
* @brief Performs `np.broadcast_shapes(<shapes>)`
*
* @param num_shapes Number of entries in `shapes`
* @param shapes The list of shape to do `np.broadcast_shapes` on.
* @param dst_ndims The length of `dst_shape`.
* `dst_ndims` must be `max([shape.ndims for shape in shapes])`, but the caller has to calculate it/provide it.
* for this function since they should already know in order to allocate `dst_shape` in the first place.
* @param dst_shape The resulting shape. Must be pre-allocated by the caller. This function calculate the result
* of `np.broadcast_shapes` and write it here.
*/
template <typename SizeT>
void broadcast_shapes(SizeT num_shapes, const ShapeEntry<SizeT> *shapes, SizeT dst_ndims, SizeT *dst_shape)
{
for (SizeT dst_axis = 0; dst_axis < dst_ndims; dst_axis++)
{
dst_shape[dst_axis] = 1;
}
#ifdef IRRT_DEBUG_ASSERT
SizeT max_ndims_found = 0;
#endif
for (SizeT i = 0; i < num_shapes; i++)
{
ShapeEntry<SizeT> entry = shapes[i];
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert(SizeT, entry.ndims <= dst_ndims);
#ifdef IRRT_DEBUG_ASSERT
max_ndims_found = max(max_ndims_found, entry.ndims);
#endif
for (SizeT j = 0; j < entry.ndims; j++)
{
SizeT entry_axis = entry.ndims - j - 1;
SizeT dst_axis = dst_ndims - j - 1;
SizeT entry_dim = entry.shape[entry_axis];
SizeT dst_dim = dst_shape[dst_axis];
if (dst_dim == 1)
{
dst_shape[dst_axis] = entry_dim;
}
else if (entry_dim == 1 || entry_dim == dst_dim)
{
// Do nothing
}
else
{
raise_exception(SizeT, EXN_VALUE_ERROR,
"shape mismatch: objects cannot be broadcast "
"to a single shape.",
NO_PARAM, NO_PARAM, NO_PARAM);
}
}
}
// Check pre-condition: `dst_ndims` must be `max([shape.ndims for shape in shapes])`
debug_assert_eq(SizeT, max_ndims_found, dst_ndims);
}
/**
* @brief Perform `np.broadcast_to(<ndarray>, <target_shape>)` and appropriate assertions.
*
* This function attempts to broadcast `src_ndarray` to a new shape defined by `dst_ndarray.shape`,
* and return the result by modifying `dst_ndarray`.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, determining the length of `dst_ndarray->shape`
* - `dst_ndarray->shape` must be allocated, and must contain the desired target broadcast shape.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is unchanged.
* - `dst_ndarray->strides` is updated accordingly by how ndarray broadcast_to works.
*/
template <typename SizeT> void broadcast_to(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
if (!ndarray::broadcast::can_broadcast_shape_to(dst_ndarray->ndims, dst_ndarray->shape, src_ndarray->ndims,
src_ndarray->shape))
{
raise_exception(SizeT, EXN_VALUE_ERROR, "operands could not be broadcast together", NO_PARAM, NO_PARAM,
NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
for (SizeT i = 0; i < dst_ndarray->ndims; i++)
{
SizeT src_axis = src_ndarray->ndims - i - 1;
SizeT dst_axis = dst_ndarray->ndims - i - 1;
if (src_axis < 0 || (src_ndarray->shape[src_axis] == 1 && dst_ndarray->shape[dst_axis] != 1))
{
// Freeze the steps in-place
dst_ndarray->strides[dst_axis] = 0;
}
else
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
}
}
} // namespace broadcast
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::broadcast;
void __nac3_ndarray_broadcast_to(NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_to64(NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray)
{
broadcast_to(src_ndarray, dst_ndarray);
}
void __nac3_ndarray_broadcast_shapes(int32_t num_shapes, const ShapeEntry<int32_t> *shapes, int32_t dst_ndims,
int32_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
void __nac3_ndarray_broadcast_shapes64(int64_t num_shapes, const ShapeEntry<int64_t> *shapes, int64_t dst_ndims,
int64_t *dst_shape)
{
broadcast_shapes(num_shapes, shapes, dst_ndims, dst_shape);
}
}

View File

@ -0,0 +1,47 @@
#pragma once
#include <irrt/int_types.hpp>
namespace
{
/**
* @brief The NDArray object
*
* The official numpy implementations: https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
*/
template <typename SizeT> struct NDArray
{
/**
* @brief The underlying data this `ndarray` is pointing to.
*
* Must be set to `nullptr` to indicate that this NDArray's `data` is uninitialized.
*/
uint8_t *data;
/**
* @brief The number of bytes of a single element in `data`.
*/
SizeT itemsize;
/**
* @brief The number of dimensions of this shape.
*/
SizeT ndims;
/**
* @brief The NDArray shape, with length equal to `ndims`.
*
* Note that it may contain 0.
*/
SizeT *shape;
/**
* @brief Array strides, with length equal to `ndims`
*
* The stride values are in units of bytes, not number of elements.
*
* Note that `strides` can have negative values.
*/
SizeT *strides;
};
} // namespace

View File

@ -0,0 +1,243 @@
#pragma once
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/range.hpp>
#include <irrt/slice.hpp>
namespace
{
typedef uint8_t NDIndexType;
/**
* @brief A single element index
*
* `data` points to a `int32_t`.
*/
const NDIndexType ND_INDEX_TYPE_SINGLE_ELEMENT = 0;
/**
* @brief A slice index
*
* `data` points to a `Slice<int32_t>`.
*/
const NDIndexType ND_INDEX_TYPE_SLICE = 1;
/**
* @brief `np.newaxis` / `None`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_NEWAXIS = 2;
/**
* @brief `Ellipsis` / `...`
*
* `data` is unused.
*/
const NDIndexType ND_INDEX_TYPE_ELLIPSIS = 3;
/**
* @brief An index used in ndarray indexing
*/
struct NDIndex
{
/**
* @brief Enum tag to specify the type of index.
*
* Please see comments of each enum constant.
*/
NDIndexType type;
/**
* @brief The accompanying data associated with `type`.
*
* Please see comments of each enum constant.
*/
uint8_t *data;
};
} // namespace
namespace
{
namespace ndarray
{
namespace indexing
{
/**
* @brief Perform ndarray "basic indexing" (https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing)
*
* This function is very similar to performing `dst_ndarray = src_ndarray[indices]` in Python.
*
* This function also does proper assertions on `indices` to check for out of bounds access.
*
* # Notes on `dst_ndarray`
* The caller is responsible for allocating space for the resulting ndarray.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, and it must be equal to the expected `ndims` of the `dst_ndarray` after
* indexing `src_ndarray` with `indices`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged.
* - `dst_ndarray->shape` is updated according to how `src_ndarray` is indexed.
* - `dst_ndarray->strides` is updated accordingly by how ndarray indexing works.
*
* @param indices indices to index `src_ndarray`, ordered in the same way you would write them in Python.
* @param src_ndarray The NDArray to be indexed.
* @param dst_ndarray The resulting NDArray after indexing. Further details in the comments above,
*/
template <typename SizeT>
void index(SizeT num_indices, const NDIndex *indices, const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray)
{
// Validate `indices`.
// Expected value of `dst_ndarray->ndims`.
SizeT expected_dst_ndims = src_ndarray->ndims;
// To check for "too many indices for array: array is ?-dimensional, but ? were indexed"
SizeT num_indexed = 0;
// There may be ellipsis `...` in `indices`. There can only be 0 or 1 ellipsis.
SizeT num_ellipsis = 0;
for (SizeT i = 0; i < num_indices; i++)
{
if (indices[i].type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
expected_dst_ndims--;
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_SLICE)
{
num_indexed++;
}
else if (indices[i].type == ND_INDEX_TYPE_NEWAXIS)
{
expected_dst_ndims++;
}
else if (indices[i].type == ND_INDEX_TYPE_ELLIPSIS)
{
num_ellipsis++;
if (num_ellipsis > 1)
{
raise_exception(SizeT, EXN_INDEX_ERROR, "an index can only have a single ellipsis ('...')", NO_PARAM,
NO_PARAM, NO_PARAM);
}
}
else
{
__builtin_unreachable();
}
}
debug_assert_eq(SizeT, expected_dst_ndims, dst_ndarray->ndims);
if (src_ndarray->ndims - num_indexed < 0)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"too many indices for array: array is {0}-dimensional, "
"but {1} were indexed",
src_ndarray->ndims, num_indices, NO_PARAM);
}
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Reference code: https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
SizeT src_axis = 0;
SizeT dst_axis = 0;
for (int32_t i = 0; i < num_indices; i++)
{
const NDIndex *index = &indices[i];
if (index->type == ND_INDEX_TYPE_SINGLE_ELEMENT)
{
SizeT input = (SizeT) * ((int32_t *)index->data);
SizeT k = slice::resolve_index_in_length(src_ndarray->shape[src_axis], input);
if (k == -1)
{
raise_exception(SizeT, EXN_INDEX_ERROR,
"index {0} is out of bounds for axis {1} "
"with size {2}",
input, src_axis, src_ndarray->shape[src_axis]);
}
dst_ndarray->data += k * src_ndarray->strides[src_axis];
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_SLICE)
{
Slice<int32_t> *slice = (Slice<int32_t> *)index->data;
Range<int32_t> range = slice->indices_checked<SizeT>(src_ndarray->shape[src_axis]);
dst_ndarray->data += (SizeT)range.start * src_ndarray->strides[src_axis];
dst_ndarray->strides[dst_axis] = ((SizeT)range.step) * src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = (SizeT)range.len<SizeT>();
dst_axis++;
src_axis++;
}
else if (index->type == ND_INDEX_TYPE_NEWAXIS)
{
dst_ndarray->strides[dst_axis] = 0;
dst_ndarray->shape[dst_axis] = 1;
dst_axis++;
}
else if (index->type == ND_INDEX_TYPE_ELLIPSIS)
{
// The number of ':' entries this '...' implies.
SizeT ellipsis_size = src_ndarray->ndims - num_indexed;
for (SizeT j = 0; j < ellipsis_size; j++)
{
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_axis++;
src_axis++;
}
}
else
{
__builtin_unreachable();
}
}
for (; dst_axis < dst_ndarray->ndims; dst_axis++, src_axis++)
{
dst_ndarray->shape[dst_axis] = src_ndarray->shape[src_axis];
dst_ndarray->strides[dst_axis] = src_ndarray->strides[src_axis];
}
debug_assert_eq(SizeT, src_ndarray->ndims, src_axis);
debug_assert_eq(SizeT, dst_ndarray->ndims, dst_axis);
}
} // namespace indexing
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::indexing;
void __nac3_ndarray_index(int32_t num_indices, NDIndex *indices, NDArray<int32_t> *src_ndarray,
NDArray<int32_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
void __nac3_ndarray_index64(int64_t num_indices, NDIndex *indices, NDArray<int64_t> *src_ndarray,
NDArray<int64_t> *dst_ndarray)
{
index(num_indices, indices, src_ndarray, dst_ndarray);
}
}

View File

@ -0,0 +1,142 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
/**
* @brief Helper struct to enumerate through an ndarray *efficiently*.
*
* i.e., If `shape` is `[3, 2]`, by repeating `next()`, then you get:
* - `[0, 0]`
* - `[0, 1]`
* - `[1, 0]`
* - `[1, 1]`
* - `[2, 0]`
* - `[2, 1]`
* - end.
*
* Interesting cases:
* - If ndims == 0, there is one enumeration.
* - If shape contains zeroes, there are no enumerations.
*/
template <typename SizeT> struct NDIter
{
SizeT ndims;
SizeT *shape;
SizeT *strides;
/**
* @brief The current indices.
*
* Must be allocated by the caller.
*/
SizeT *indices;
/**
* @brief The nth (0-based) index of the current indices.
*/
SizeT nth;
/**
* @brief Pointer to the current element.
*/
uint8_t *element;
/**
* @brief The product of shape.
*/
SizeT size;
// TODO:: There is something called backstrides to speedup iteration.
// See https://ajcr.net/stride-guide-part-1/, and https://docs.scipy.org/doc/numpy-1.13.0/reference/c-api.types-and-structures.html#c.PyArrayIterObject.PyArrayIterObject.backstrides.
// Maybe LLVM is clever and knows how to optimize.
void initialize(SizeT ndims, SizeT *shape, SizeT *strides, uint8_t *element, SizeT *indices)
{
this->ndims = ndims;
this->shape = shape;
this->strides = strides;
this->indices = indices;
this->element = element;
// Compute size and backstrides
this->size = 1;
for (SizeT i = 0; i < ndims; i++)
{
this->size *= shape[i];
}
for (SizeT axis = 0; axis < ndims; axis++)
indices[axis] = 0;
nth = 0;
}
void initialize_by_ndarray(NDArray<SizeT> *ndarray, SizeT *indices)
{
this->initialize(ndarray->ndims, ndarray->shape, ndarray->strides, ndarray->data, indices);
}
bool has_next()
{
return nth < size;
}
void next()
{
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = ndims - i - 1;
indices[axis]++;
if (indices[axis] >= shape[axis])
{
indices[axis] = 0;
// TODO: Can be optimized with backstrides.
element -= strides[axis] * (shape[axis] - 1);
}
else
{
element += strides[axis];
break;
}
}
nth++;
}
};
} // namespace
extern "C"
{
void __nac3_nditer_initialize(NDIter<int32_t> *iter, NDArray<int32_t> *ndarray, int32_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
void __nac3_nditer_initialize64(NDIter<int64_t> *iter, NDArray<int64_t> *ndarray, int64_t *indices)
{
iter->initialize_by_ndarray(ndarray, indices);
}
bool __nac3_nditer_has_next(NDIter<int32_t> *iter)
{
return iter->has_next();
}
bool __nac3_nditer_has_next64(NDIter<int64_t> *iter)
{
return iter->has_next();
}
void __nac3_nditer_next(NDIter<int32_t> *iter)
{
iter->next();
}
void __nac3_nditer_next64(NDIter<int64_t> *iter)
{
iter->next();
}
}

View File

@ -0,0 +1,92 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/ndarray/basic.hpp>
#include <irrt/ndarray/broadcast.hpp>
#include <irrt/ndarray/iter.hpp>
// NOTE: Everything would be much easier and elegant if einsum is implemented.
namespace
{
namespace ndarray
{
namespace matmul
{
/**
* @brief Perform the broadcast in `np.einsum("...ij,...jk->...ik", a, b)`.
*
* Example:
* Suppose `a_shape == [1, 97, 4, 2]`
* and `b_shape == [99, 98, 1, 2, 5]`,
*
* ...then `new_a_shape == [99, 98, 97, 4, 2]`,
* `new_b_shape == [99, 98, 97, 2, 5]`,
* and `dst_shape == [99, 98, 97, 4, 5]`.
* ^^^^^^^^^^ ^^^^
* (broadcasted) (4x2 @ 2x5 => 4x5)
*
* @param a_ndims Length of `a_shape`.
* @param a_shape Shape of `a`.
* @param b_ndims Length of `b_shape`.
* @param b_shape Shape of `b`.
* @param final_ndims Should be equal to `max(a_ndims, b_ndims)`. This is the length of `new_a_shape`,
* `new_b_shape`, and `dst_shape` - the number of dimensions after broadcasting.
*/
template <typename SizeT>
void calculate_shapes(SizeT a_ndims, SizeT *a_shape, SizeT b_ndims, SizeT *b_shape, SizeT final_ndims,
SizeT *new_a_shape, SizeT *new_b_shape, SizeT *dst_shape)
{
debug_assert(SizeT, a_ndims >= 2);
debug_assert(SizeT, b_ndims >= 2);
debug_assert_eq(SizeT, max(a_ndims, b_ndims), final_ndims);
// Check that a and b are compatible for matmul
if (a_shape[a_ndims - 1] != b_shape[b_ndims - 2])
{
// This is a custom error message. Different from NumPy.
raise_exception(SizeT, EXN_VALUE_ERROR, "Cannot multiply LHS (shape ?x{0}) with RHS (shape {1}x?})",
a_shape[a_ndims - 1], b_shape[b_ndims - 2], NO_PARAM);
}
const SizeT num_entries = 2;
ShapeEntry<SizeT> entries[num_entries] = {{.ndims = a_ndims - 2, .shape = a_shape},
{.ndims = b_ndims - 2, .shape = b_shape}};
// TODO: Optimize this
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_a_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, new_b_shape);
ndarray::broadcast::broadcast_shapes<SizeT>(num_entries, entries, final_ndims - 2, dst_shape);
new_a_shape[final_ndims - 2] = a_shape[a_ndims - 2];
new_a_shape[final_ndims - 1] = a_shape[a_ndims - 1];
new_b_shape[final_ndims - 2] = b_shape[b_ndims - 2];
new_b_shape[final_ndims - 1] = b_shape[b_ndims - 1];
dst_shape[final_ndims - 2] = a_shape[a_ndims - 2];
dst_shape[final_ndims - 1] = b_shape[b_ndims - 1];
}
} // namespace matmul
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::matmul;
void __nac3_ndarray_matmul_calculate_shapes(int32_t a_ndims, int32_t *a_shape, int32_t b_ndims, int32_t *b_shape,
int32_t final_ndims, int32_t *new_a_shape, int32_t *new_b_shape,
int32_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
void __nac3_ndarray_matmul_calculate_shapes64(int64_t a_ndims, int64_t *a_shape, int64_t b_ndims, int64_t *b_shape,
int64_t final_ndims, int64_t *new_a_shape, int64_t *new_b_shape,
int64_t *dst_shape)
{
calculate_shapes(a_ndims, a_shape, b_ndims, b_shape, final_ndims, new_a_shape, new_b_shape, dst_shape);
}
}

View File

@ -0,0 +1,125 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
namespace
{
namespace ndarray
{
namespace reshape
{
/**
* @brief Perform assertions on and resolve unknown dimensions in `new_shape` in `np.reshape(<ndarray>, new_shape)`
*
* If `new_shape` indeed contains unknown dimensions (specified with `-1`, just like numpy), `new_shape` will be
* modified to contain the resolved dimension.
*
* To perform assertions on and resolve unknown dimensions in `new_shape`, we don't need the actual
* `<ndarray>` object itself, but only the `.size` of the `<ndarray>`.
*
* @param size The `.size` of `<ndarray>`
* @param new_ndims Number of elements in `new_shape`
* @param new_shape Target shape to reshape to
*/
template <typename SizeT> void resolve_and_check_new_shape(SizeT size, SizeT new_ndims, SizeT *new_shape)
{
// Is there a -1 in `new_shape`?
bool neg1_exists = false;
// Location of -1, only initialized if `neg1_exists` is true
SizeT neg1_axis_i;
// The computed ndarray size of `new_shape`
SizeT new_size = 1;
for (SizeT axis_i = 0; axis_i < new_ndims; axis_i++)
{
SizeT dim = new_shape[axis_i];
if (dim < 0)
{
if (dim == -1)
{
if (neg1_exists)
{
// Multiple `-1` found. Throw an error.
raise_exception(SizeT, EXN_VALUE_ERROR, "can only specify one unknown dimension", NO_PARAM,
NO_PARAM, NO_PARAM);
}
else
{
neg1_exists = true;
neg1_axis_i = axis_i;
}
}
else
{
// TODO: What? In `np.reshape` any negative dimensions is
// treated like its `-1`.
//
// Try running `np.zeros((3, 4)).reshape((-999, 2))`
//
// It is not documented by numpy.
// Throw an error for now...
raise_exception(SizeT, EXN_VALUE_ERROR, "Found non -1 negative dimension {0} on axis {1}", dim, axis_i,
NO_PARAM);
}
}
else
{
new_size *= dim;
}
}
bool can_reshape;
if (neg1_exists)
{
// Let `x` be the unknown dimension
// Solve `x * <new_size> = <size>`
if (new_size == 0 && size == 0)
{
// `x` has infinitely many solutions
can_reshape = false;
}
else if (new_size == 0 && size != 0)
{
// `x` has no solutions
can_reshape = false;
}
else if (size % new_size != 0)
{
// `x` has no integer solutions
can_reshape = false;
}
else
{
can_reshape = true;
new_shape[neg1_axis_i] = size / new_size; // Resolve dimension
}
}
else
{
can_reshape = (new_size == size);
}
if (!can_reshape)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "cannot reshape array of size {0} into given shape", size, NO_PARAM,
NO_PARAM);
}
}
} // namespace reshape
} // namespace ndarray
} // namespace
extern "C"
{
void __nac3_ndarray_reshape_resolve_and_check_new_shape(int32_t size, int32_t new_ndims, int32_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
void __nac3_ndarray_reshape_resolve_and_check_new_shape64(int64_t size, int64_t new_ndims, int64_t *new_shape)
{
ndarray::reshape::resolve_and_check_new_shape(size, new_ndims, new_shape);
}
}

View File

@ -0,0 +1,155 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/ndarray/def.hpp>
#include <irrt/slice.hpp>
/*
* Notes on `np.transpose(<array>, <axes>)`
*
* TODO: `axes`, if specified, can actually contain negative indices,
* but it is not documented in numpy.
*
* Supporting it for now.
*/
namespace
{
namespace ndarray
{
namespace transpose
{
/**
* @brief Do assertions on `<axes>` in `np.transpose(<array>, <axes>)`.
*
* Note that `np.transpose`'s `<axe>` argument is optional. If the argument
* is specified but the user, use this function to do assertions on it.
*
* @param ndims The number of dimensions of `<array>`
* @param num_axes Number of elements in `<axes>` as specified by the user.
* This should be equal to `ndims`. If not, a "ValueError: axes don't match array" is thrown.
* @param axes The user specified `<axes>`.
*/
template <typename SizeT> void assert_transpose_axes(SizeT ndims, SizeT num_axes, const SizeT *axes)
{
if (ndims != num_axes)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "axes don't match array", NO_PARAM, NO_PARAM, NO_PARAM);
}
// TODO: Optimize this
bool *axe_specified = (bool *)__builtin_alloca(sizeof(bool) * ndims);
for (SizeT i = 0; i < ndims; i++)
axe_specified[i] = false;
for (SizeT i = 0; i < ndims; i++)
{
SizeT axis = slice::resolve_index_in_length(ndims, axes[i]);
if (axis == -1)
{
// TODO: numpy actually throws a `numpy.exceptions.AxisError`
raise_exception(SizeT, EXN_VALUE_ERROR, "axis {0} is out of bounds for array of dimension {1}", axis, ndims,
NO_PARAM);
}
if (axe_specified[axis])
{
raise_exception(SizeT, EXN_VALUE_ERROR, "repeated axis in transpose", NO_PARAM, NO_PARAM, NO_PARAM);
}
axe_specified[axis] = true;
}
}
/**
* @brief Create a transpose view of `src_ndarray` and perform proper assertions.
*
* This function is very similar to doing `dst_ndarray = np.transpose(src_ndarray, <axes>)`.
* If `<axes>` is supposed to be `None`, caller can pass in a `nullptr` to `<axes>`.
*
* The transpose view created is returned by modifying `dst_ndarray`.
*
* The caller is responsible for setting up `dst_ndarray` before calling this function.
* Here is what this function expects from `dst_ndarray` when called:
* - `dst_ndarray->data` does not have to be initialized.
* - `dst_ndarray->itemsize` does not have to be initialized.
* - `dst_ndarray->ndims` must be initialized, must be equal to `src_ndarray->ndims`.
* - `dst_ndarray->shape` must be allocated, through it can contain uninitialized values.
* - `dst_ndarray->strides` must be allocated, through it can contain uninitialized values.
* When this function call ends:
* - `dst_ndarray->data` is set to `src_ndarray->data` (`dst_ndarray` is just a view to `src_ndarray`)
* - `dst_ndarray->itemsize` is set to `src_ndarray->itemsize`
* - `dst_ndarray->ndims` is unchanged
* - `dst_ndarray->shape` is updated according to how `np.transpose` works
* - `dst_ndarray->strides` is updated according to how `np.transpose` works
*
* @param src_ndarray The NDArray to build a transpose view on
* @param dst_ndarray The resulting NDArray after transpose. Further details in the comments above,
* @param num_axes Number of elements in axes. Unused if `axes` is nullptr.
* @param axes Axes permutation. Set it to `nullptr` if `<axes>` is `None`.
*/
template <typename SizeT>
void transpose(const NDArray<SizeT> *src_ndarray, NDArray<SizeT> *dst_ndarray, SizeT num_axes, const SizeT *axes)
{
debug_assert_eq(SizeT, src_ndarray->ndims, dst_ndarray->ndims);
const auto ndims = src_ndarray->ndims;
if (axes != nullptr)
assert_transpose_axes(ndims, num_axes, axes);
dst_ndarray->data = src_ndarray->data;
dst_ndarray->itemsize = src_ndarray->itemsize;
// Check out https://ajcr.net/stride-guide-part-2/ to see how `np.transpose` works behind the scenes.
if (axes == nullptr)
{
// `np.transpose(<array>, axes=None)`
/*
* Minor note: `np.transpose(<array>, axes=None)` is equivalent to
* `np.transpose(<array>, axes=[N-1, N-2, ..., 0])` - basically it
* is reversing the order of strides and shape.
*
* This is a fast implementation to handle this special (but very common) case.
*/
for (SizeT axis = 0; axis < ndims; axis++)
{
dst_ndarray->shape[axis] = src_ndarray->shape[ndims - axis - 1];
dst_ndarray->strides[axis] = src_ndarray->strides[ndims - axis - 1];
}
}
else
{
// `np.transpose(<array>, <axes>)`
// Permute strides and shape according to `axes`, while resolving negative indices in `axes`
for (SizeT axis = 0; axis < ndims; axis++)
{
// `i` cannot be OUT_OF_BOUNDS because of assertions
SizeT i = slice::resolve_index_in_length(ndims, axes[axis]);
dst_ndarray->shape[axis] = src_ndarray->shape[i];
dst_ndarray->strides[axis] = src_ndarray->strides[i];
}
}
}
} // namespace transpose
} // namespace ndarray
} // namespace
extern "C"
{
using namespace ndarray::transpose;
void __nac3_ndarray_transpose(const NDArray<int32_t> *src_ndarray, NDArray<int32_t> *dst_ndarray, int32_t num_axes,
const int32_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
void __nac3_ndarray_transpose64(const NDArray<int64_t> *src_ndarray, NDArray<int64_t> *dst_ndarray,
int64_t num_axes, const int64_t *axes)
{
transpose(src_ndarray, dst_ndarray, num_axes, axes);
}
}

View File

@ -0,0 +1,215 @@
#pragma once
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
using SliceIndex = int32_t;
namespace
{
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T> T __nac3_int_exp_impl(T base, T exp)
{
T res = 1;
/* repeated squaring method */
do
{
if (exp & 1)
{
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
} // namespace
extern "C"
{
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) \
{ \
return __nac3_int_exp_impl(base, exp); \
}
DEF_nac3_int_exp_(int32_t) DEF_nac3_int_exp_(int64_t) DEF_nac3_int_exp_(uint32_t) DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len)
{
if (i < 0)
{
i = len + i;
}
if (i < 0)
{
return 0;
}
else if (i > len)
{
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(const SliceIndex start, const SliceIndex end, const SliceIndex step)
{
SliceIndex diff = end - start;
if (diff > 0 && step > 0)
{
return ((diff - 1) / step) + 1;
}
else if (diff < 0 && step < 0)
{
return ((diff + 1) / step) + 1;
}
else
{
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(SliceIndex dest_start, SliceIndex dest_end, SliceIndex dest_step,
uint8_t *dest_arr, SliceIndex dest_arr_len, SliceIndex src_start,
SliceIndex src_end, SliceIndex src_step, uint8_t *src_arr,
SliceIndex src_arr_len, const SliceIndex size)
{
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0)
return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1)
{
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0)
{
__builtin_memmove(dest_arr + dest_start * size, src_arr + src_start * size, src_len * size);
}
if (dest_len > 0)
{
/* dropping */
__builtin_memmove(dest_arr + (dest_start + src_len) * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca = (dest_arr == src_arr) && !(max(dest_start, dest_end) < min(src_start, src_end) ||
max(src_start, src_end) < min(dest_start, dest_end));
if (need_alloca)
{
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (; (src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end); src_ind += src_step, dest_ind += dest_step)
{
/* for constant optimization */
if (size == 1)
{
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
}
else if (size == 4)
{
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
}
else if (size == 8)
{
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
}
else
{
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start)
{
__builtin_memmove(dest_arr + dest_ind * size, dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x)
{
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x)
{
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z)
{
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z))
{
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x))
{
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x)
{
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x))
{
return __builtin_nan("");
}
return j0(x);
}
} // extern "C"

View File

@ -0,0 +1,54 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/int_types.hpp>
namespace
{
namespace range
{
template <typename T> T len(T start, T stop, T step)
{
// Reference:
// https://github.com/python/cpython/blob/9dbd12375561a393eaec4b21ee4ac568a407cdb0/Objects/rangeobject.c#L933
if (step > 0 && start < stop)
return 1 + (stop - 1 - start) / step;
else if (step < 0 && start > stop)
return 1 + (start - 1 - stop) / (-step);
else
return 0;
}
} // namespace range
/**
* @brief A Python range.
*/
template <typename T> struct Range
{
T start;
T stop;
T step;
/**
* @brief Calculate the `len()` of this range.
*/
template <typename SizeT> T len()
{
debug_assert(SizeT, step != 0);
return range::len(start, stop, step);
}
};
} // namespace
extern "C"
{
int32_t __nac3_range_len_i32(int32_t start, int32_t stop, int32_t step)
{
return range::len(start, stop, step);
}
int64_t __nac3_range_len_i64(int64_t start, int64_t stop, int64_t step)
{
return range::len(start, stop, step);
}
}

View File

@ -0,0 +1,202 @@
#pragma once
#include <irrt/debug.hpp>
#include <irrt/exception.hpp>
#include <irrt/int_types.hpp>
#include <irrt/math_util.hpp>
#include <irrt/range.hpp>
namespace
{
namespace slice
{
/**
* @brief Resolve a slice index under a given length like Python indexing.
*
* In Python, if you have a `list` of length 100, `list[-1]` resolves to
* `list[99]`, so `resolve_index_in_length_clamped(100, -1)` returns `99`.
*
* If `length` is 0, 0 is returned for any value of `index`.
*
* If `index` is out of bounds, clamps the returned value between `0` and
* `length - 1` (inclusive).
*
*/
template <typename T> T resolve_index_in_length_clamped(T length, T index)
{
if (index < 0)
{
return max<T>(length + index, 0);
}
else
{
return min<T>(length, index);
}
}
/**
* @brief Like `resolve_index_in_length_clamped`, but returns `-1` if `index` is
* out of bounds.
*/
template <typename T> T resolve_index_in_length(T length, T index)
{
T resolved = index < 0 ? length + index : index;
if (0 <= resolved && resolved < length)
{
return resolved;
}
else
{
return -1;
}
}
/**
* @brief Resolve a slice as a range.
*
* In Python, this would be `range(*slice(start, stop, step).indices(length))`.
*/
template <typename T>
void indices(bool start_defined, T start, bool stop_defined, T stop, bool step_defined, T step, T length,
T *range_start, T *range_stop, T *range_step)
{
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
*range_step = step_defined ? step : 1;
bool step_is_negative = *range_step < 0;
T lower, upper;
if (step_is_negative)
{
lower = -1;
upper = length - 1;
}
else
{
lower = 0;
upper = length;
}
if (start_defined)
{
*range_start = start < 0 ? max(lower, start + length) : min(upper, start);
}
else
{
*range_start = step_is_negative ? upper : lower;
}
if (stop_defined)
{
*range_stop = stop < 0 ? max(lower, stop + length) : min(upper, stop);
}
else
{
*range_stop = step_is_negative ? lower : upper;
}
}
} // namespace slice
/**
* @brief A Python-like slice with **unresolved** indices.
*/
template <typename T> struct Slice
{
bool start_defined;
T start;
bool stop_defined;
T stop;
bool step_defined;
T step;
Slice()
{
this->reset();
}
void reset()
{
this->start_defined = false;
this->stop_defined = false;
this->step_defined = false;
}
void set_start(T start)
{
this->start_defined = true;
this->start = start;
}
void set_stop(T stop)
{
this->stop_defined = true;
this->stop = stop;
}
void set_step(T step)
{
this->step_defined = true;
this->step = step;
}
/**
* @brief Resolve this slice as a range.
*
* In Python, this would be `range(*slice(start, stop,
* step).indices(length))`.
*/
template <typename SizeT> Range<T> indices(T length)
{
// Reference:
// https://github.com/python/cpython/blob/main/Objects/sliceobject.c#L388
debug_assert(SizeT, length >= 0);
Range<T> result;
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, &result.start,
&result.stop, &result.step);
return result;
}
/**
* @brief Like `.indices()` but with assertions.
*/
template <typename SizeT> Range<T> indices_checked(T length)
{
// TODO: Switch to `SizeT length`
if (length < 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "length should not be negative, got {0}", length, NO_PARAM,
NO_PARAM);
}
if (this->step_defined && this->step == 0)
{
raise_exception(SizeT, EXN_VALUE_ERROR, "slice step cannot be zero", NO_PARAM, NO_PARAM, NO_PARAM);
}
return this->indices<SizeT>(length);
}
};
} // namespace
extern "C"
{
void __nac3_slice_indices_i32(bool start_defined, int32_t start, bool stop_defined, int32_t stop, bool step_defined,
int32_t step, int32_t length, int32_t *range_start, int32_t *range_stop,
int32_t *range_step)
{
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, range_start, range_stop,
range_step);
}
void __nac3_slice_indices_i64(bool start_defined, int64_t start, bool stop_defined, int64_t stop, bool step_defined,
int64_t step, int64_t length, int64_t *range_start, int64_t *range_stop,
int64_t *range_step)
{
slice::indices(start_defined, start, stop_defined, stop, step_defined, step, length, range_start, range_stop,
range_step);
}
}

View File

@ -1,216 +0,0 @@
#pragma once
#include "irrt_utils.hpp"
#include "irrt_typedefs.hpp"
/*
This header contains IRRT implementations
that do not deserved to be categorized (e.g., into numpy, etc.)
Check out other *.hpp files before including them here!!
*/
// The type of an index or a value describing the length of a range/slice is
// always `int32_t`.
namespace {
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
// need to make sure `exp >= 0` before calling this function
template <typename T>
T __nac3_int_exp_impl(T base, T exp) {
T res = 1;
/* repeated squaring method */
do {
if (exp & 1) {
res *= base; /* for n odd */
}
exp >>= 1;
base *= base;
} while (exp);
return res;
}
}
extern "C" {
#define DEF_nac3_int_exp_(T) \
T __nac3_int_exp_##T(T base, T exp) {\
return __nac3_int_exp_impl(base, exp);\
}
DEF_nac3_int_exp_(int32_t)
DEF_nac3_int_exp_(int64_t)
DEF_nac3_int_exp_(uint32_t)
DEF_nac3_int_exp_(uint64_t)
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
if (i < 0) {
i = len + i;
}
if (i < 0) {
return 0;
} else if (i > len) {
return len;
}
return i;
}
SliceIndex __nac3_range_slice_len(
const SliceIndex start,
const SliceIndex end,
const SliceIndex step
) {
SliceIndex diff = end - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
// Handle list assignment and dropping part of the list when
// both dest_step and src_step are +1.
// - All the index must *not* be out-of-bound or negative,
// - The end index is *inclusive*,
// - The length of src and dest slice size should already
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
SliceIndex __nac3_list_slice_assign_var_size(
SliceIndex dest_start,
SliceIndex dest_end,
SliceIndex dest_step,
uint8_t *dest_arr,
SliceIndex dest_arr_len,
SliceIndex src_start,
SliceIndex src_end,
SliceIndex src_step,
uint8_t *src_arr,
SliceIndex src_arr_len,
const SliceIndex size
) {
/* if dest_arr_len == 0, do nothing since we do not support extending list */
if (dest_arr_len == 0) return dest_arr_len;
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
if (src_step == dest_step && dest_step == 1) {
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
if (src_len > 0) {
__builtin_memmove(
dest_arr + dest_start * size,
src_arr + src_start * size,
src_len * size
);
}
if (dest_len > 0) {
/* dropping */
__builtin_memmove(
dest_arr + (dest_start + src_len) * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
}
/* shrink size */
return dest_arr_len - (dest_len - src_len);
}
/* if two range overlaps, need alloca */
uint8_t need_alloca =
(dest_arr == src_arr)
&& !(
max(dest_start, dest_end) < min(src_start, src_end)
|| max(src_start, src_end) < min(dest_start, dest_end)
);
if (need_alloca) {
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
src_arr = tmp;
}
SliceIndex src_ind = src_start;
SliceIndex dest_ind = dest_start;
for (;
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
src_ind += src_step, dest_ind += dest_step
) {
/* for constant optimization */
if (size == 1) {
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
} else if (size == 4) {
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
} else if (size == 8) {
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
} else {
/* memcpy for var size, cannot overlap after previous alloca */
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
}
}
/* only dest_step == 1 can we shrink the dest list. */
/* size should be ensured prior to calling this function */
if (dest_step == 1 && dest_end >= dest_start) {
__builtin_memmove(
dest_arr + dest_ind * size,
dest_arr + (dest_end + 1) * size,
(dest_arr_len - dest_end - 1) * size
);
return dest_arr_len - (dest_end - dest_ind) - 1;
}
return dest_arr_len;
}
int32_t __nac3_isinf(double x) {
return __builtin_isinf(x);
}
int32_t __nac3_isnan(double x) {
return __builtin_isnan(x);
}
double tgamma(double arg);
double __nac3_gamma(double z) {
// Handling for denormals
// | x | Python gamma(x) | C tgamma(x) |
// --- | ----------------- | --------------- | ----------- |
// (1) | nan | nan | nan |
// (2) | -inf | -inf | inf |
// (3) | inf | inf | inf |
// (4) | 0.0 | inf | inf |
// (5) | {-1.0, -2.0, ...} | inf | nan |
// (1)-(3)
if (__builtin_isinf(z) || __builtin_isnan(z)) {
return z;
}
double v = tgamma(z);
// (4)-(5)
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
}
double lgamma(double arg);
double __nac3_gammaln(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: gammaln(-inf) -> -inf
// - libm : lgamma(-inf) -> inf
if (__builtin_isinf(x)) {
return x;
}
return lgamma(x);
}
double j0(double x);
double __nac3_j0(double x) {
// libm's handling of value overflows differs from scipy:
// - scipy: j0(inf) -> nan
// - libm : j0(inf) -> 0.0
if (__builtin_isinf(x)) {
return __builtin_nan("");
}
return j0(x);
}
}

View File

@ -1,14 +0,0 @@
#pragma once
#include "irrt_utils.hpp"
#include "irrt_typedefs.hpp"
#include "irrt_basic.hpp"
#include "irrt_slice.hpp"
#include "irrt_numpy_ndarray.hpp"
/*
All IRRT implementations.
We don't have any pre-compiled objects, so we are writing all implementations in headers and
concatenate them with `#include` into one massive source file that contains all the IRRT stuff.
*/

View File

@ -1,466 +0,0 @@
#pragma once
#include "irrt_utils.hpp"
#include "irrt_typedefs.hpp"
#include "irrt_slice.hpp"
/*
NDArray-related implementations.
`*/
// NDArray indices are always `uint32_t`.
using NDIndex = uint32_t;
namespace {
namespace ndarray_util {
template <typename SizeT>
static void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
for (int32_t i = 0; i < ndims; i++) {
int32_t dim_i = ndims - i - 1;
int32_t dim = shape[dim_i];
indices[dim_i] = nth % dim;
nth /= dim;
}
}
// Compute the strides of an ndarray given an ndarray `shape`
// and assuming that the ndarray is *fully C-contagious*.
//
// You might want to read up on https://ajcr.net/stride-guide-part-1/.
template <typename SizeT>
static void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
SizeT stride_product = 1;
for (SizeT i = 0; i < ndims; i++) {
int dim_i = ndims - i - 1;
dst_strides[dim_i] = stride_product * itemsize;
stride_product *= shape[dim_i];
}
}
// Compute the size/# of elements of an ndarray given its shape
template <typename SizeT>
static SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
SizeT size = 1;
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) size *= shape[dim_i];
return size;
}
template <typename SizeT>
static bool can_broadcast_shape_to(
const SizeT target_ndims,
const SizeT *target_shape,
const SizeT src_ndims,
const SizeT *src_shape
) {
/*
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
This function handles this example:
```
Image (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3
```
Other interesting examples to consider:
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
- `can_broadcast_shape_to([3], [3, 1]) == false`
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
In cases when the shapes contain zero(es):
- `can_broadcast_shape_to([0], [1]) == true`
- `can_broadcast_shape_to([0], [2]) == false`
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
*/
// This is essentially doing the following in Python:
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
SizeT target_dim_i = target_ndims - i - 1;
SizeT src_dim_i = src_ndims - i - 1;
bool target_dim_exists = target_dim_i >= 0;
bool src_dim_exists = src_dim_i >= 0;
SizeT target_dim = target_dim_exists ? target_shape[target_dim_i] : 1;
SizeT src_dim = src_dim_exists ? src_shape[src_dim_i] : 1;
bool ok = src_dim == 1 || target_dim == src_dim;
if (!ok) return false;
}
return true;
}
}
typedef uint8_t NDSliceType;
extern "C" {
const NDSliceType INPUT_SLICE_TYPE_INDEX = 0;
const NDSliceType INPUT_SLICE_TYPE_SLICE = 1;
}
struct NDSlice {
// A poor-man's `std::variant<int, UserRange>`
NDSliceType type;
/*
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange`
*/
uint8_t *slice;
};
namespace ndarray_util {
template<typename SizeT>
SizeT deduce_ndims_after_slicing(SizeT ndims, SizeT num_slices, const NDSlice *slices) {
irrt_assert(num_slices <= ndims);
SizeT final_ndims = ndims;
for (SizeT i = 0; i < num_slices; i++) {
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
final_ndims--; // An integer slice demotes the rank by 1
}
}
return final_ndims;
}
}
template <typename SizeT>
struct NDArrayIndicesIter {
SizeT ndims;
const SizeT *shape;
SizeT *indices;
void set_indices_zero() {
__builtin_memset(indices, 0, sizeof(SizeT) * ndims);
}
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT dim_i = ndims - i - 1;
indices[dim_i]++;
if (indices[dim_i] < shape[dim_i]) {
break;
} else {
indices[dim_i] = 0;
}
}
}
};
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
//
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
//
// Some resources you might find helpful:
// - The official numpy implementations:
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
// - On strides (about reshaping, slicing, C-contagiousness, etc)
// - https://ajcr.net/stride-guide-part-1/.
// - https://ajcr.net/stride-guide-part-2/.
// - https://ajcr.net/stride-guide-part-3/.
template <typename SizeT>
struct NDArray {
// The underlying data this `ndarray` is pointing to.
//
// NOTE: Formally this should be of type `void *`, but clang
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
// so we will put `uint8_t *` here for clarity.
uint8_t *data;
// The number of bytes of a single element in `data`.
//
// The `SizeT` is treated as `unsigned`.
SizeT itemsize;
// The number of dimensions of this shape.
//
// The `SizeT` is treated as `unsigned`.
SizeT ndims;
// Array shape, with length equal to `ndims`.
//
// The `SizeT` is treated as `unsigned`.
//
// NOTE: `shape` can contain 0.
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
SizeT *shape;
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
//
// The `SizeT` is treated as `signed`.
//
// NOTE: `strides` can have negative numbers.
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
SizeT *strides;
// Calculate the size/# of elements of an `ndarray`.
// This function corresponds to `np.size(<ndarray>)` or `ndarray.size`
SizeT size() {
return ndarray_util::calc_size_from_shape(ndims, shape);
}
// Calculate the number of bytes of its content of an `ndarray` *in its view*.
// This function corresponds to `ndarray.nbytes`
SizeT nbytes() {
return this->size() * itemsize;
}
void set_value_at_pelement(uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, itemsize);
}
uint8_t* get_pelement(const SizeT *indices) {
uint8_t* element = data;
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
element += indices[dim_i] * strides[dim_i];
return element;
}
uint8_t* get_nth_pelement(SizeT nth) {
irrt_assert(0 <= nth);
irrt_assert(nth < this->size());
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
return get_pelement(indices);
}
// Get pointer to the first element of this ndarray, assuming
// `this->size() > 0`, i.e., not "degenerate" due to zeroes in `this->shape`)
//
// This is particularly useful for when the ndarray is just containing a single scalar.
uint8_t* get_first_pelement() {
irrt_assert(this->size() > 0);
return this->data; // ...It is simply `this->data`
}
// Is the given `indices` valid/in-bounds?
bool in_bounds(const SizeT *indices) {
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) {
bool dim_ok = indices[dim_i] < shape[dim_i];
if (!dim_ok) return false;
}
return true;
}
// Fill the ndarray with a value
void fill_generic(const uint8_t* pvalue) {
NDArrayIndicesIter<SizeT> iter;
iter.ndims = this->ndims;
iter.shape = this->shape;
iter.indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndims);
iter.set_indices_zero();
for (SizeT i = 0; i < this->size(); i++, iter.next()) {
uint8_t* pelement = get_pelement(iter.indices);
set_value_at_pelement(pelement, pvalue);
}
}
// Set the strides of the ndarray with `ndarray_util::set_strides_by_shape`
void set_strides_by_shape() {
ndarray_util::set_strides_by_shape(itemsize, ndims, strides, shape);
}
// https://numpy.org/doc/stable/reference/generated/numpy.eye.html
void set_to_eye(SizeT k, const uint8_t* zero_pvalue, const uint8_t* one_pvalue) {
__builtin_assume(ndims == 2);
// TODO: Better implementation
fill_generic(zero_pvalue);
for (SizeT i = 0; i < min(shape[0], shape[1]); i++) {
SizeT row = i;
SizeT col = i + k;
SizeT indices[2] = { row, col };
if (!in_bounds(indices)) continue;
uint8_t* pelement = get_pelement(indices);
set_value_at_pelement(pelement, one_pvalue);
}
}
// To support numpy complex slices (e.g., `my_array[:50:2,4,:2:-1]`)
//
// Things assumed by this function:
// - `dst_ndarray` is allocated by the caller
// - `dst_ndarray.ndims` has the correct value (according to `ndarray_util::deduce_ndims_after_slicing`).
// - ... and `dst_ndarray.shape` and `dst_ndarray.strides` have been allocated by the caller as well
//
// Other notes:
// - `dst_ndarray->data` does not have to be set, it will be derived.
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
void slice(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
irrt_assert(dst_ndarray->ndims == ndarray_util::deduce_ndims_after_slicing(this->ndims, num_ndslices, ndslices));
dst_ndarray->data = this->data;
SizeT this_axis = 0;
SizeT dst_axis = 0;
for (SizeT i = 0; i < num_ndslices; i++) {
NDSlice *ndslice = &ndslices[i];
if (ndslice->type == INPUT_SLICE_TYPE_INDEX) {
// Handle when the ndslice is just a single (possibly negative) integer
// e.g., `my_array[::2, -5, ::-1]`
// ^^------ like this
SizeT index_user = *((SizeT*) ndslice->slice);
SizeT index = resolve_index_in_length(this->shape[this_axis], index_user);
dst_ndarray->data += index * this->strides[this_axis]; // Add offset
// Next
this_axis++;
} else if (ndslice->type == INPUT_SLICE_TYPE_SLICE) {
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
// e.g., `my_array[::2, -5, ::-1]`
// ^^^------^^^^----- like these
UserSlice<SizeT>* user_slice = (UserSlice<SizeT>*) ndslice->slice;
Slice<SizeT> slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
// NOTE: There is no need to write special code to handle negative steps/strides.
// This simple implementation meticulously handles both positive and negative steps/strides.
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
dst_ndarray->data += slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
dst_ndarray->strides[dst_axis] = slice.step * this->strides[this_axis]; // Determine stride
dst_ndarray->shape[dst_axis] = slice.len(); // Determine shape dimension
// Next
dst_axis++;
this_axis++;
} else {
__builtin_unreachable();
}
}
irrt_assert(dst_axis == dst_ndarray->ndims); // Sanity check on the implementation
}
// Similar to `np.broadcast_to(<ndarray>, <target_shape>)`
// Assumptions:
// - `this` has to be fully initialized.
// - `dst_ndarray->ndims` has to be set.
// - `dst_ndarray->shape` has to be set, this determines the shape `this` broadcasts to.
//
// Other notes:
// - `dst_ndarray->data` does not have to be set, it will be set to `this->data`.
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->data`.
// - `dst_ndarray->strides` does not have to be set, it will be overwritten.
//
// Cautions:
// ```
// xs = np.zeros((4,))
// ys = np.zero((4, 1))
// ys[:] = xs # ok
//
// xs = np.zeros((1, 4))
// ys = np.zero((4,))
// ys[:] = xs # allowed
// # However `np.broadcast_to(xs, (4,))` would fails, as per numpy's broadcasting rule.
// # and apparently numpy will "deprecate" this? SEE https://github.com/numpy/numpy/issues/21744
// # This implementation will NOT support this assignment.
// ```
void broadcast_to(NDArray<SizeT>* dst_ndarray) {
dst_ndarray->data = this->data;
dst_ndarray->itemsize = this->itemsize;
irrt_assert(
ndarray_util::can_broadcast_shape_to(
dst_ndarray->ndims,
dst_ndarray->shape,
this->ndims,
this->shape
)
);
SizeT stride_product = 1;
for (SizeT i = 0; i < max(this->ndims, dst_ndarray->ndims); i++) {
SizeT this_dim_i = this->ndims - i - 1;
SizeT dst_dim_i = dst_ndarray->ndims - i - 1;
bool this_dim_exists = this_dim_i >= 0;
bool dst_dim_exists = dst_dim_i >= 0;
// TODO: Explain how this works
bool c1 = this_dim_exists && this->shape[this_dim_i] == 1;
bool c2 = dst_dim_exists && dst_ndarray->shape[dst_dim_i] != 1;
if (!this_dim_exists || (c1 && c2)) {
dst_ndarray->strides[dst_dim_i] = 0; // Freeze it in-place
} else {
dst_ndarray->strides[dst_dim_i] = stride_product * this->itemsize;
stride_product *= this->shape[this_dim_i]; // NOTE: this_dim_exist must be true here.
}
}
}
// Simulates `this_ndarray[:] = src_ndarray`, with automatic broadcasting.
// Caution on https://github.com/numpy/numpy/issues/21744
// Also see `NDArray::broadcast_to`
void assign_with(NDArray<SizeT>* src_ndarray) {
irrt_assert(
ndarray_util::can_broadcast_shape_to(
this->ndims,
this->shape,
src_ndarray->ndims,
src_ndarray->shape
)
);
// Broadcast the `src_ndarray` to make the reading process *much* easier
SizeT* broadcasted_src_ndarray_strides = __builtin_alloca(sizeof(SizeT) * this->ndims); // Remember to allocate strides beforehand
NDArray<SizeT> broadcasted_src_ndarray = {
.ndims = this->ndims,
.shape = this->shape,
.strides = broadcasted_src_ndarray_strides
};
src_ndarray->broadcast_to(&broadcasted_src_ndarray);
// Using iter instead of `get_nth_pelement` because it is slightly faster
SizeT* indices = __builtin_alloca(sizeof(SizeT) * this->ndims);
auto iter = NDArrayIndicesIter<SizeT> {
.ndims = this->ndims,
.shape = this->shape,
.indices = indices
};
const SizeT this_size = this->size();
for (SizeT i = 0; i < this_size; i++, iter.next()) {
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_pelement(indices);
uint8_t* this_pelement = this->get_pelement(indices);
this->set_value_at_pelement(src_pelement, src_pelement);
}
}
};
}
extern "C" {
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
return ndarray->size();
}
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
return ndarray->size();
}
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
ndarray->fill_generic(pvalue);
}
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
ndarray->fill_generic(pvalue);
}
// void __nac3_ndarray_slice(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice<int32_t> *slices, NDArray<int32_t> *dst_ndarray) {
// // ndarray->slice(num_slices, slices, dst_ndarray);
// }
}

View File

@ -1,80 +0,0 @@
#pragma once
#include "irrt_utils.hpp"
#include "irrt_typedefs.hpp"
namespace {
// A proper slice in IRRT, all negative indices have be resolved to absolute values.
// Even though nac3core's slices are always `int32_t`, we will template slice anyway
// since this struct is used as a general utility.
template <typename T>
struct Slice {
T start;
T stop;
T step;
// The length/The number of elements of the slice if it were a range,
// i.e., the value of `len(range(this->start, this->stop, this->end))`
T len() {
T diff = stop - start;
if (diff > 0 && step > 0) {
return ((diff - 1) / step) + 1;
} else if (diff < 0 && step < 0) {
return ((diff + 1) / step) + 1;
} else {
return 0;
}
}
};
template<typename T>
T resolve_index_in_length(T length, T index) {
irrt_assert(length >= 0);
if (index < 0) {
// Remember that index is negative, so do a plus here
return max(length + index, 0);
} else {
return min(length, index);
}
}
// NOTE: using a bitfield for the `*_defined` is better, at the
// cost of a more annoying implementation in nac3core inkwell
template <typename T>
struct UserSlice {
uint8_t start_defined;
T start;
uint8_t stop_defined;
T stop;
uint8_t step_defined;
T step;
// Like Python's `slice(start, stop, step).indices(length)`
Slice<T> indices(T length) {
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
irrt_assert(length >= 0);
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
Slice<T> result;
result.step = step_defined ? step : 1;
bool step_is_negative = result.step < 0;
if (start_defined) {
result.start = resolve_index_in_length(length, start);
} else {
result.start = step_is_negative ? length - 1 : 0;
}
if (stop_defined) {
result.stop = resolve_index_in_length(length, stop);
} else {
result.stop = step_is_negative ? -1 : length;
}
return result;
}
};
}

View File

@ -1,658 +0,0 @@
// This file will be compiled like a real C++ program,
// and we do have the luxury to use the standard libraries.
// That is if the nix flakes do not have issues... especially on msys2...
#include <cstdint>
#include <cstdio>
#include <cstdlib>
// Set `IRRT_DONT_TYPEDEF_INTS` because `cstdint` defines them
#define IRRT_DONT_TYPEDEF_INTS
#include "irrt_everything.hpp"
void test_fail() {
printf("[!] Test failed\n");
exit(1);
}
void __begin_test(const char* function_name, const char* file, int line) {
printf("######### Running %s @ %s:%d\n", function_name, file, line);
}
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
template <typename T>
void debug_print_array(const char* format, int len, T* as) {
printf("[");
for (int i = 0; i < len; i++) {
if (i != 0) printf(", ");
printf(format, as[i]);
}
printf("]");
}
template <typename T>
void assert_arrays_match(const char* label, const char* format, int len, T* expected, T* got) {
if (!arrays_match(len, expected, got)) {
printf(">>>>>>> %s\n", label);
printf(" Expecting = ");
debug_print_array(format, len, expected);
printf("\n");
printf(" Got = ");
debug_print_array(format, len, got);
printf("\n");
test_fail();
}
}
template <typename T>
void assert_values_match(const char* label, const char* format, T expected, T got) {
if (expected != got) {
printf(">>>>>>> %s\n", label);
printf(" Expecting = ");
printf(format, expected);
printf("\n");
printf(" Got = ");
printf(format, got);
printf("\n");
test_fail();
}
}
void print_repeated(const char *str, int count) {
for (int i = 0; i < count; i++) {
printf("%s", str);
}
}
template<typename SizeT, typename ElementT>
void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* cursor, SizeT depth, NDArray<SizeT>* ndarray) {
// A really lazy recursive implementation
// Add left padding unless its the first entry (since there would be "[[[" before it)
if (!first) {
print_repeated(" ", depth);
}
const SizeT dim = ndarray->shape[depth];
if (depth + 1 == ndarray->ndims) {
// Recursed down to last dimension, print the values in a nice list
printf("[");
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
for (SizeT i = 0; i < dim; i++) {
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
ElementT* pelement = (ElementT*) ndarray->get_pelement(indices);
ElementT element = *pelement;
if (i != 0) printf(", "); // List delimiter
printf(format, element);
printf("(@");
debug_print_array("%d", ndarray->ndims, indices);
printf(")");
(*cursor)++;
}
printf("]");
} else {
printf("[");
for (SizeT i = 0; i < ndarray->shape[depth]; i++) {
__print_ndarray_aux<SizeT, ElementT>(
format,
i == 0, // first?
i + 1 == dim, // last?
cursor,
depth + 1,
ndarray
);
}
printf("]");
}
// Add newline unless its the last entry (since there will be "]]]" after it)
if (!last) {
print_repeated("\n", depth);
}
}
template<typename SizeT, typename ElementT>
void print_ndarray(const char *format, NDArray<SizeT>* ndarray) {
if (ndarray->ndims == 0) {
printf("<empty ndarray>");
} else {
SizeT cursor = 0;
__print_ndarray_aux<SizeT, ElementT>(format, true, true, &cursor, 0, ndarray);
}
printf("\n");
}
void test_calc_size_from_shape_normal() {
// Test shapes with normal values
BEGIN_TEST();
int32_t shape[4] = { 2, 3, 5, 7 };
assert_values_match("size", "%d", 210, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
}
void test_calc_size_from_shape_has_zero() {
// Test shapes with 0 in them
BEGIN_TEST();
int32_t shape[4] = { 2, 0, 5, 7 };
assert_values_match("size", "%d", 0, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
}
void test_set_strides_by_shape() {
// Test `set_strides_by_shape()`
BEGIN_TEST();
int32_t shape[4] = { 99, 3, 5, 7 };
int32_t strides[4] = { 0 };
ndarray_util::set_strides_by_shape((int32_t) sizeof(int32_t), 4, strides, shape);
int32_t expected_strides[4] = {
105 * sizeof(int32_t),
35 * sizeof(int32_t),
7 * sizeof(int32_t),
1 * sizeof(int32_t)
};
assert_arrays_match("strides", "%u", 4u, expected_strides, strides);
}
void test_ndarray_indices_iter_normal() {
// Test NDArrayIndicesIter normal behavior
BEGIN_TEST();
int32_t shape[3] = { 1, 2, 3 };
int32_t indices[3] = { 0, 0, 0 };
auto iter = NDArrayIndicesIter<int32_t> {
.ndims = 3,
.shape = shape,
.indices = indices
};
assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
iter.next();
assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
iter.next();
assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
iter.next();
assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
iter.next();
assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
iter.next();
assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
iter.next();
assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
iter.next();
assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
}
void test_ndarray_fill_generic() {
// Test ndarray fill_generic
BEGIN_TEST();
// Choose a type that's neither int32_t nor uint64_t (candidates of SizeT) to spice it up
// Also make all the octets non-zero, to see if `memcpy` in `fill_generic` is working perfectly.
uint16_t fill_value = 0xFACE;
uint16_t in_data[6] = { 100, 101, 102, 103, 104, 105 }; // Fill `data` with values that != `999`
int32_t in_itemsize = sizeof(uint16_t);
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = { 2, 3 };
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {
.data = (uint8_t*) in_data,
.itemsize = in_itemsize,
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides,
};
ndarray.set_strides_by_shape();
ndarray.fill_generic((uint8_t*) &fill_value); // `fill_generic` here
uint16_t expected_data[6] = { fill_value, fill_value, fill_value, fill_value, fill_value, fill_value };
assert_arrays_match("data", "0x%hX", 6, expected_data, in_data);
}
void test_ndarray_set_to_eye() {
// Test `set_to_eye` behavior (helper function to implement `np.eye()`)
BEGIN_TEST();
double in_data[9] = { 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0 };
int32_t in_itemsize = sizeof(double);
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = { 3, 3 };
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {
.data = (uint8_t*) in_data,
.itemsize = in_itemsize,
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides,
};
ndarray.set_strides_by_shape();
double zero = 0.0;
double one = 1.0;
ndarray.set_to_eye(1, (uint8_t*) &zero, (uint8_t*) &one);
assert_values_match("in_data[0]", "%f", 0.0, in_data[0]);
assert_values_match("in_data[1]", "%f", 1.0, in_data[1]);
assert_values_match("in_data[2]", "%f", 0.0, in_data[2]);
assert_values_match("in_data[3]", "%f", 0.0, in_data[3]);
assert_values_match("in_data[4]", "%f", 0.0, in_data[4]);
assert_values_match("in_data[5]", "%f", 1.0, in_data[5]);
assert_values_match("in_data[6]", "%f", 0.0, in_data[6]);
assert_values_match("in_data[7]", "%f", 0.0, in_data[7]);
assert_values_match("in_data[8]", "%f", 0.0, in_data[8]);
}
void test_slice_1() {
// Test `slice(5, None, None).indices(100) == slice(5, 100, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
.start_defined = 1,
.start = 5,
.stop_defined = 0,
.step_defined = 0,
};
auto slice = user_slice.indices(100);
assert_values_match("start", "%d", 5, slice.start);
assert_values_match("stop", "%d", 100, slice.stop);
assert_values_match("step", "%d", 1, slice.step);
}
void test_slice_2() {
// Test `slice(400, 999, None).indices(100) == slice(100, 100, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
.start_defined = 1,
.start = 400,
.stop_defined = 0,
.step_defined = 0,
};
auto slice = user_slice.indices(100);
assert_values_match("start", "%d", 100, slice.start);
assert_values_match("stop", "%d", 100, slice.stop);
assert_values_match("step", "%d", 1, slice.step);
}
void test_slice_3() {
// Test `slice(-10, -5, None).indices(100) == slice(90, 95, 1)`
BEGIN_TEST();
UserSlice<int> user_slice = {
.start_defined = 1,
.start = -10,
.stop_defined = 1,
.stop = -5,
.step_defined = 0,
};
auto slice = user_slice.indices(100);
assert_values_match("start", "%d", 90, slice.start);
assert_values_match("stop", "%d", 95, slice.stop);
assert_values_match("step", "%d", 1, slice.step);
}
void test_slice_4() {
// Test `slice(None, None, -5).indices(100) == (99, -1, -5)`
BEGIN_TEST();
UserSlice<int> user_slice = {
.start_defined = 0,
.stop_defined = 0,
.step_defined = 1,
.step = -5
};
auto slice = user_slice.indices(100);
assert_values_match("start", "%d", 99, slice.start);
assert_values_match("stop", "%d", -1, slice.stop);
assert_values_match("step", "%d", -5, slice.step);
}
void test_ndslice_1() {
/*
Reference Python code:
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[-2:, 1::2]
# array([[ 5., 7.],
# [ 9., 11.]])
assert dst_ndarray.shape == (2, 2)
assert dst_ndarray.strides == (32, 16)
assert dst_ndarray[0, 0] == 5.0
assert dst_ndarray[0, 1] == 7.0
assert dst_ndarray[1, 0] == 9.0
assert dst_ndarray[1, 1] == 11.0
```
*/
BEGIN_TEST();
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
int32_t in_itemsize = sizeof(double);
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = { 3, 4 };
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {
.data = (uint8_t*) in_data,
.itemsize = in_itemsize,
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides
};
ndarray.set_strides_by_shape();
// Destination ndarray
// As documented, ndims and shape & strides must be allocated and determined by the caller.
const int32_t dst_ndims = 2;
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
NDArray<int32_t> dst_ndarray = {
.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
// Create the slice in `ndarray[-2::, 1::2]`
UserSlice<int32_t> user_slice_1 = {
.start_defined = 1,
.start = -2,
.stop_defined = 0,
.step_defined = 0
};
UserSlice<int32_t> user_slice_2 = {
.start_defined = 1,
.start = 1,
.stop_defined = 0,
.step_defined = 1,
.step = 2
};
const int32_t num_ndslices = 2;
NDSlice ndslices[num_ndslices] = {
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_1 },
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
};
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
int32_t expected_shape[dst_ndims] = { 2, 2 };
int32_t expected_strides[dst_ndims] = { 32, 16 };
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 0 })));
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 1 })));
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 0 })));
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 1 })));
}
void test_ndslice_2() {
/*
```python
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
# array([[ 0., 1., 2., 3.],
# [ 4., 5., 6., 7.],
# [ 8., 9., 10., 11.]])
dst_ndarray = ndarray[2, ::-2]
# array([11., 9.])
assert dst_ndarray.shape == (2,)
assert dst_ndarray.strides == (-16,)
assert dst_ndarray[0] == 11.0
assert dst_ndarray[1] == 9.0
dst_ndarray[1, 0] == 99 # If you write to `dst_ndarray`
assert ndarray[1, 3] == 99 # `ndarray` also updates!!
```
*/
BEGIN_TEST();
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
int32_t in_itemsize = sizeof(double);
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = { 3, 4 };
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {
.data = (uint8_t*) in_data,
.itemsize = in_itemsize,
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides
};
ndarray.set_strides_by_shape();
// Destination ndarray
// As documented, ndims and shape & strides must be allocated and determined by the caller.
const int32_t dst_ndims = 1;
int32_t dst_shape[dst_ndims] = {999}; // Empty values
int32_t dst_strides[dst_ndims] = {999}; // Empty values
NDArray<int32_t> dst_ndarray = {
.data = nullptr,
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
// Create the slice in `ndarray[2, ::-2]`
int32_t user_slice_1 = 2;
UserSlice<int32_t> user_slice_2 = {
.start_defined = 0,
.stop_defined = 0,
.step_defined = 1,
.step = -2
};
const int32_t num_ndslices = 2;
NDSlice ndslices[num_ndslices] = {
{ .type = INPUT_SLICE_TYPE_INDEX, .slice = (uint8_t*) &user_slice_1 },
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
};
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
int32_t expected_shape[dst_ndims] = { 2 };
int32_t expected_strides[dst_ndims] = { -16 };
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
// [5.0, 3.0]
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0 })));
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1 })));
}
void test_can_broadcast_shape() {
BEGIN_TEST();
assert_values_match(
"can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 5, (int32_t[]) { 1, 1, 1, 1, 3 })
);
assert_values_match(
"can_broadcast_shape_to([3], [3, 1]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 2, (int32_t[]) { 3, 1 }));
assert_values_match(
"can_broadcast_shape_to([3], [3]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 1, (int32_t[]) { 3 }));
assert_values_match(
"can_broadcast_shape_to([1], [3]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 3 }));
assert_values_match(
"can_broadcast_shape_to([1], [1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 1 }));
assert_values_match(
"can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 3, (int32_t[]) { 256, 1, 3 })
);
assert_values_match(
"can_broadcast_shape_to([256, 256, 3], [3]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 3 })
);
assert_values_match(
"can_broadcast_shape_to([256, 256, 3], [2]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 2 })
);
assert_values_match(
"can_broadcast_shape_to([256, 256, 3], [1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 1 })
);
// In cases when the shapes contain zero(es)
assert_values_match(
"can_broadcast_shape_to([0], [1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 1 })
);
assert_values_match(
"can_broadcast_shape_to([0], [2]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 2 })
);
assert_values_match(
"can_broadcast_shape_to([0, 4, 0, 0], [1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 1, (int32_t[]) { 1 })
);
assert_values_match(
"can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 1, 1, 1 })
);
assert_values_match(
"can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true",
"%d",
true,
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 4, 1, 1 })
);
assert_values_match(
"can_broadcast_shape_to([4, 3], [0, 3]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 3 })
);
assert_values_match(
"can_broadcast_shape_to([4, 3], [0, 0]) == false",
"%d",
false,
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 0 })
);
}
void test_ndarray_broadcast_1() {
/*
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
# >>> [[19.9 29.9 39.9 49.9]]
#
# array = np.broadcast_to(array, (2, 3, 4))
# >>> [[[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]
# >>> [[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]]
#
# assery array.strides == (0, 0, 8)
*/
BEGIN_TEST();
double in_data[4] = { 19.9, 29.9, 39.9, 49.9 };
const int32_t in_ndims = 2;
int32_t in_shape[in_ndims] = {1, 4};
int32_t in_strides[in_ndims] = {};
NDArray<int32_t> ndarray = {
.data = (uint8_t*) in_data,
.itemsize = sizeof(double),
.ndims = in_ndims,
.shape = in_shape,
.strides = in_strides
};
ndarray.set_strides_by_shape();
const int32_t dst_ndims = 3;
int32_t dst_shape[dst_ndims] = {2, 3, 4};
int32_t dst_strides[dst_ndims] = {};
NDArray<int32_t> dst_ndarray = {
.ndims = dst_ndims,
.shape = dst_shape,
.strides = dst_strides
};
ndarray.broadcast_to(&dst_ndarray);
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 0})));
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 1})));
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 2})));
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 3})));
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 0})));
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 1})));
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 2})));
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 3})));
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {1, 2, 3})));
}
void test_assign_with() {
/*
```
xs = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64)
ys = xs.shape
```
*/
}
int main() {
test_calc_size_from_shape_normal();
test_calc_size_from_shape_has_zero();
test_set_strides_by_shape();
test_ndarray_indices_iter_normal();
test_ndarray_fill_generic();
test_ndarray_set_to_eye();
test_slice_1();
test_slice_2();
test_slice_3();
test_slice_4();
test_ndslice_1();
test_ndslice_2();
test_can_broadcast_shape();
test_ndarray_broadcast_1();
test_assign_with();
return 0;
}

View File

@ -1,14 +0,0 @@
#pragma once
// This is made toggleable since `irrt_test.cpp` itself would include
// headers that define the `int_t` family.
#ifndef IRRT_DONT_TYPEDEF_INTS
typedef _BitInt(8) int8_t;
typedef unsigned _BitInt(8) uint8_t;
typedef _BitInt(32) int32_t;
typedef unsigned _BitInt(32) uint32_t;
typedef _BitInt(64) int64_t;
typedef unsigned _BitInt(64) uint64_t;
#endif
typedef int32_t SliceIndex;

View File

@ -1,37 +0,0 @@
#pragma once
#include "irrt_typedefs.hpp"
namespace {
template <typename T>
T max(T a, T b) {
return a > b ? a : b;
}
template <typename T>
T min(T a, T b) {
return a > b ? b : a;
}
template <typename T>
bool arrays_match(int len, T *as, T *bs) {
for (int i = 0; i < len; i++) {
if (as[i] != bs[i]) return false;
}
return true;
}
void irrt_panic() {
// Crash the program for now.
// TODO: Don't crash the program
// ... or at least produce a good message when doing testing IRRT
uint8_t* death = nullptr;
*death = 0; // TODO: address 0 on hardware might be writable?
}
// TODO: Make this a macro and allow it to be toggled on/off (e.g., debug vs release)
void irrt_assert(bool condition) {
if (!condition) irrt_panic();
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -25,6 +25,7 @@ pub struct ConcreteFuncArg {
pub name: StrRef, pub name: StrRef,
pub ty: ConcreteType, pub ty: ConcreteType,
pub default_value: Option<SymbolValue>, pub default_value: Option<SymbolValue>,
pub is_vararg: bool,
} }
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
@ -46,6 +47,7 @@ pub enum ConcreteTypeEnum {
TPrimitive(Primitive), TPrimitive(Primitive),
TTuple { TTuple {
ty: Vec<ConcreteType>, ty: Vec<ConcreteType>,
is_vararg_ctx: bool,
}, },
TObj { TObj {
obj_id: DefinitionId, obj_id: DefinitionId,
@ -102,8 +104,16 @@ impl ConcreteTypeStore {
.iter() .iter()
.map(|arg| ConcreteFuncArg { .map(|arg| ConcreteFuncArg {
name: arg.name, name: arg.name,
ty: self.from_unifier_type(unifier, primitives, arg.ty, cache), ty: if arg.is_vararg {
let tuple_ty = unifier
.add_ty(TypeEnum::TTuple { ty: vec![arg.ty], is_vararg_ctx: true });
self.from_unifier_type(unifier, primitives, tuple_ty, cache)
} else {
self.from_unifier_type(unifier, primitives, arg.ty, cache)
},
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
}) })
.collect(), .collect(),
ret: self.from_unifier_type(unifier, primitives, signature.ret, cache), ret: self.from_unifier_type(unifier, primitives, signature.ret, cache),
@ -158,11 +168,12 @@ impl ConcreteTypeStore {
cache.insert(ty, None); cache.insert(ty, None);
let ty_enum = unifier.get_ty(ty); let ty_enum = unifier.get_ty(ty);
let result = match &*ty_enum { let result = match &*ty_enum {
TypeEnum::TTuple { ty } => ConcreteTypeEnum::TTuple { TypeEnum::TTuple { ty, is_vararg_ctx } => ConcreteTypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|t| self.from_unifier_type(unifier, primitives, *t, cache)) .map(|t| self.from_unifier_type(unifier, primitives, *t, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx,
}, },
TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj { TypeEnum::TObj { obj_id, fields, params } => ConcreteTypeEnum::TObj {
obj_id: *obj_id, obj_id: *obj_id,
@ -248,11 +259,12 @@ impl ConcreteTypeStore {
*cache.get_mut(&cty).unwrap() = Some(ty); *cache.get_mut(&cty).unwrap() = Some(ty);
return ty; return ty;
} }
ConcreteTypeEnum::TTuple { ty } => TypeEnum::TTuple { ConcreteTypeEnum::TTuple { ty, is_vararg_ctx } => TypeEnum::TTuple {
ty: ty ty: ty
.iter() .iter()
.map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache)) .map(|cty| self.to_unifier_type(unifier, primitives, *cty, cache))
.collect(), .collect(),
is_vararg_ctx: *is_vararg_ctx,
}, },
ConcreteTypeEnum::TVirtual { ty } => { ConcreteTypeEnum::TVirtual { ty } => {
TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) } TypeEnum::TVirtual { ty: self.to_unifier_type(unifier, primitives, *ty, cache) }
@ -277,6 +289,7 @@ impl ConcreteTypeStore {
name: arg.name, name: arg.name,
ty: self.to_unifier_type(unifier, primitives, arg.ty, cache), ty: self.to_unifier_type(unifier, primitives, arg.ty, cache),
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: false,
}) })
.collect(), .collect(),
ret: self.to_unifier_type(unifier, primitives, *ret, cache), ret: self.to_unifier_type(unifier, primitives, *ret, cache),

File diff suppressed because it is too large Load Diff

View File

@ -13,11 +13,11 @@ use crate::codegen::CodeGenContext;
/// * `$extern_fn:literal`: Name of underlying extern function /// * `$extern_fn:literal`: Name of underlying extern function
/// ///
/// Optional Arguments: /// Optional Arguments:
/// * `$(,$attributes:literal)*)`: Attributes linked with the extern function /// * `$(,$attributes:literal)*)`: Attributes linked with the extern function.
/// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly" /// The default attributes are "mustprogress", "nofree", "nounwind", "willreturn", and "writeonly".
/// These will be used unless other attributes are specified /// These will be used unless other attributes are specified
/// * `$(,$args:ident)*`: Operands of the extern function /// * `$(,$args:ident)*`: Operands of the extern function
/// The data type of these operands will be set to `FloatValue` /// The data type of these operands will be set to `FloatValue`
/// ///
macro_rules! generate_extern_fn { macro_rules! generate_extern_fn {
("unary", $fn_name:ident, $extern_fn:literal) => { ("unary", $fn_name:ident, $extern_fn:literal) => {
@ -130,3 +130,62 @@ pub fn call_ldexp<'ctx>(
.map(Either::unwrap_left) .map(Either::unwrap_left)
.unwrap() .unwrap()
} }
/// Macro to generate `np_linalg` and `sp_linalg` functions
/// The function takes as input `NDArray` and returns ()
///
/// Arguments:
/// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$extern_fn:literal`: Name of underlying extern function
/// * (2/3/4): Number of `NDArray` that function takes as input
///
/// Note:
/// The operands and resulting `NDArray` are both passed as input to the funcion
/// It is the responsibility of caller to ensure that output `NDArray` is properly allocated on stack
/// The function changes the content of the output `NDArray` in-place
macro_rules! generate_linalg_extern_fn {
($fn_name:ident, $extern_fn:literal, 2) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2);
};
($fn_name:ident, $extern_fn:literal, 3) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3);
};
($fn_name:ident, $extern_fn:literal, 4) => {
generate_linalg_extern_fn!($fn_name, $extern_fn, mat1, mat2, mat3, mat4);
};
($fn_name:ident, $extern_fn:literal $(,$input_matrix:ident)*) => {
#[doc = concat!("Invokes the linalg `", stringify!($extern_fn), " function." )]
pub fn $fn_name<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>
$(,$input_matrix: BasicValueEnum<'ctx>)*,
name: Option<&str>,
){
const FN_NAME: &str = $extern_fn;
let extern_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let fn_type = ctx.ctx.void_type().fn_type(&[$($input_matrix.get_type().into()),*], false);
let func = ctx.module.add_function(FN_NAME, fn_type, None);
for attr in ["mustprogress", "nofree", "nounwind", "willreturn", "writeonly"] {
func.add_attribute(
AttributeLoc::Function,
ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
ctx.builder.build_call(extern_fn, &[$($input_matrix.into(),)*], name.unwrap_or_default()).unwrap();
}
};
}
generate_linalg_extern_fn!(call_np_linalg_cholesky, "np_linalg_cholesky", 2);
generate_linalg_extern_fn!(call_np_linalg_qr, "np_linalg_qr", 3);
generate_linalg_extern_fn!(call_np_linalg_svd, "np_linalg_svd", 4);
generate_linalg_extern_fn!(call_np_linalg_inv, "np_linalg_inv", 2);
generate_linalg_extern_fn!(call_np_linalg_pinv, "np_linalg_pinv", 2);
generate_linalg_extern_fn!(call_np_linalg_matrix_power, "np_linalg_matrix_power", 3);
generate_linalg_extern_fn!(call_np_linalg_det, "np_linalg_det", 2);
generate_linalg_extern_fn!(call_sp_linalg_lu, "sp_linalg_lu", 3);
generate_linalg_extern_fn!(call_sp_linalg_schur, "sp_linalg_schur", 3);
generate_linalg_extern_fn!(call_sp_linalg_hessenberg, "sp_linalg_hessenberg", 3);

View File

@ -57,6 +57,7 @@ pub trait CodeGenerator {
/// - fun: Function signature, definition ID and the substitution key. /// - fun: Function signature, definition ID and the substitution key.
/// - params: Function parameters. Note that this does not include the object even if the /// - params: Function parameters. Note that this does not include the object even if the
/// function is a class method. /// function is a class method.
///
/// Note that this function should check if the function is generated in another thread (due to /// Note that this function should check if the function is generated in another thread (due to
/// possible race condition), see the default implementation for an example. /// possible race condition), see the default implementation for an example.
fn gen_func_instance<'ctx>( fn gen_func_instance<'ctx>(
@ -123,11 +124,45 @@ pub trait CodeGenerator {
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>, target: &Expr<Option<Type>>,
value: ValueEnum<'ctx>, value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String> ) -> Result<(), String>
where where
Self: Sized, Self: Sized,
{ {
gen_assign(self, ctx, target, value) gen_assign(self, ctx, target, value, value_ty)
}
/// Generate code for an assignment expression where LHS is a `"target_list"`.
///
/// See <https://docs.python.org/3/reference/simple_stmts.html#assignment-statements>.
fn gen_assign_target_list<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
targets: &Vec<Expr<Option<Type>>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_assign_target_list(self, ctx, targets, value, value_ty)
}
/// Generate code for an item assignment.
///
/// i.e., `target[key] = value`
fn gen_setitem<'ctx>(
&mut self,
ctx: &mut CodeGenContext<'ctx, '_>,
target: &Expr<Option<Type>>,
key: &Expr<Option<Type>>,
value: ValueEnum<'ctx>,
value_ty: Type,
) -> Result<(), String>
where
Self: Sized,
{
gen_setitem(self, ctx, target, key, value, value_ty)
} }
/// Generate code for a while expression. /// Generate code for a while expression.

View File

@ -1,23 +1,22 @@
use crate::{typecheck::typedef::Type, util::SizeVariant}; use crate::{symbol_resolver::SymbolResolver, typecheck::typedef::Type};
mod test;
use super::{ use super::{
classes::{ classes::{ArrayLikeValue, ListValue},
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, NpArrayType, model::*,
NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor, object::{
list::List,
ndarray::{broadcast::ShapeEntry, indexing::NDIndex, nditer::NDIter, NDArray},
}, },
llvm_intrinsics, CodeGenContext, CodeGenerator, CodeGenContext, CodeGenerator,
}; };
use crate::codegen::classes::TypedArrayLikeAccessor; use function::CallFunction;
use crate::codegen::stmt::gen_for_callback_incrementing;
use inkwell::{ use inkwell::{
attributes::{Attribute, AttributeLoc}, attributes::{Attribute, AttributeLoc},
context::Context, context::Context,
memory_buffer::MemoryBuffer, memory_buffer::MemoryBuffer,
module::Module, module::Module,
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType}, types::BasicTypeEnum,
values::{BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue}, values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, IntValue},
AddressSpace, IntPredicate, AddressSpace, IntPredicate,
}; };
use itertools::Either; use itertools::Either;
@ -565,427 +564,383 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
.unwrap() .unwrap()
} }
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the // When [`TypeContext::size_type`] is 32-bits, the function name is "{fn_name}".
/// calculated total size. // When [`TypeContext::size_type`] is 64-bits, the function name is "{fn_name}64".
/// #[must_use]
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension. pub fn get_sizet_dependent_function_name<G: CodeGenerator + ?Sized>(
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for, generator: &mut G,
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively. ctx: &CodeGenContext<'_, '_>,
pub fn call_ndarray_calc_size<'ctx, G, Dims>( name: &str,
generator: &G, ) -> String {
ctx: &CodeGenContext<'ctx, '_>, let mut name = name.to_owned();
dims: &Dims, match generator.get_size_type(ctx.ctx).get_bit_width() {
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>), 32 => {}
) -> IntValue<'ctx> 64 => name.push_str("64"),
where bit_width => {
G: CodeGenerator + ?Sized, panic!("Unsupported int type bit width {bit_width}, must be either 32-bits or 64-bits")
Dims: ArrayLikeIndexer<'ctx>, }
{ }
let llvm_usize = generator.get_size_type(ctx.ctx); name
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_calc_size",
64 => "__nac3_ndarray_calc_size64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
false,
);
let ndarray_calc_size_fn =
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
});
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
ctx.builder
.build_call(
ndarray_calc_size_fn,
&[
dims.base_ptr(ctx, generator).into(),
dims.size(ctx, generator).into(),
begin.into(),
end.into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap()
} }
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`] /// Initialize all global `EXN_*` exception IDs in IRRT with the [`SymbolResolver`].
/// containing `i32` indices of the flattened index. pub fn setup_irrt_exceptions<'ctx>(
/// ctx: &'ctx Context,
/// * `index` - The index to compute the multidimensional index for. module: &Module<'ctx>,
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an symbol_resolver: &dyn SymbolResolver,
/// `NDArray`. ) {
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>( let exn_id_type = ctx.i32_type();
generator: &G,
ctx: &mut CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
ndarray: NDArrayValue<'ctx>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
let llvm_void = ctx.ctx.void_type();
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() { let errors = &[
32 => "__nac3_ndarray_calc_nd_indices", ("EXN_INDEX_ERROR", "0:IndexError"),
64 => "__nac3_ndarray_calc_nd_indices64", ("EXN_VALUE_ERROR", "0:ValueError"),
bw => unreachable!("Unsupported size type bit width: {}", bw), ("EXN_ASSERTION_ERROR", "0:AssertionError"),
}; ("EXN_TYPE_ERROR", "0:TypeError"),
let ndarray_calc_nd_indices_fn = ];
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
let fn_type = llvm_void.fn_type(
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None) for (irrt_name, symbol_name) in errors {
let exn_id = symbol_resolver.get_string_id(symbol_name);
let exn_id = exn_id_type.const_int(exn_id as u64, false).as_basic_value_enum();
let global = module.get_global(irrt_name).unwrap_or_else(|| {
panic!("Exception symbol name '{irrt_name}' should exist in the IRRT LLVM module")
}); });
global.set_initializer(&exn_id);
let ndarray_num_dims = ndarray.load_ndims(ctx); }
let ndarray_dims = ndarray.dim_sizes();
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
ctx.builder
.build_call(
ndarray_calc_nd_indices_fn,
&[
index.into(),
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
} }
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>( pub fn call_nac3_range_len<'ctx, G: CodeGenerator + ?Sized, N: IntKind<'ctx>>(
generator: &G,
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>,
indices: &Indices,
) -> IntValue<'ctx>
where
G: CodeGenerator + ?Sized,
Indices: ArrayLikeIndexer<'ctx>,
{
let llvm_i32 = ctx.ctx.i32_type();
let llvm_usize = generator.get_size_type(ctx.ctx);
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
debug_assert_eq!(
IntType::try_from(indices.element_type(ctx, generator))
.map(IntType::get_bit_width)
.unwrap_or_default(),
llvm_i32.get_bit_width(),
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
);
debug_assert_eq!(
indices.size(ctx, generator).get_type().get_bit_width(),
llvm_usize.get_bit_width(),
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
);
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
32 => "__nac3_ndarray_flatten_index",
64 => "__nac3_ndarray_flatten_index64",
bw => unreachable!("Unsupported size type bit width: {}", bw),
};
let ndarray_flatten_index_fn =
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
false,
);
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
});
let ndarray_num_dims = ndarray.load_ndims(ctx);
let ndarray_dims = ndarray.dim_sizes();
let index = ctx
.builder
.build_call(
ndarray_flatten_index_fn,
&[
ndarray_dims.base_ptr(ctx, generator).into(),
ndarray_num_dims.into(),
indices.base_ptr(ctx, generator).into(),
indices.size(ctx, generator).into(),
],
"",
)
.map(CallSiteValue::try_as_basic_value)
.map(|v| v.map_left(BasicValueEnum::into_int_value))
.map(Either::unwrap_left)
.unwrap();
index
}
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
/// multidimensional index.
///
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
/// `NDArray`.
/// * `indices` - The multidimensional index to compute the flattened index for.
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayValue<'ctx>, int_kind: N,
indices: &Index, start: Instance<'ctx, Int<N>>,
) -> IntValue<'ctx> stop: Instance<'ctx, Int<N>>,
where step: Instance<'ctx, Int<N>>,
G: CodeGenerator + ?Sized, ) -> Instance<'ctx, Int<N>> {
Index: ArrayLikeIndexer<'ctx>, let bit_width = int_kind.get_int_type(generator, ctx.ctx).get_bit_width();
{ let func_name = match bit_width {
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices) 32 => "__nac3_range_len_i32",
64 => "__nac3_range_len_i64",
_ => panic!("{bit_width}-bits ints not supported"), // We could add more variants when necessary.
};
CallFunction::begin(generator, ctx, func_name)
.arg(start)
.arg(stop)
.arg(step)
.returning("range_len", Int(int_kind))
} }
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of #[allow(clippy::too_many_arguments)]
/// dimension and size of each dimension of the resultant `ndarray`. pub fn call_nac3_slice_indices<'ctx, G: CodeGenerator + ?Sized, N: IntKind<'ctx>>(
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
lhs: NDArrayValue<'ctx>, int_kind: N,
rhs: NDArrayValue<'ctx>, start_defined: Instance<'ctx, Int<Bool>>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> { start: Instance<'ctx, Int<N>>,
let llvm_usize = generator.get_size_type(ctx.ctx); stop_defined: Instance<'ctx, Int<Bool>>,
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default()); stop: Instance<'ctx, Int<N>>,
step_defined: Instance<'ctx, Int<Bool>>,
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() { step: Instance<'ctx, Int<N>>,
32 => "__nac3_ndarray_calc_broadcast", length: Instance<'ctx, Int<N>>,
64 => "__nac3_ndarray_calc_broadcast64", range_start: Instance<'ctx, Ptr<Int<N>>>,
bw => unreachable!("Unsupported size type bit width: {}", bw), range_stop: Instance<'ctx, Ptr<Int<N>>>,
range_step: Instance<'ctx, Ptr<Int<N>>>,
) -> Instance<'ctx, Int<N>> {
let bit_width = int_kind.get_int_type(generator, ctx.ctx).get_bit_width();
let func_name = match bit_width {
32 => "__nac3_slice_indices_i32",
64 => "__nac3_slice_indices_i64",
_ => panic!("{bit_width}-bits ints not supported"), // We could add more variants when necessary.
}; };
let ndarray_calc_broadcast_fn =
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
let fn_type = llvm_usize.fn_type(
&[
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
llvm_usize.into(),
llvm_pusize.into(),
],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None) CallFunction::begin(generator, ctx, func_name)
}); .arg(start_defined)
.arg(start)
.arg(stop_defined)
.arg(stop)
.arg(step_defined)
.arg(step)
.arg(length)
.arg(range_start)
.arg(range_stop)
.arg(range_step)
.returning("range_len", Int(int_kind))
}
let lhs_ndims = lhs.load_ndims(ctx); pub fn call_nac3_ndarray_util_assert_shape_no_negative<'ctx, G: CodeGenerator + ?Sized>(
let rhs_ndims = rhs.load_ndims(ctx); generator: &mut G,
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None); ctx: &mut CodeGenContext<'ctx, '_>,
ndims: Instance<'ctx, Int<SizeT>>,
gen_for_callback_incrementing( shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator, generator,
ctx, ctx,
llvm_usize.const_zero(), "__nac3_ndarray_util_assert_shape_no_negative",
(min_ndims, false), );
|generator, ctx, _, idx| { CallFunction::begin(generator, ctx, &name).arg(ndims).arg(shape).returning_void();
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
(
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
)
};
let llvm_usize_const_one = llvm_usize.const_int(1, false);
let lhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let rhs_eqz = ctx
.builder
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
.unwrap();
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
let lhs_eq_rhs = ctx
.builder
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
.unwrap();
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
ctx.make_assert(
generator,
is_compatible,
"0:ValueError",
"operands could not be broadcast together",
[None, None, None],
ctx.current_loc,
);
Ok(())
},
llvm_usize.const_int(1, false),
)
.unwrap();
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
let lhs_ndims = lhs.load_ndims(ctx);
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
let rhs_ndims = rhs.load_ndims(ctx);
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[
lhs_dims.into(),
lhs_ndims.into(),
rhs_dims.into(),
rhs_ndims.into(),
out_dims.base_ptr(ctx, generator).into(),
],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
out_dims,
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
} }
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`] pub fn call_nac3_ndarray_util_assert_output_shape_same<'ctx, G: CodeGenerator + ?Sized>(
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
/// array `broadcast_idx`.
pub fn call_ndarray_calc_broadcast_index<
'ctx,
G: CodeGenerator + ?Sized,
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
>(
generator: &mut G, generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>, ctx: &mut CodeGenContext<'ctx, '_>,
array: NDArrayValue<'ctx>, ndarray_ndims: Instance<'ctx, Int<SizeT>>,
broadcast_idx: &BroadcastIdx, ndarray_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> { output_ndims: Instance<'ctx, Int<SizeT>>,
let llvm_i32 = ctx.ctx.i32_type(); output_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
let llvm_usize = generator.get_size_type(ctx.ctx); ) {
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default()); let name = get_sizet_dependent_function_name(
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default()); generator,
ctx,
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() { "__nac3_ndarray_util_assert_output_shape_same",
32 => "__nac3_ndarray_calc_broadcast_idx", );
64 => "__nac3_ndarray_calc_broadcast_idx64", CallFunction::begin(generator, ctx, &name)
bw => unreachable!("Unsupported size type bit width: {}", bw), .arg(ndarray_ndims)
}; .arg(ndarray_shape)
let ndarray_calc_broadcast_fn = .arg(output_ndims)
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| { .arg(output_shape)
let fn_type = llvm_usize.fn_type( .returning_void();
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
false,
);
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
});
let broadcast_size = broadcast_idx.size(ctx, generator);
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
let array_ndims = array.load_ndims(ctx);
let broadcast_idx_ptr = unsafe {
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
};
ctx.builder
.build_call(
ndarray_calc_broadcast_fn,
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
"",
)
.unwrap();
TypedArrayLikeAdapter::from(
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
Box::new(|_, v| v.into_int_value()),
Box::new(|_, v| v.into()),
)
} }
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant { pub fn call_nac3_ndarray_size<'ctx, G: CodeGenerator + ?Sized>(
match ty.get_bit_width() { generator: &mut G,
32 => SizeVariant::Bits32, ctx: &mut CodeGenContext<'ctx, '_>,
64 => SizeVariant::Bits64, ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
_ => unreachable!("Unsupported int type bit width {}", ty.get_bit_width()), ) -> Instance<'ctx, Int<SizeT>> {
} let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_size");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("size")
} }
fn get_size_type_dependent_function<'ctx, BuildFuncTypeFn>( pub fn call_nac3_ndarray_nbytes<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>, generator: &mut G,
size_type: IntType<'ctx>, ctx: &mut CodeGenContext<'ctx, '_>,
base_name: &str, ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
build_func_type: BuildFuncTypeFn, ) -> Instance<'ctx, Int<SizeT>> {
) -> FunctionValue<'ctx> let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_nbytes");
where CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("nbytes")
BuildFuncTypeFn: Fn() -> FunctionType<'ctx>,
{
let mut fn_name = base_name.to_owned();
match get_size_variant(size_type) {
SizeVariant::Bits32 => {
// The original fn_name is the correct function name
}
SizeVariant::Bits64 => {
// Append "64" at the end, this is the naming convention for 64-bit
fn_name.push_str("64");
}
}
// Get (or declare then get if does not exist) the corresponding function
ctx.module.get_function(&fn_name).unwrap_or_else(|| {
let fn_type = build_func_type();
ctx.module.add_function(&fn_name, fn_type, None)
})
} }
fn get_ndarray_struct_ptr<'ctx>(ctx: &'ctx Context, size_type: IntType<'ctx>) -> PointerType<'ctx> { pub fn call_nac3_ndarray_len<'ctx, G: CodeGenerator + ?Sized>(
let i8_type = ctx.i8_type(); generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() }; ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
let struct_ty = ndarray_ty.fields().whole_struct.as_struct_type(ctx); ) -> Instance<'ctx, Int<SizeT>> {
struct_ty.ptr_type(AddressSpace::default()) let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_len");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("len")
} }
pub fn call_nac3_ndarray_size<'ctx>( pub fn call_nac3_ndarray_is_c_contiguous<'ctx, G: CodeGenerator + ?Sized>(
ctx: &CodeGenContext<'ctx, '_>, generator: &mut G,
ndarray: NpArrayValue<'ctx>, ctx: &mut CodeGenContext<'ctx, '_>,
) -> IntValue<'ctx> { ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
let size_type = ndarray.ty.size_type; ) -> Instance<'ctx, Int<Bool>> {
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || { let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_is_c_contiguous");
size_type.fn_type(&[get_ndarray_struct_ptr(ctx.ctx, size_type).into()], false) CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_auto("is_c_contiguous")
}); }
ctx.builder pub fn call_nac3_ndarray_get_nth_pelement<'ctx, G: CodeGenerator + ?Sized>(
.build_call(function, &[ndarray.ptr.into()], "size") generator: &mut G,
.unwrap() ctx: &mut CodeGenContext<'ctx, '_>,
.try_as_basic_value() ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
.unwrap_left() index: Instance<'ctx, Int<SizeT>>,
.into_int_value() ) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_nth_pelement");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(index).returning_auto("pelement")
}
pub fn call_nac3_ndarray_get_pelement_by_indices<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_get_pelement_by_indices");
CallFunction::begin(generator, ctx, &name).arg(ndarray).arg(indices).returning_auto("pelement")
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_set_strides_by_shape");
CallFunction::begin(generator, ctx, &name).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_copy_data<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_copy_data");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_nditer_initialize<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_initialize");
CallFunction::begin(generator, ctx, &name).arg(iter).arg(ndarray).arg(indices).returning_void();
}
pub fn call_nac3_nditer_has_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) -> Instance<'ctx, Int<Bool>> {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_has_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_auto("has_next")
}
pub fn call_nac3_nditer_next<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
iter: Instance<'ctx, Ptr<Struct<NDIter>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_nditer_next");
CallFunction::begin(generator, ctx, &name).arg(iter).returning_void();
}
pub fn call_nac3_ndarray_index<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_indices: Instance<'ctx, Int<SizeT>>,
indices: Instance<'ctx, Ptr<Struct<NDIndex>>>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_index");
CallFunction::begin(generator, ctx, &name)
.arg(num_indices)
.arg(indices)
.arg(src_ndarray)
.arg(dst_ndarray)
.returning_void();
}
pub fn call_nac3_ndarray_array_set_and_validate_list_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndims: Instance<'ctx, Int<SizeT>>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_set_and_validate_list_shape",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndims).arg(shape).returning_void();
}
pub fn call_nac3_ndarray_array_write_list_to_array<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>>,
ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_array_write_list_to_array",
);
CallFunction::begin(generator, ctx, &name).arg(list).arg(ndarray).returning_void();
}
pub fn call_nac3_ndarray_reshape_resolve_and_check_new_shape<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
size: Instance<'ctx, Int<SizeT>>,
new_ndims: Instance<'ctx, Int<SizeT>>,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(
generator,
ctx,
"__nac3_ndarray_reshape_resolve_and_check_new_shape",
);
CallFunction::begin(generator, ctx, &name)
.arg(size)
.arg(new_ndims)
.arg(new_shape)
.returning_void();
}
pub fn call_nac3_ndarray_broadcast_to<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_to");
CallFunction::begin(generator, ctx, &name).arg(src_ndarray).arg(dst_ndarray).returning_void();
}
pub fn call_nac3_ndarray_broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_shape_entries: Instance<'ctx, Int<SizeT>>,
shape_entries: Instance<'ctx, Ptr<Struct<ShapeEntry>>>,
dst_ndims: Instance<'ctx, Int<SizeT>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_broadcast_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(num_shape_entries)
.arg(shape_entries)
.arg(dst_ndims)
.arg(dst_shape)
.returning_void();
}
pub fn call_nac3_ndarray_transpose<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
dst_ndarray: Instance<'ctx, Ptr<Struct<NDArray>>>,
num_axes: Instance<'ctx, Int<SizeT>>,
axes: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name = get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_transpose");
CallFunction::begin(generator, ctx, &name)
.arg(src_ndarray)
.arg(dst_ndarray)
.arg(num_axes)
.arg(axes)
.returning_void();
}
#[allow(clippy::too_many_arguments)]
pub fn call_nac3_ndarray_matmul_calculate_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a_ndims: Instance<'ctx, Int<SizeT>>,
a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
b_ndims: Instance<'ctx, Int<SizeT>>,
b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
final_ndims: Instance<'ctx, Int<SizeT>>,
new_a_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
new_b_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
dst_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let name =
get_sizet_dependent_function_name(generator, ctx, "__nac3_ndarray_matmul_calculate_shapes");
CallFunction::begin(generator, ctx, &name)
.arg(a_ndims)
.arg(a_shape)
.arg(b_ndims)
.arg(b_shape)
.arg(final_ndims)
.arg(new_a_shape)
.arg(new_b_shape)
.arg(dst_shape)
.returning_void();
} }

View File

@ -1,26 +0,0 @@
#[cfg(test)]
mod tests {
use std::{path::Path, process::Command};
#[test]
fn run_irrt_test() {
assert!(
cfg!(feature = "test"),
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
);
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
if !output.status.success() {
eprintln!("irrt_test failed with status {}:", output.status);
eprintln!("====== stdout ======");
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
eprintln!("====== stderr ======");
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
eprintln!("====================");
panic!("irrt_test failed");
}
}
}

View File

@ -35,6 +35,40 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
unreachable!() unreachable!()
} }
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_start<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_start";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.va_start`](https://llvm.org/docs/LangRef.html#llvm-va-start-intrinsic)
/// intrinsic.
pub fn call_va_end<'ctx>(ctx: &CodeGenContext<'ctx, '_>, arglist: PointerValue<'ctx>) {
const FN_NAME: &str = "llvm.va_end";
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
let llvm_void = ctx.ctx.void_type();
let llvm_i8 = ctx.ctx.i8_type();
let llvm_p0i8 = llvm_i8.ptr_type(AddressSpace::default());
let fn_type = llvm_void.fn_type(&[llvm_p0i8.into()], false);
ctx.module.add_function(FN_NAME, fn_type, None)
});
ctx.builder.build_call(intrinsic_fn, &[arglist.into()], "").unwrap();
}
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic) /// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
/// intrinsic. /// intrinsic.
pub fn call_stacksave<'ctx>( pub fn call_stacksave<'ctx>(
@ -171,8 +205,9 @@ pub fn call_memcpy_generic<'ctx>(
/// * `$ctx:ident`: Reference to the current Code Generation Context /// * `$ctx:ident`: Reference to the current Code Generation Context
/// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>) /// * `$name:ident`: Optional name to be assigned to the llvm build call (Option<&str>)
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function /// * `$llvm_name:literal`: Name of underlying llvm intrinsic function
/// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type) /// * `$map_fn:ident`: Mapping function to be applied on `BasicValue` (`BasicValue` -> Function Return Type).
/// Use `BasicValueEnum::into_int_value` for Integer return type and `BasicValueEnum::into_float_value` for Float return type /// Use `BasicValueEnum::into_int_value` for Integer return type and
/// `BasicValueEnum::into_float_value` for Float return type
/// * `$llvm_ty:ident`: Type of first operand /// * `$llvm_ty:ident`: Type of first operand
/// * `,($val:ident)*`: Comma separated list of operands /// * `,($val:ident)*`: Comma separated list of operands
macro_rules! generate_llvm_intrinsic_fn_body { macro_rules! generate_llvm_intrinsic_fn_body {
@ -188,8 +223,8 @@ macro_rules! generate_llvm_intrinsic_fn_body {
/// Arguments: /// Arguments:
/// * `float/int`: Indicates the return and argument type of the function /// * `float/int`: Indicates the return and argument type of the function
/// * `$fn_name:ident`: The identifier of the rust function to be generated /// * `$fn_name:ident`: The identifier of the rust function to be generated
/// * `$llvm_name:literal`: Name of underlying llvm intrinsic function /// * `$llvm_name:literal`: Name of underlying llvm intrinsic function.
/// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil" /// Omit "llvm." prefix from the function name i.e. use "ceil" instead of "llvm.ceil"
/// * `$val:ident`: The operand for unary operations /// * `$val:ident`: The operand for unary operations
/// * `$val1:ident`, `$val2:ident`: The operands for binary operations /// * `$val1:ident`, `$val2:ident`: The operands for binary operations
macro_rules! generate_llvm_intrinsic_fn { macro_rules! generate_llvm_intrinsic_fn {

View File

@ -1,7 +1,7 @@
use crate::{ use crate::{
codegen::classes::{ListType, NDArrayType, ProxyType, RangeType}, codegen::classes::{ListType, ProxyType},
symbol_resolver::{StaticValue, SymbolResolver}, symbol_resolver::{StaticValue, SymbolResolver},
toplevel::{helper::PrimDef, numpy::unpack_ndarray_var_tys, TopLevelContext, TopLevelDef}, toplevel::{helper::PrimDef, TopLevelContext, TopLevelDef},
typecheck::{ typecheck::{
type_inferencer::{CodeLocation, PrimitiveStore}, type_inferencer::{CodeLocation, PrimitiveStore},
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier}, typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
@ -24,7 +24,14 @@ use inkwell::{
AddressSpace, IntPredicate, OptimizationLevel, AddressSpace, IntPredicate, OptimizationLevel,
}; };
use itertools::Itertools; use itertools::Itertools;
use model::*;
use nac3parser::ast::{Location, Stmt, StrRef}; use nac3parser::ast::{Location, Stmt, StrRef};
use object::{
exception::Exception,
ndarray::NDArray,
range::range_model,
str::{str_model, Str},
};
use parking_lot::{Condvar, Mutex}; use parking_lot::{Condvar, Mutex};
use std::collections::{HashMap, HashSet}; use std::collections::{HashMap, HashSet};
use std::sync::{ use std::sync::{
@ -41,7 +48,9 @@ pub mod extern_fns;
mod generator; mod generator;
pub mod irrt; pub mod irrt;
pub mod llvm_intrinsics; pub mod llvm_intrinsics;
pub mod model;
pub mod numpy; pub mod numpy;
pub mod object;
pub mod stmt; pub mod stmt;
#[cfg(test)] #[cfg(test)]
@ -68,6 +77,16 @@ pub struct CodeGenLLVMOptions {
pub target: CodeGenTargetMachineOptions, pub target: CodeGenTargetMachineOptions,
} }
impl CodeGenLLVMOptions {
/// Creates a [`TargetMachine`] using the target options specified by this struct.
///
/// See [`Target::create_target_machine`].
#[must_use]
pub fn create_target_machine(&self) -> Option<TargetMachine> {
self.target.create_target_machine(self.opt_level)
}
}
/// Additional options for code generation for the target machine. /// Additional options for code generation for the target machine.
#[derive(Clone, Debug, Eq, PartialEq)] #[derive(Clone, Debug, Eq, PartialEq)]
pub struct CodeGenTargetMachineOptions { pub struct CodeGenTargetMachineOptions {
@ -158,11 +177,11 @@ pub struct CodeGenContext<'ctx, 'a> {
pub registry: &'a WorkerRegistry, pub registry: &'a WorkerRegistry,
/// Cache for constant strings. /// Cache for constant strings.
pub const_strings: HashMap<String, BasicValueEnum<'ctx>>, pub const_strings: HashMap<String, Instance<'ctx, Str>>,
/// [`BasicBlock`] containing all `alloca` statements for the current function. /// [`BasicBlock`] containing all `alloca` statements for the current function.
pub init_bb: BasicBlock<'ctx>, pub init_bb: BasicBlock<'ctx>,
pub exception_val: Option<PointerValue<'ctx>>, pub exception_val: Option<Instance<'ctx, Ptr<Struct<Exception>>>>,
/// The header and exit basic blocks of a loop in this context. See /// The header and exit basic blocks of a loop in this context. See
/// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology. /// <https://llvm.org/docs/LoopTerminology.html> for explanation of these terminology.
@ -338,6 +357,10 @@ impl WorkerRegistry {
let mut builder = context.create_builder(); let mut builder = context.create_builder();
let mut module = context.create_module(generator.get_name()); let mut module = context.create_module(generator.get_name());
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
module.add_basic_value_flag( module.add_basic_value_flag(
"Debug Info Version", "Debug Info Version",
inkwell::module::FlagBehavior::Warning, inkwell::module::FlagBehavior::Warning,
@ -361,6 +384,10 @@ impl WorkerRegistry {
errors.insert(e); errors.insert(e);
// create a new empty module just to continue codegen and collect errors // create a new empty module just to continue codegen and collect errors
module = context.create_module(&format!("{}_recover", generator.get_name())); module = context.create_module(&format!("{}_recover", generator.get_name()));
let target_machine = self.llvm_options.create_target_machine().unwrap();
module.set_data_layout(&target_machine.get_target_data().get_data_layout());
module.set_triple(&target_machine.get_triple());
} }
} }
*self.task_count.lock() -= 1; *self.task_count.lock() -= 1;
@ -426,7 +453,7 @@ pub struct CodeGenTask {
fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>( fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context, ctx: &'ctx Context,
module: &Module<'ctx>, module: &Module<'ctx>,
generator: &mut G, generator: &G,
unifier: &mut Unifier, unifier: &mut Unifier,
top_level: &TopLevelContext, top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>, type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -471,12 +498,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
} }
TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => { TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
let (dtype, _) = unpack_ndarray_var_tys(unifier, ty); Ptr(Struct(NDArray)).get_type(generator, ctx).as_basic_type_enum()
let element_type = get_llvm_type(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
} }
_ => unreachable!( _ => unreachable!(
@ -520,8 +542,10 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
}; };
return ty; return ty;
} }
TTuple { ty } => { TTuple { ty, is_vararg_ctx } => {
// a struct with fields in the order present in the tuple // a struct with fields in the order present in the tuple
assert!(!is_vararg_ctx, "Tuples in vararg context must be instantiated with the correct number of arguments before calling get_llvm_type");
let fields = ty let fields = ty
.iter() .iter()
.map(|ty| { .map(|ty| {
@ -551,7 +575,7 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>( fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
ctx: &'ctx Context, ctx: &'ctx Context,
module: &Module<'ctx>, module: &Module<'ctx>,
generator: &mut G, generator: &G,
unifier: &mut Unifier, unifier: &mut Unifier,
top_level: &TopLevelContext, top_level: &TopLevelContext,
type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>, type_cache: &mut HashMap<Type, BasicTypeEnum<'ctx>>,
@ -560,11 +584,11 @@ fn get_llvm_abi_type<'ctx, G: CodeGenerator + ?Sized>(
) -> BasicTypeEnum<'ctx> { ) -> BasicTypeEnum<'ctx> {
// If the type is used in the definition of a function, return `i1` instead of `i8` for ABI // If the type is used in the definition of a function, return `i1` instead of `i8` for ABI
// consistency. // consistency.
return if unifier.unioned(ty, primitives.bool) { if unifier.unioned(ty, primitives.bool) {
ctx.bool_type().into() ctx.bool_type().into()
} else { } else {
get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty) get_llvm_type(ctx, module, generator, unifier, top_level, type_cache, ty)
}; }
} }
/// Whether `sret` is needed for a return value with type `ty`. /// Whether `sret` is needed for a return value with type `ty`.
@ -589,6 +613,40 @@ fn need_sret(ty: BasicTypeEnum) -> bool {
need_sret_impl(ty, true) need_sret_impl(ty, true)
} }
/// Returns the [`BasicTypeEnum`] representing a `va_list` struct for variadic arguments.
fn get_llvm_valist_type<'ctx>(ctx: &'ctx Context, triple: &TargetTriple) -> BasicTypeEnum<'ctx> {
let triple = TargetMachine::normalize_triple(triple);
let triple = triple.as_str().to_str().unwrap();
let arch = triple.split('-').next().unwrap();
let llvm_pi8 = ctx.i8_type().ptr_type(AddressSpace::default());
// Referenced from parseArch() in llvm/lib/Support/Triple.cpp
match arch {
"i386" | "i486" | "i586" | "i686" | "riscv32" => {
ctx.i8_type().ptr_type(AddressSpace::default()).into()
}
"amd64" | "x86_64" | "x86_64h" => {
let llvm_i32 = ctx.i32_type();
let va_list_tag = ctx.opaque_struct_type("struct.__va_list_tag");
va_list_tag.set_body(
&[llvm_i32.into(), llvm_i32.into(), llvm_pi8.into(), llvm_pi8.into()],
false,
);
va_list_tag.into()
}
"armv7" => {
let va_list = ctx.opaque_struct_type("struct.__va_list");
va_list.set_body(&[llvm_pi8.into()], false);
va_list.into()
}
triple => {
todo!("Unsupported platform for varargs: {triple}")
}
}
}
/// Implementation for generating LLVM IR for a function. /// Implementation for generating LLVM IR for a function.
pub fn gen_func_impl< pub fn gen_func_impl<
'ctx, 'ctx,
@ -653,36 +711,9 @@ pub fn gen_func_impl<
(primitives.uint64, context.i64_type().into()), (primitives.uint64, context.i64_type().into()),
(primitives.float, context.f64_type().into()), (primitives.float, context.f64_type().into()),
(primitives.bool, context.i8_type().into()), (primitives.bool, context.i8_type().into()),
(primitives.str, { (primitives.str, str_model().get_type(generator, context).into()),
let name = "str"; (primitives.range, Ptr(range_model()).get_type(generator, context).into()),
match module.get_struct_type(name) { (primitives.exception, { Ptr(Struct(Exception)).get_type(generator, context).into() }),
None => {
let str_type = context.opaque_struct_type("str");
let fields = [
context.i8_type().ptr_type(AddressSpace::default()).into(),
generator.get_size_type(context).into(),
];
str_type.set_body(&fields, false);
str_type.into()
}
Some(t) => t.as_basic_type_enum(),
}
}),
(primitives.range, RangeType::new(context).as_base_type().into()),
(primitives.exception, {
let name = "Exception";
if let Some(t) = module.get_struct_type(name) {
t.ptr_type(AddressSpace::default()).as_basic_type_enum()
} else {
let exception = context.opaque_struct_type("Exception");
let int32 = context.i32_type().into();
let int64 = context.i64_type().into();
let str_ty = module.get_struct_type("str").unwrap().as_basic_type_enum();
let fields = [int32, str_ty, int32, int32, str_ty, str_ty, int64, int64, int64];
exception.set_body(&fields, false);
exception.ptr_type(AddressSpace::default()).as_basic_type_enum()
}
}),
] ]
.iter() .iter()
.copied() .copied()
@ -700,6 +731,7 @@ pub fn gen_func_impl<
name: arg.name, name: arg.name,
ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache), ty: task.store.to_unifier_type(&mut unifier, &primitives, arg.ty, &mut cache),
default_value: arg.default_value.clone(), default_value: arg.default_value.clone(),
is_vararg: arg.is_vararg,
}) })
.collect_vec(), .collect_vec(),
task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache), task.store.to_unifier_type(&mut unifier, &primitives, *ret, &mut cache),
@ -722,7 +754,10 @@ pub fn gen_func_impl<
let has_sret = ret_type.map_or(false, |ty| need_sret(ty)); let has_sret = ret_type.map_or(false, |ty| need_sret(ty));
let mut params = args let mut params = args
.iter() .iter()
.filter(|arg| !arg.is_vararg)
.map(|arg| { .map(|arg| {
debug_assert!(!arg.is_vararg);
get_llvm_abi_type( get_llvm_abi_type(
context, context,
&module, &module,
@ -741,9 +776,12 @@ pub fn gen_func_impl<
params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into()); params.insert(0, ret_type.unwrap().ptr_type(AddressSpace::default()).into());
} }
debug_assert!(matches!(args.iter().filter(|arg| arg.is_vararg).count(), 0..=1));
let vararg_arg = args.iter().find(|arg| arg.is_vararg);
let fn_type = match ret_type { let fn_type = match ret_type {
Some(ret_type) if !has_sret => ret_type.fn_type(&params, false), Some(ret_type) if !has_sret => ret_type.fn_type(&params, vararg_arg.is_some()),
_ => context.void_type().fn_type(&params, false), _ => context.void_type().fn_type(&params, vararg_arg.is_some()),
}; };
let symbol = &task.symbol_name; let symbol = &task.symbol_name;
@ -773,7 +811,9 @@ pub fn gen_func_impl<
let mut var_assignment = HashMap::new(); let mut var_assignment = HashMap::new();
let offset = u32::from(has_sret); let offset = u32::from(has_sret);
for (n, arg) in args.iter().enumerate() {
// Store non-vararg argument values into local variables
for (n, arg) in args.iter().enumerate().filter(|(_, arg)| !arg.is_vararg) {
let param = fn_val.get_nth_param((n as u32) + offset).unwrap(); let param = fn_val.get_nth_param((n as u32) + offset).unwrap();
let local_type = get_llvm_type( let local_type = get_llvm_type(
context, context,
@ -806,6 +846,8 @@ pub fn gen_func_impl<
var_assignment.insert(arg.name, (alloca, None, 0)); var_assignment.insert(arg.name, (alloca, None, 0));
} }
// TODO: Save vararg parameters as list
let return_buffer = if has_sret { let return_buffer = if has_sret {
Some(fn_val.get_nth_param(0).unwrap().into_pointer_value()) Some(fn_val.get_nth_param(0).unwrap().into_pointer_value())
} else { } else {
@ -1028,3 +1070,9 @@ fn gen_in_range_check<'ctx>(
ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap() ctx.builder.build_int_compare(IntPredicate::SLT, lo, hi, "cmp").unwrap()
} }
/// Returns the internal name for the `va_count` argument, used to indicate the number of arguments
/// passed to the variadic function.
fn get_va_count_arg_name(arg_name: StrRef) -> StrRef {
format!("__{}_va_count", &arg_name).into()
}

View File

@ -0,0 +1,42 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum},
values::BasicValueEnum,
};
use crate::codegen::CodeGenerator;
use super::*;
/// A [`Model`] of any [`BasicTypeEnum`].
///
/// Use this when you don't need/cannot have any static types to escape from the [`Model`] abstraction.
#[derive(Debug, Clone, Copy)]
pub struct Any<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> Model<'ctx> for Any<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> Self::Type {
self.0
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
_generator: &mut G,
_ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}

View File

@ -0,0 +1,141 @@
use std::fmt;
use inkwell::{
context::Context,
types::{ArrayType, BasicType, BasicTypeEnum},
values::{ArrayValue, IntValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// Traits for a Rust struct that describes a length value for [`Array`].
pub trait LenKind: fmt::Debug + Clone + Copy {
fn get_length(&self) -> u32;
}
/// A statically known length.
#[derive(Debug, Clone, Copy, Default)]
pub struct Len<const N: u32>;
/// A dynamically known length.
#[derive(Debug, Clone, Copy)]
pub struct AnyLen(pub u32);
impl<const N: u32> LenKind for Len<N> {
fn get_length(&self) -> u32 {
N
}
}
impl LenKind for AnyLen {
fn get_length(&self) -> u32 {
self.0
}
}
/// A Model for an [`ArrayType`].
#[derive(Debug, Clone, Copy, Default)]
pub struct Array<Len, Item> {
/// Length of this array.
pub len: Len,
/// [`Model`] of an array item.
pub item: Item,
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Model<'ctx> for Array<Len, Item> {
type Value = ArrayValue<'ctx>;
type Type = ArrayType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.item.get_type(generator, ctx).array_type(self.len.get_length())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let BasicTypeEnum::ArrayType(ty) = ty else {
return Err(ModelError(format!("Expecting ArrayType, but got {ty:?}")));
};
if ty.len() != self.len.get_length() {
return Err(ModelError(format!(
"Expecting ArrayType with size {}, but got an ArrayType with size {}",
ty.len(),
self.len.get_length()
)));
}
self.item
.check_type(generator, ctx, ty.get_element_type())
.map_err(|err| err.under_context("an ArrayType"))?;
Ok(())
}
}
impl<'ctx, Len: LenKind, Item: Model<'ctx>> Instance<'ctx, Ptr<Array<Len, Item>>> {
/// Get the pointer to the `i`-th (0-based) array element.
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let zero = ctx.ctx.i32_type().const_zero();
let ptr = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[zero, i], "").unwrap() };
Ptr(self.model.0.item).believe_value(ptr)
}
/// Like `gep` but `i` is a constant.
pub fn gep_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64) -> Instance<'ctx, Ptr<Item>> {
assert!(
i < u64::from(self.model.0.len.get_length()),
"Index {i} is out of bounds. Array length = {}",
self.model.0.len.get_length()
);
let i = ctx.ctx.i32_type().const_int(i, false);
self.gep(ctx, i)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.gep(ctx, i).load(generator, ctx)
}
/// Like `get` but `i` is a constant.
pub fn get_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
i: u64,
) -> Instance<'ctx, Item> {
self.gep_const(ctx, i).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set(
&self,
ctx: &CodeGenContext<'ctx, '_>,
i: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.gep(ctx, i).store(ctx, value);
}
/// Like `set` but `i` is a constant.
pub fn set_const(&self, ctx: &CodeGenContext<'ctx, '_>, i: u64, value: Instance<'ctx, Item>) {
self.gep_const(ctx, i).store(ctx, value);
}
}

View File

@ -0,0 +1,212 @@
use std::fmt;
use inkwell::{context::Context, types::*, values::*};
use itertools::Itertools;
use super::*;
use crate::codegen::{CodeGenContext, CodeGenerator};
/// A error type for reporting any [`Model`]-related error (e.g., a [`BasicType`] mismatch).
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
impl ModelError {
// Append a context message to the error.
pub(super) fn under_context(mut self, context: &str) -> Self {
self.0.push_str(" ... in ");
self.0.push_str(context);
self
}
}
/// Trait for Rust structs identifying [`BasicType`]s in the context of a known [`CodeGenerator`] and [`CodeGenContext`].
///
/// For instance,
/// - [`Int<Int32>`] identifies an [`IntType`] with 32-bits.
/// - [`Int<SizeT>`] identifies an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Ptr<Int<SizeT>>`] identifies a [`PointerType`] that points to an [`IntType`] with bit-width [`CodeGenerator::get_size_type`].
/// - [`Int<AnyInt>`] identifies an [`IntType`] with bit-width of whatever is set in the [`AnyInt`] object.
/// - [`Any`] identifies a [`BasicType`] set in the [`Any`] object itself.
///
/// You can get the [`BasicType`] out of a model with [`Model::get_type`].
///
/// Furthermore, [`Instance<'ctx, M>`] is a simple structure that carries a [`BasicValue`] with a [`BasicType`] identified by model `M`.
///
/// The main purpose of this abstraction is to have a more Rust type-safe way to use Inkwell and give type-hints
/// for programmers.
///
/// ### Notes on `Default` trait
///
/// For some models like [`Int<Int32>`] or [`Int<SizeT>`], they have a [`Default`] trait since just by looking at the type, it is possible
/// to tell which [`BasicType`] they are identifying.
///
/// This can be used to create strongly-typed interfaces accepting only values of a specific [`BasicType`] without having to worry about
/// writing debug assertions to check if the programmer has passed in an [`IntValue`] with the wrong bit-width.
/// ```ignore
/// fn give_me_i32_and_get_a_size_t_back<'ctx>(i32: Instance<'ctx, Int<Int32>>) -> Instance<'ctx, Int<SizeT>> {
/// // code...
/// }
/// ```
///
/// ### Notes on converting between Inkwell and model.
///
/// Suppose you have an [`IntValue`], and you want to pass it into a function that takes a [`Instance<'ctx, Int<Int32>>`]. You can do use
/// [`Model::check_value`] or [`Model::believe_value`].
/// ```ignore
/// let my_value: IntValue<'ctx>;
///
/// let my_value = Int(Int32).check_value(my_value).unwrap(); // Panics if `my_value` is not 32-bit with a descriptive error message.
///
/// // or, if you are absolutely certain that `my_value` is 32-bit and doing extra checks is a waste of time:
/// let my_value = Int(Int32).believe_value(my_value);
/// ```
pub trait Model<'ctx>: fmt::Debug + Clone + Copy {
/// The [`BasicType`] *variant* this model is identifying.
///
/// For [`Int<Int32>`], [`Int<SizeT>`], [`Int<Any>`], etc, this is [`IntValue`];
///
/// For [`Ptr<???>`], etc, this is [`PointerValue`];
///
/// For [`Any`], this is just [`BasicValueEnum`];
///
/// and so on.
type Type: BasicType<'ctx>;
/// The [`BasicValue`] type of the [`BasicType`] of this model.
type Value: BasicValue<'ctx> + TryFrom<BasicValueEnum<'ctx>>;
/// Return the [`BasicType`] of this model.
#[must_use]
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type;
/// Get the number of bytes of the [`BasicType`] of this model.
fn sizeof<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> IntValue<'ctx> {
self.get_type(generator, ctx).size_of().unwrap()
}
/// Check if a [`BasicType`] matches the [`BasicType`] of this model.
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError>;
/// Create an instance from a value with [`Instance::model`] being this model.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent.
#[must_use]
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value }
}
/// Check if a [`BasicValue`]'s type is equivalent to the type of this model.
/// Wrap it into an [`Instance`] if it is.
fn check_value<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(generator, ctx, value.get_type())
.map_err(|err| err.under_context(format!("the value {value:?}").as_str()))?;
let Ok(value) = Self::Value::try_from(value) else {
unreachable!("check_type() has bad implementation")
};
Ok(self.believe_value(value))
}
// Allocate a value on the stack and return its pointer.
fn alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_alloca(self.get_type(generator, ctx.ctx), "").unwrap();
Ptr(*self).believe_value(p)
}
// Allocate an array on the stack and return its pointer.
fn array_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Self>> {
let p = ctx.builder.build_array_alloca(self.get_type(generator, ctx.ctx), len, "").unwrap();
Ptr(*self).believe_value(p)
}
fn var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_var_alloc(ctx, ty, name)?;
Ok(Ptr(*self).believe_value(p))
}
fn array_var_alloca<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
len: IntValue<'ctx>,
name: Option<&'ctx str>,
) -> Result<Instance<'ctx, Ptr<Self>>, String> {
// TODO: Remove ArraySliceValue
let ty = self.get_type(generator, ctx.ctx).as_basic_type_enum();
let p = generator.gen_array_var_alloc(ctx, ty, len, name)?;
Ok(Ptr(*self).believe_value(PointerValue::from(p)))
}
/// Allocate a constant array.
fn const_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
values: &[Instance<'ctx, Self>],
) -> Instance<'ctx, Array<AnyLen, Self>> {
macro_rules! make {
($t:expr, $into_value:expr) => {
$t.const_array(
&values
.iter()
.map(|x| $into_value(x.value.as_basic_value_enum()))
.collect_vec(),
)
};
}
let value = match self.get_type(generator, ctx).as_basic_type_enum() {
BasicTypeEnum::ArrayType(t) => make!(t, BasicValueEnum::into_array_value),
BasicTypeEnum::IntType(t) => make!(t, BasicValueEnum::into_int_value),
BasicTypeEnum::FloatType(t) => make!(t, BasicValueEnum::into_float_value),
BasicTypeEnum::PointerType(t) => make!(t, BasicValueEnum::into_pointer_value),
BasicTypeEnum::StructType(t) => make!(t, BasicValueEnum::into_struct_value),
BasicTypeEnum::VectorType(t) => make!(t, BasicValueEnum::into_vector_value),
};
Array { len: AnyLen(values.len() as u32), item: *self }
.check_value(generator, ctx, value)
.unwrap()
}
}
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
/// The model of this instance.
pub model: M,
/// The value of this instance.
///
/// Caller must make sure the type of `value` and the type of this `model` are equivalent,
/// down to having the same [`IntType::get_bit_width`] in case of [`IntType`] for example.
pub value: M::Value,
}

View File

@ -0,0 +1,86 @@
use std::fmt;
use inkwell::{context::Context, types::FloatType, values::FloatValue};
use crate::codegen::CodeGenerator;
use super::*;
pub trait FloatKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Float64;
impl<'ctx> FloatKind<'ctx> for Float32 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f32_type()
}
}
impl<'ctx> FloatKind<'ctx> for Float64 {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> FloatType<'ctx> {
ctx.f64_type()
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyFloat<'ctx>(FloatType<'ctx>);
impl<'ctx> FloatKind<'ctx> for AnyFloat<'ctx> {
fn get_float_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> FloatType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Float<N>(pub N);
impl<'ctx, N: FloatKind<'ctx>> Model<'ctx> for Float<N> {
type Value = FloatValue<'ctx>;
type Type = FloatType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_float_type(generator, ctx)
}
fn check_type<T: inkwell::types::BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = FloatType::try_from(ty) else {
return Err(ModelError(format!("Expecting FloatType, but got {ty:?}")));
};
let exp_ty = self.0.get_float_type(generator, ctx);
// TODO: Inkwell does not have get_bit_width for FloatType?
if ty != exp_ty {
return Err(ModelError(format!("Expecting {exp_ty:?}, but got {ty:?}")));
}
Ok(())
}
}

View File

@ -0,0 +1,103 @@
use inkwell::{
attributes::{Attribute, AttributeLoc},
types::{BasicMetadataTypeEnum, BasicType, FunctionType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum, CallSiteValue},
};
use itertools::Itertools;
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
#[derive(Debug, Clone, Copy)]
struct Arg<'ctx> {
ty: BasicMetadataTypeEnum<'ctx>,
val: BasicMetadataValueEnum<'ctx>,
}
/// A convenience structure to construct & call an LLVM function.
pub struct CallFunction<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> {
generator: &'d mut G,
ctx: &'b CodeGenContext<'ctx, 'a>,
/// Function name
name: &'c str,
/// Call arguments
args: Vec<Arg<'ctx>>,
/// LLVM function Attributes
attrs: Vec<&'static str>,
}
impl<'ctx, 'a, 'b, 'c, 'd, G: CodeGenerator + ?Sized> CallFunction<'ctx, 'a, 'b, 'c, 'd, G> {
pub fn begin(generator: &'d mut G, ctx: &'b CodeGenContext<'ctx, 'a>, name: &'c str) -> Self {
CallFunction { generator, ctx, name, args: Vec::new(), attrs: Vec::new() }
}
/// Push a list of LLVM function attributes to the function declaration.
#[must_use]
pub fn attrs(mut self, attrs: Vec<&'static str>) -> Self {
self.attrs = attrs;
self
}
/// Push a call argument to the function call.
#[allow(clippy::needless_pass_by_value)]
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, arg: Instance<'ctx, M>) -> Self {
let arg = Arg {
ty: arg.model.get_type(self.generator, self.ctx.ctx).as_basic_type_enum().into(),
val: arg.value.as_basic_value_enum().into(),
};
self.args.push(arg);
self
}
/// Call the function and expect the function to return a value of type of `return_model`.
#[must_use]
pub fn returning<M: Model<'ctx>>(self, name: &str, return_model: M) -> Instance<'ctx, M> {
let ret_ty = return_model.get_type(self.generator, self.ctx.ctx);
let ret = self.call(|tys| ret_ty.fn_type(tys, false), name);
let ret = BasicValueEnum::try_from(ret.as_any_value_enum()).unwrap(); // Must work
let ret = return_model.check_value(self.generator, self.ctx.ctx, ret).unwrap(); // Must work
ret
}
/// Like [`CallFunction::returning_`] but `return_model` is automatically inferred.
#[must_use]
pub fn returning_auto<M: Model<'ctx> + Default>(self, name: &str) -> Instance<'ctx, M> {
self.returning(name, M::default())
}
/// Call the function and expect the function to return a void-type.
pub fn returning_void(self) {
let ret_ty = self.ctx.ctx.void_type();
let _ = self.call(|tys| ret_ty.fn_type(tys, false), "");
}
fn call<F>(&self, make_fn_type: F, return_value_name: &str) -> CallSiteValue<'ctx>
where
F: FnOnce(&[BasicMetadataTypeEnum<'ctx>]) -> FunctionType<'ctx>,
{
// Get the LLVM function.
let func = self.ctx.module.get_function(self.name).unwrap_or_else(|| {
// Declare the function if it doesn't exist.
let tys = self.args.iter().map(|arg| arg.ty).collect_vec();
let func_type = make_fn_type(&tys);
let func = self.ctx.module.add_function(self.name, func_type, None);
for attr in &self.attrs {
func.add_attribute(
AttributeLoc::Function,
self.ctx.ctx.create_enum_attribute(Attribute::get_named_enum_kind_id(attr), 0),
);
}
func
});
let vals = self.args.iter().map(|arg| arg.val).collect_vec();
self.ctx.builder.build_call(func, &vals, return_value_name).unwrap()
}
}

View File

@ -0,0 +1,417 @@
use std::{cmp::Ordering, fmt};
use inkwell::{
context::Context,
types::{BasicType, IntType},
values::IntValue,
IntPredicate,
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
pub trait IntKind<'ctx>: fmt::Debug + Clone + Copy {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx>;
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Bool;
#[derive(Debug, Clone, Copy, Default)]
pub struct Byte;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int32;
#[derive(Debug, Clone, Copy, Default)]
pub struct Int64;
#[derive(Debug, Clone, Copy, Default)]
pub struct SizeT;
impl<'ctx> IntKind<'ctx> for Bool {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.bool_type()
}
}
impl<'ctx> IntKind<'ctx> for Byte {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i8_type()
}
}
impl<'ctx> IntKind<'ctx> for Int32 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i32_type()
}
}
impl<'ctx> IntKind<'ctx> for Int64 {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
ctx.i64_type()
}
}
impl<'ctx> IntKind<'ctx> for SizeT {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> IntType<'ctx> {
generator.get_size_type(ctx)
}
}
#[derive(Debug, Clone, Copy)]
pub struct AnyInt<'ctx>(pub IntType<'ctx>);
impl<'ctx> IntKind<'ctx> for AnyInt<'ctx> {
fn get_int_type<G: CodeGenerator + ?Sized>(
&self,
_generator: &G,
_ctx: &'ctx Context,
) -> IntType<'ctx> {
self.0
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Int<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> Model<'ctx> for Int<N> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_int_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = IntType::try_from(ty) else {
return Err(ModelError(format!("Expecting IntType, but got {ty:?}")));
};
let exp_ty = self.0.get_int_type(generator, ctx);
if ty.get_bit_width() != exp_ty.get_bit_width() {
return Err(ModelError(format!(
"Expecting IntType to have {} bit(s), but got {} bit(s)",
exp_ty.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
}
impl<'ctx, N: IntKind<'ctx>> Int<N> {
pub fn const_int<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
value: u64,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_int(value, false);
self.believe_value(value)
}
pub fn const_0<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_zero();
self.believe_value(value)
}
pub fn const_1<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
pub fn const_all_ones<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
let value = self.get_type(generator, ctx).const_all_ones();
self.believe_value(value)
}
pub fn s_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn s_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_s_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn z_extend_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
<= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_z_extend_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn z_extend<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
< self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_z_extend(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
pub fn truncate_or_bit_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
>= self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value = ctx
.builder
.build_int_truncate_or_bit_cast(value, self.get_type(generator, ctx.ctx), "")
.unwrap();
self.believe_value(value)
}
pub fn truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
assert!(
value.get_type().get_bit_width()
> self.0.get_int_type(generator, ctx.ctx).get_bit_width()
);
let value =
ctx.builder.build_int_truncate(value, self.get_type(generator, ctx.ctx), "").unwrap();
self.believe_value(value)
}
/// `sext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn s_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.s_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
/// `zext` or `trunc` an int to this model's int type. Does nothing if equal bit-widths.
pub fn z_extend_or_truncate<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
value: IntValue<'ctx>,
) -> Instance<'ctx, Self> {
let their_width = value.get_type().get_bit_width();
let our_width = self.0.get_int_type(generator, ctx.ctx).get_bit_width();
match their_width.cmp(&our_width) {
Ordering::Less => self.z_extend(generator, ctx, value),
Ordering::Equal => self.believe_value(value),
Ordering::Greater => self.truncate(generator, ctx, value),
}
}
}
impl Int<Bool> {
#[must_use]
pub fn const_false<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 0)
}
#[must_use]
pub fn const_true<'ctx, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Self> {
self.const_int(generator, ctx, 1)
}
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Int<N>> {
pub fn s_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn s_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend(generator, ctx, self.value)
}
pub fn z_extend_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_bit_cast(generator, ctx, self.value)
}
pub fn z_extend<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend(generator, ctx, self.value)
}
pub fn truncate_or_bit_cast<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate_or_bit_cast(generator, ctx, self.value)
}
pub fn truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).truncate(generator, ctx, self.value)
}
pub fn s_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).s_extend_or_truncate(generator, ctx, self.value)
}
pub fn z_extend_or_truncate<NewN: IntKind<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
to_int_kind: NewN,
) -> Instance<'ctx, Int<NewN>> {
Int(to_int_kind).z_extend_or_truncate(generator, ctx, self.value)
}
#[must_use]
pub fn add(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_add(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn sub(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_sub(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
#[must_use]
pub fn mul(&self, ctx: &CodeGenContext<'ctx, '_>, other: Self) -> Self {
let value = ctx.builder.build_int_mul(self.value, other.value, "").unwrap();
self.model.believe_value(value)
}
pub fn compare(
&self,
ctx: &CodeGenContext<'ctx, '_>,
op: IntPredicate,
other: Self,
) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_int_compare(op, self.value, other.value, "").unwrap();
Int(Bool).believe_value(value)
}
}

View File

@ -0,0 +1,17 @@
mod any;
mod array;
mod core;
mod float;
pub mod function;
mod int;
mod ptr;
mod structure;
pub mod util;
pub use any::*;
pub use array::*;
pub use core::*;
pub use float::*;
pub use int::*;
pub use ptr::*;
pub use structure::*;

View File

@ -0,0 +1,207 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{IntValue, PointerValue},
AddressSpace,
};
use crate::codegen::{llvm_intrinsics::call_memcpy_generic, CodeGenContext, CodeGenerator};
use super::*;
/// A model for [`PointerType`].
// TODO: LLVM 15: `Item` is a Rust type-hint for the LLVM type of value the `.store()/.load()` family
// of functions return. If a truly opaque pointer is needed, tell the programmer to use `OpaquePtr`.
#[derive(Debug, Clone, Copy, Default)]
pub struct Ptr<Item>(pub Item);
/// An opaque pointer. Like [`Ptr`] but without any Rust type-hints about its element type.
///
/// `.load()/.store()` is not available for [`Instance`]s of opaque pointers.
pub type OpaquePtr = Ptr<()>;
// TODO: LLVM 15: `Item: Model<'ctx>` don't even need to be a model anymore. It will only be
// a type-hint for the `.load()/.store()` functions for the `pointee_ty`.
//
// See https://thedan64.github.io/inkwell/inkwell/builder/struct.Builder.html#method.build_load.
impl<'ctx, Item: Model<'ctx>> Model<'ctx> for Ptr<Item> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
// TODO: LLVM 15: ctx.ptr_type(AddressSpace::default())
self.0.get_type(generator, ctx).ptr_type(AddressSpace::default())
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = PointerType::try_from(ty) else {
return Err(ModelError(format!("Expecting PointerType, but got {ty:?}")));
};
let elem_ty = ty.get_element_type();
let Ok(elem_ty) = BasicTypeEnum::try_from(elem_ty) else {
return Err(ModelError(format!(
"Expecting pointer element type to be a BasicTypeEnum, but got {elem_ty:?}"
)));
};
// TODO: inkwell `get_element_type()` will be deprecated.
// Remove the check for `get_element_type()` when the time comes.
self.0
.check_type(generator, ctx, elem_ty)
.map_err(|err| err.under_context("a PointerType"))?;
Ok(())
}
}
impl<'ctx, Item: Model<'ctx>> Ptr<Item> {
/// Return a ***constant*** nullptr.
pub fn nullptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Ptr<Item>> {
let ptr = self.get_type(generator, ctx).const_null();
self.believe_value(ptr)
}
/// Cast a pointer into this model with [`inkwell::builder::Builder::build_pointer_cast`]
pub fn pointer_cast<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
ptr: PointerValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
// TODO: LLVM 15: This function will only have to be:
// ```
// return self.believe_value(ptr);
// ```
let t = self.get_type(generator, ctx.ctx);
let ptr = ctx.builder.build_pointer_cast(ptr, t, "").unwrap();
self.believe_value(ptr)
}
}
impl<'ctx, Item: Model<'ctx>> Instance<'ctx, Ptr<Item>> {
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`].
#[must_use]
pub fn offset(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: IntValue<'ctx>,
) -> Instance<'ctx, Ptr<Item>> {
let p = unsafe { ctx.builder.build_in_bounds_gep(self.value, &[offset], "").unwrap() };
self.model.believe_value(p)
}
/// Offset the pointer by [`inkwell::builder::Builder::build_in_bounds_gep`] by a constant offset.
#[must_use]
pub fn offset_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
offset: u64,
) -> Instance<'ctx, Ptr<Item>> {
let offset = ctx.ctx.i32_type().const_int(offset, false);
self.offset(ctx, offset)
}
pub fn set_index(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
value: Instance<'ctx, Item>,
) {
self.offset(ctx, index).store(ctx, value);
}
pub fn set_index_const(
&self,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
value: Instance<'ctx, Item>,
) {
self.offset_const(ctx, index).store(ctx, value);
}
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: IntValue<'ctx>,
) -> Instance<'ctx, Item> {
self.offset(ctx, index).load(generator, ctx)
}
pub fn get_index_const<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
index: u64,
) -> Instance<'ctx, Item> {
self.offset_const(ctx, index).load(generator, ctx)
}
/// Load the value with [`inkwell::builder::Builder::build_load`].
pub fn load<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Item> {
let value = ctx.builder.build_load(self.value, "").unwrap();
self.model.0.check_value(generator, ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error.
}
/// Store a value with [`inkwell::builder::Builder::build_store`].
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, value: Instance<'ctx, Item>) {
ctx.builder.build_store(self.value, value.value).unwrap();
}
/// Return a casted pointer of element type `NewElement` with [`inkwell::builder::Builder::build_pointer_cast`].
pub fn pointer_cast<NewItem: Model<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
new_item: NewItem,
) -> Instance<'ctx, Ptr<NewItem>> {
// TODO: LLVM 15: Write in an impl where `Item` does not have to be `Model<'ctx>`.
Ptr(new_item).pointer_cast(generator, ctx, self.value)
}
/// Check if the pointer is null with [`inkwell::builder::Builder::build_is_null`].
pub fn is_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
/// Check if the pointer is not null with [`inkwell::builder::Builder::build_is_not_null`].
pub fn is_not_null(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Int<Bool>> {
let value = ctx.builder.build_is_not_null(self.value, "").unwrap();
Int(Bool).believe_value(value)
}
/// `memcpy` from another pointer.
pub fn copy_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
source: Self,
num_items: IntValue<'ctx>,
) {
// Force extend `num_items` and `itemsize` to `i64` so their types would match.
let itemsize = self.model.sizeof(generator, ctx.ctx);
let itemsize = Int(Int64).z_extend_or_truncate(generator, ctx, itemsize);
let num_items = Int(Int64).z_extend_or_truncate(generator, ctx, num_items);
let totalsize = itemsize.mul(ctx, num_items);
let is_volatile = ctx.ctx.bool_type().const_zero(); // is_volatile = false
call_memcpy_generic(ctx, self.value, source.value, totalsize.value, is_volatile);
}
}

View File

@ -0,0 +1,345 @@
use std::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValueEnum, StructValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::*;
/// A traveral that traverses a Rust `struct` that is used to declare an LLVM's struct's field types.
pub trait FieldTraversal<'ctx> {
/// Output type of [`FieldTraversal::add`].
type Out<M>;
/// Traverse through the type of a declared field and do something with it.
///
/// * `name` - The cosmetic name of the LLVM field. Used for debugging.
/// * `model` - The [`Model`] representing the LLVM type of this field.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M>;
/// Like [`FieldTraversal::add`] but [`Model`] is automatically inferred from its [`Default`] trait.
fn add_auto<M: Model<'ctx> + Default>(&mut self, name: &'static str) -> Self::Out<M> {
self.add(name, M::default())
}
}
/// Descriptor of an LLVM struct field.
#[derive(Debug, Clone, Copy)]
pub struct GepField<M> {
/// The GEP index of this field. This is the index to use with `build_gep`.
pub gep_index: u64,
/// The cosmetic name of this field.
pub name: &'static str,
/// The [`Model`] of this field's type.
pub model: M,
}
/// A traversal to get the GEP index of fields.
pub struct GepFieldTraversal {
/// The current GEP index.
gep_index_counter: u64,
}
impl<'ctx> FieldTraversal<'ctx> for GepFieldTraversal {
type Out<M> = GepField<M>;
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let gep_index = self.gep_index_counter;
self.gep_index_counter += 1;
Self::Out { gep_index, name, model }
}
}
/// A traversal to collect the field types of a struct.
///
/// This is used to collect the field types for [`Context::struct_type`].
struct TypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a G,
ctx: &'ctx Context,
/// The collected field types so far, in order.
field_types: Vec<BasicTypeEnum<'ctx>>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx> for TypeFieldTraversal<'ctx, 'a, G> {
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, _name: &'static str, model: M) -> Self::Out<M> {
let t = model.get_type(self.generator, self.ctx).as_basic_type_enum();
self.field_types.push(t);
}
}
/// A traversal to check the field types of a [`StructType`].
struct CheckTypeFieldTraversal<'ctx, 'a, G: CodeGenerator + ?Sized> {
generator: &'a mut G,
ctx: &'ctx Context,
/// The current GEP index, so we can tell the index of the field we are checking
/// and report the GEP index.
index: u32,
/// The [`StructType`] to check.
scrutinee: StructType<'ctx>,
/// The list of collected errors so far.
errors: Vec<ModelError>,
}
impl<'ctx, 'a, G: CodeGenerator + ?Sized> FieldTraversal<'ctx>
for CheckTypeFieldTraversal<'ctx, 'a, G>
{
type Out<M> = (); // Checking types return nothing.
fn add<M: Model<'ctx>>(&mut self, name: &'static str, model: M) -> Self::Out<M> {
let i = self.index;
self.index += 1;
if let Some(t) = self.scrutinee.get_field_type_at_index(i) {
if let Err(err) = model.check_type(self.generator, self.ctx, t) {
self.errors.push(err.under_context(format!("field #{i} '{name}'").as_str()));
}
} // Otherwise, it will be caught by Struct's `check_type`.
}
}
/// A trait for Rust structs identifying LLVM structures.
///
/// ### Example
///
/// Suppose you want to define this structure:
/// ```c
/// template <typename T>
/// struct ContiguousNDArray {
/// size_t ndims;
/// size_t* shape;
/// T* data;
/// }
/// ```
///
/// This is how it should be done:
/// ```ignore
/// pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// pub ndims: F::Out<Int<SizeT>>,
/// pub shape: F::Out<Ptr<Int<SizeT>>>,
/// pub data: F::Out<Ptr<Item>>,
/// }
///
/// /// An ndarray without strides and non-opaque `data` field in NAC3.
/// #[derive(Debug, Clone, Copy)]
/// pub struct ContiguousNDArray<M> {
/// /// [`Model`] of the items.
/// pub item: M,
/// }
///
/// impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
/// type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
///
/// fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
/// // The order of `traversal.add*` is important
/// Self::Fields {
/// ndims: traversal.add_auto("ndims"),
/// shape: traversal.add_auto("shape"),
/// data: traversal.add("data", Ptr(self.item)),
/// }
/// }
/// }
/// ```
///
/// The [`FieldTraversal`] here is a mechanism to allow the fields of `ContiguousNDArrayFields` to be
/// traversed to do useful work such as:
///
/// - To create the [`StructType`] of `ContiguousNDArray` by collecting [`BasicType`]s of the fields.
/// - To enable the `.gep(ctx, |f| f.ndims).store(ctx, ...)` syntax.
///
/// Suppose now that you have defined `ContiguousNDArray` and you want to allocate a `ContiguousNDArray`
/// with dtype `float64` in LLVM, this is how you do it:
/// ```rust
/// type F64NDArray = ContiguousNDArray<Float<Float64>>; // Type alias for leaner documentation
/// let model: Struct<F64NDArray> = Struct(ContigousNDArray { item: Float(Float64) });
/// // In fact you may even do `let model = Struct<F64NDArray>::default()`.
/// let ndarray: Instance<'ctx, Ptr<F64NDArray>> = model.alloca(generator, ctx);
/// ```
///
/// ...and here is how you may manipulate/access `ndarray`:
///
/// (NOTE: some arguments have been omitted)
///
/// ```rust
/// // Get `&ndarray->data`
/// ndarray.gep(|f| f.data); // type: Instance<'ctx, Ptr<Float<Float64>>>
///
/// // Get `ndarray->ndims`
/// ndarray.get(|f| f.ndims); // type: Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->ndims`
/// ndarray.gep(|f| f.ndims); // type: Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Get `ndarray->shape[0]`
/// ndarray.get(|f| f.shape).get_index_const(0); // Instance<'ctx, Int<SizeT>>
///
/// // Get `&ndarray->shape[2]`
/// ndarray.get(|f| f.shape).offset_const(2); // Instance<'ctx, Ptr<Int<SizeT>>>
///
/// // Do `ndarray->ndims = 3;`
/// let num_3 = Int(SizeT).const_int(3);
/// ndarray.set(|f| f.ndims, num_3);
/// ```
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy {
/// The associated fields of this struct.
type Fields<F: FieldTraversal<'ctx>>;
/// Traverse map through all fields of this [`StructKind`].
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F>;
/// Get a convenience structure to get a struct field's GEP index through its corresponding Rust field.
fn fields(&self) -> Self::Fields<GepFieldTraversal> {
self.traverse_fields(&mut GepFieldTraversal { gep_index_counter: 0 })
}
/// Get the LLVM [`StructType`] of this [`StructKind`].
fn get_struct_type<G: CodeGenerator + ?Sized>(
&self,
generator: &G,
ctx: &'ctx Context,
) -> StructType<'ctx> {
let mut traversal = TypeFieldTraversal { generator, ctx, field_types: Vec::new() };
self.traverse_fields(&mut traversal);
ctx.struct_type(&traversal.field_types, false)
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Struct<S>(pub S);
impl<'ctx, S: StructKind<'ctx>> Struct<S> {
/// Create a constant struct value.
///
/// This function also validates `fields` and panics types don't match.
pub fn const_struct<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
fields: &[BasicValueEnum<'ctx>],
) -> Instance<'ctx, Self> {
// NOTE: There *could* have been a functor `F<M> = Instance<'ctx, M>` for `S::Fields<F>`
// to create a more user-friendly interface, but Rust's type system is not sophisticated enough
// and if you try doing that Rust would force you put lifetimes everywhere.
let val = ctx.const_struct(fields, false);
self.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for Struct<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type<G: CodeGenerator + ?Sized>(&self, generator: &G, ctx: &'ctx Context) -> Self::Type {
self.0.get_struct_type(generator, ctx)
}
fn check_type<T: BasicType<'ctx>, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
ty: T,
) -> Result<(), ModelError> {
let ty = ty.as_basic_type_enum();
let Ok(ty) = StructType::try_from(ty) else {
return Err(ModelError(format!("Expecting StructType, but got {ty:?}")));
};
let mut traversal =
CheckTypeFieldTraversal { generator, ctx, index: 0, errors: Vec::new(), scrutinee: ty };
self.0.traverse_fields(&mut traversal);
let exp_num_fields = traversal.index;
let got_num_fields = u32::try_from(ty.get_field_types().len()).unwrap();
if exp_num_fields != got_num_fields {
return Err(ModelError(format!(
"Expecting StructType with {exp_num_fields} field(s), but got {got_num_fields}"
)));
}
if !traversal.errors.is_empty() {
// Currently, only the first error is reported.
return Err(traversal.errors[0].clone());
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Struct<S>> {
/// Get a field with [`StructValue::get_field_at_index`].
pub fn get_field<G: CodeGenerator + ?Sized, M, GetField>(
&self,
generator: &mut G,
ctx: &'ctx Context,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0.fields());
let val = self.value.get_field_at_index(field.gep_index as u32).unwrap();
field.model.check_value(generator, ctx, val).unwrap()
}
}
impl<'ctx, S: StructKind<'ctx>> Instance<'ctx, Ptr<Struct<S>>> {
/// Get a pointer to a field with [`Builder::build_in_bounds_gep`].
pub fn gep<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, Ptr<M>>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
let field = get_field(self.model.0 .0.fields());
let llvm_i32 = ctx.ctx.i32_type();
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
Ptr(field.model).believe_value(ptr)
}
/// Convenience function equivalent to `.gep(...).load(...)`.
pub fn get<M, GetField, G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
) -> Instance<'ctx, M>
where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).load(generator, ctx)
}
/// Convenience function equivalent to `.gep(...).store(...)`.
pub fn set<M, GetField>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetField,
value: Instance<'ctx, M>,
) where
M: Model<'ctx>,
GetField: FnOnce(S::Fields<GepFieldTraversal>) -> GepField<M>,
{
self.gep(ctx, get_field).store(ctx, value);
}
}

View File

@ -0,0 +1,40 @@
use crate::codegen::{
stmt::{gen_for_callback_incrementing, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::*;
/// Like [`gen_for_callback_incrementing`] with [`Model`] abstractions.
pub fn gen_for_model<'ctx, 'a, G, F, N>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
start: Instance<'ctx, Int<N>>,
stop: Instance<'ctx, Int<N>>,
step: Instance<'ctx, Int<N>>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
Instance<'ctx, Int<N>>,
) -> Result<(), String>,
N: IntKind<'ctx> + Default,
{
let int_model = Int(N::default());
gen_for_callback_incrementing(
generator,
ctx,
None,
start.value,
(stop.value, false),
|g, ctx, hooks, i| {
let i = int_model.believe_value(i);
body(g, ctx, hooks, i)
},
step.value,
)
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,12 @@
use inkwell::values::BasicValueEnum;
use crate::typecheck::typedef::Type;
/// An NAC3 LLVM Python object.
#[derive(Debug, Clone, Copy)]
pub struct AnyObject<'ctx> {
/// Typechecker type of the object.
pub ty: Type,
/// LLVM value of the object.
pub value: BasicValueEnum<'ctx>,
}

View File

@ -0,0 +1,24 @@
use crate::codegen::model::*;
/// Fields of [`CSlice`]
pub struct CSliceFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Pointer to items
pub base: F::Out<Ptr<Item>>,
/// Number of items (not bytes)
pub len: F::Out<Int<SizeT>>,
}
/// See <https://docs.rs/cslice/0.3.0/cslice/struct.CSlice.html>.
///
/// Additionally, see <https://github.com/m-labs/artiq/blob/b0d2705c385f64b6e6711c1726cd9178f40b598e/artiq/firmware/libeh/eh_artiq.rs>)
/// for ARTIQ-specific notes.
#[derive(Debug, Clone, Copy, Default)]
pub struct CSlice<Item>(pub Item);
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for CSlice<Item> {
type Fields<F: FieldTraversal<'ctx>> = CSliceFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
CSliceFields { base: traversal.add("base", Ptr(self.0)), len: traversal.add_auto("len") }
}
}

View File

@ -0,0 +1,41 @@
use crate::codegen::model::*;
use super::str::Str;
/// Fields of [`Exception<'ctx>`]
///
/// The definition came from `pub struct Exception<'a>` in
/// <https://github.com/m-labs/artiq/blob/master/artiq/firmware/libeh/eh_artiq.rs>.
pub struct ExceptionFields<'ctx, F: FieldTraversal<'ctx>> {
pub id: F::Out<Int<Int32>>,
pub filename: F::Out<Str>,
pub line: F::Out<Int<Int32>>,
pub column: F::Out<Int<Int32>>,
pub function: F::Out<Str>,
pub msg: F::Out<Str>,
pub params: [F::Out<Int<Int64>>; 3],
}
/// nac3core & ARTIQ's Exception
#[derive(Debug, Clone, Copy, Default)]
pub struct Exception;
impl<'ctx> StructKind<'ctx> for Exception {
type Fields<F: FieldTraversal<'ctx>> = ExceptionFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
id: traversal.add_auto("id"),
filename: traversal.add_auto("filename"),
line: traversal.add_auto("line"),
column: traversal.add_auto("column"),
function: traversal.add_auto("function"),
msg: traversal.add_auto("msg"),
params: [
traversal.add_auto("params[0]"),
traversal.add_auto("params[1]"),
traversal.add_auto("params[2]"),
],
}
}
}

View File

@ -0,0 +1,107 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{iter_type_vars, Type, TypeEnum},
};
use super::any::AnyObject;
/// Fields of [`List`]
pub struct ListFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
/// Array pointer to content
pub items: F::Out<Ptr<Item>>,
/// Number of items in the array
pub len: F::Out<Int<SizeT>>,
}
/// A list in NAC3.
#[derive(Debug, Clone, Copy, Default)]
pub struct List<Item> {
/// Model of the list items
pub item: Item,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for List<Item> {
type Fields<F: FieldTraversal<'ctx>> = ListFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
items: traversal.add("items", Ptr(self.item)),
len: traversal.add_auto("len"),
}
}
}
/// A NAC3 Python List object.
#[derive(Debug, Clone, Copy)]
pub struct ListObject<'ctx> {
/// Typechecker type of the list items
pub item_type: Type,
pub instance: Instance<'ctx, Ptr<Struct<List<Any<'ctx>>>>>,
}
impl<'ctx> ListObject<'ctx> {
/// Create a [`ListObject`] from an LLVM value and its typechecker [`Type`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> Self {
// Check typechecker type and extract `item_type`
let item_type = match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, params, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
iter_type_vars(params).next().unwrap().ty // Extract `item_type`
}
_ => {
panic!("Expecting type to be a list, but got {}", ctx.unifier.stringify(object.ty))
}
};
let plist = Ptr(Struct(List { item: Any(ctx.get_llvm_type(generator, item_type)) }));
// Create object
let value = plist.check_value(generator, ctx.ctx, object.value).unwrap();
ListObject { item_type, instance: value }
}
/// Get the `len()` of this list.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.len)
}
/// Get the `items` field as an opaque pointer.
pub fn get_opaque_items_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Int<Byte>>> {
self.instance.get(generator, ctx, |f| f.items).pointer_cast(generator, ctx, Int(Byte))
}
/// Get the value of this [`ListObject`] as a list with opaque items.
///
/// This function allocates on the stack to create the list, but the
/// reference to the `items` are preserved.
pub fn get_opaque_list_ptr<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Ptr<Struct<List<Int<Byte>>>>> {
let opaque_list = Struct(List { item: Int(Byte) }).alloca(generator, ctx);
// Copy items pointer
let items = self.get_opaque_items_ptr(generator, ctx);
opaque_list.set(ctx, |f| f.items, items);
// Copy len
let len = self.instance.get(generator, ctx, |f| f.len);
opaque_list.set(ctx, |f| f.len, len);
opaque_list
}
}

View File

@ -0,0 +1,9 @@
pub mod any;
pub mod cslice;
pub mod exception;
pub mod list;
pub mod ndarray;
pub mod range;
pub mod slice;
pub mod str;
pub mod tuple;

View File

@ -0,0 +1,178 @@
use super::NDArrayObject;
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_array_set_and_validate_list_shape,
call_nac3_ndarray_array_write_list_to_array,
},
model::*,
object::{any::AnyObject, list::ListObject},
stmt::gen_if_else_expr_callback,
CodeGenContext, CodeGenerator,
},
toplevel::helper::{arraylike_flatten_element_type, arraylike_get_ndims},
typecheck::typedef::{Type, TypeEnum},
};
fn get_list_object_dtype_and_ndims<'ctx>(
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> (Type, u64) {
let dtype = arraylike_flatten_element_type(&mut ctx.unifier, list.item_type);
let ndims = arraylike_get_ndims(&mut ctx.unifier, list.item_type);
let ndims = ndims + 1; // To count `list` itself.
(dtype, ndims)
}
impl<'ctx> NDArrayObject<'ctx> {
fn make_np_array_list_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
let (dtype, ndims_int) = get_list_object_dtype_and_ndims(ctx, list);
let list_value = list.get_opaque_list_ptr(generator, ctx);
// Validate `list` has a consistent shape.
// Raise an exception if `list` is something abnormal like `[[1, 2], [3]]`.
// If `list` has a consistent shape, deduce the shape and write it to `shape`.
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_ndarray_array_set_and_validate_list_shape(
generator, ctx, list_value, ndims, shape,
);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims_int);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
// Copy all contents from the list.
call_nac3_ndarray_array_write_list_to_array(generator, ctx, list_value, ndarray.instance);
ndarray
}
fn make_np_array_list_try_no_copy_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
) -> Self {
// np_array without copying is only possible `list` is not nested.
//
// If `list` is `list[T]`, we can create an ndarray with `data` set
// to the array pointer of `list`.
//
// If `list` is `list[list[T]]` or worse, copy.
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
if ndims == 1 {
// `list` is not nested
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, 1);
// Set data
let data = list.get_opaque_items_ptr(generator, ctx);
ndarray.instance.set(ctx, |f| f.data, data);
// ndarray->shape[0] = list->len;
let shape = ndarray.instance.get(generator, ctx, |f| f.shape);
let list_len = list.instance.get(generator, ctx, |f| f.len);
shape.set_index_const(ctx, 0, list_len);
// Set strides, the `data` is contiguous
ndarray.set_strides_contiguous(generator, ctx);
ndarray
} else {
// `list` is nested, copy
NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list)
}
}
fn make_np_array_list_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
list: ListObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let (dtype, ndims) = get_list_object_dtype_and_ndims(ctx, list);
let ndarray = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = NDArrayObject::make_np_array_list_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
|generator, ctx| {
let ndarray =
NDArrayObject::make_np_array_list_try_no_copy_impl(generator, ctx, list);
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(generator, ctx, ndarray, dtype, ndims)
}
pub fn make_np_array_ndarray_impl<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
let ndarray_val = gen_if_else_expr_callback(
generator,
ctx,
|_generator, _ctx| Ok(copy.value),
|generator, ctx| {
let ndarray = ndarray.make_copy(generator, ctx); // Force copy
Ok(Some(ndarray.instance.value))
},
|_generator, _ctx| {
// No need to copy. Return `ndarray` itself.
Ok(Some(ndarray.instance.value))
},
)
.unwrap()
.unwrap();
NDArrayObject::from_value_and_unpacked_types(
generator,
ctx,
ndarray_val,
ndarray.dtype,
ndarray.ndims,
)
}
/// Create a new ndarray like `np.array()`.
///
/// NOTE: The `ndmin` argument is not here. You may want to
/// do [`NDArrayObject::atleast_nd`] to achieve that.
pub fn make_np_array<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
copy: Instance<'ctx, Int<Bool>>,
) -> Self {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
let list = ListObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_list_impl(generator, ctx, list, copy)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
NDArrayObject::make_np_array_ndarray_impl(generator, ctx, ndarray, copy)
}
_ => panic!("Unrecognized object type: {}", ctx.unifier.stringify(object.ty)), // Typechecker ensures this
}
}
}

View File

@ -0,0 +1,135 @@
use itertools::Itertools;
use crate::codegen::{
irrt::{call_nac3_ndarray_broadcast_shapes, call_nac3_ndarray_broadcast_to},
model::*,
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`ShapeEntry`]
pub struct ShapeEntryFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
}
/// An IRRT structure used in broadcasting.
#[derive(Debug, Clone, Copy, Default)]
pub struct ShapeEntry;
impl<'ctx> StructKind<'ctx> for ShapeEntry {
type Fields<F: FieldTraversal<'ctx>> = ShapeEntryFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { ndims: traversal.add_auto("ndims"), shape: traversal.add_auto("shape") }
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a broadcast view on this ndarray with a target shape.
///
/// The input shape will be checked to make sure that it contains no negative values.
///
/// * `target_ndims` - The ndims type after broadcasting to the given shape.
/// The caller has to figure this out for this function.
/// * `target_shape` - An array pointer pointing to the target shape.
#[must_use]
pub fn broadcast_to<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
target_ndims: u64,
target_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let broadcast_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, target_ndims);
broadcast_ndarray.copy_shape_from_array(generator, ctx, target_shape);
call_nac3_ndarray_broadcast_to(generator, ctx, self.instance, broadcast_ndarray.instance);
broadcast_ndarray
}
}
/// A result produced by [`broadcast_all_ndarrays`]
#[derive(Debug, Clone)]
pub struct BroadcastAllResult<'ctx> {
/// The statically known `ndims` of the broadcast result.
pub ndims: u64,
/// The broadcasting shape.
pub shape: Instance<'ctx, Ptr<Int<SizeT>>>,
/// Broadcasted views on the inputs.
///
/// All of them will have `shape` [`BroadcastAllResult::shape`] and
/// `ndims` [`BroadcastAllResult::ndims`]. The length of the vector
/// is the same as the input.
pub ndarrays: Vec<NDArrayObject<'ctx>>,
}
/// Helper function to call `call_nac3_ndarray_broadcast_shapes`
fn broadcast_shapes<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_shape_entries: &[(Instance<'ctx, Ptr<Int<SizeT>>>, u64)], // (shape, shape's length/ndims)
broadcast_ndims: u64,
broadcast_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
// Prepare input shape entries to be passed to `call_nac3_ndarray_broadcast_shapes`.
let num_shape_entries =
Int(SizeT).const_int(generator, ctx.ctx, u64::try_from(in_shape_entries.len()).unwrap());
let shape_entries = Struct(ShapeEntry).array_alloca(generator, ctx, num_shape_entries.value);
for (i, (in_shape, in_ndims)) in in_shape_entries.iter().enumerate() {
let pshape_entry = shape_entries.offset_const(ctx, i as u64);
let in_ndims = Int(SizeT).const_int(generator, ctx.ctx, *in_ndims);
pshape_entry.set(ctx, |f| f.ndims, in_ndims);
pshape_entry.set(ctx, |f| f.shape, *in_shape);
}
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims);
call_nac3_ndarray_broadcast_shapes(
generator,
ctx,
num_shape_entries,
shape_entries,
broadcast_ndims,
broadcast_shape,
);
}
impl<'ctx> NDArrayObject<'ctx> {
/// Broadcast all ndarrays according to `np.broadcast()` and return a [`BroadcastAllResult`]
/// containing all the information of the result of the broadcast operation.
pub fn broadcast<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarrays: &[Self],
) -> BroadcastAllResult<'ctx> {
assert!(!ndarrays.is_empty());
// Infer the broadcast output ndims.
let broadcast_ndims_int = ndarrays.iter().map(|ndarray| ndarray.ndims).max().unwrap();
let broadcast_ndims = Int(SizeT).const_int(generator, ctx.ctx, broadcast_ndims_int);
let broadcast_shape = Int(SizeT).array_alloca(generator, ctx, broadcast_ndims.value);
let shape_entries = ndarrays
.iter()
.map(|ndarray| (ndarray.instance.get(generator, ctx, |f| f.shape), ndarray.ndims))
.collect_vec();
broadcast_shapes(generator, ctx, &shape_entries, broadcast_ndims_int, broadcast_shape);
// Broadcast all the inputs to shape `dst_shape`.
let broadcast_ndarrays: Vec<_> = ndarrays
.iter()
.map(|ndarray| {
ndarray.broadcast_to(generator, ctx, broadcast_ndims_int, broadcast_shape)
})
.collect_vec();
BroadcastAllResult {
ndims: broadcast_ndims_int,
shape: broadcast_shape,
ndarrays: broadcast_ndarrays,
}
}
}

View File

@ -0,0 +1,134 @@
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Fields of [`ContiguousNDArray`]
pub struct ContiguousNDArrayFields<'ctx, F: FieldTraversal<'ctx>, Item: Model<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub data: F::Out<Ptr<Item>>,
}
/// An ndarray without strides and non-opaque `data` field in NAC3.
#[derive(Debug, Clone, Copy)]
pub struct ContiguousNDArray<M> {
/// [`Model`] of the items.
pub item: M,
}
impl<'ctx, Item: Model<'ctx>> StructKind<'ctx> for ContiguousNDArray<Item> {
type Fields<F: FieldTraversal<'ctx>> = ContiguousNDArrayFields<'ctx, F, Item>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
data: traversal.add("data", Ptr(self.item)),
}
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create a [`ContiguousNDArray`] from the contents of this ndarray.
///
/// This function may or may not be expensive depending on if this ndarray has contiguous data.
///
/// If this ndarray is not C-contiguous, this function will allocate memory on the stack for the `data` field of
/// the returned [`ContiguousNDArray`] and copy contents of this ndarray to there.
///
/// If this ndarray is C-contiguous, contents of this ndarray will not be copied. The created [`ContiguousNDArray`]
/// will share memory with this ndarray.
///
/// The `item_model` sets the [`Model`] of the returned [`ContiguousNDArray`]'s `Item` model for type-safety, and
/// should match the `ctx.get_llvm_type()` of this ndarray's `dtype`. Otherwise this function panics. Use model [`Any`]
/// if you don't care/cannot know the [`Model`] in advance.
pub fn make_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
item_model: Item,
) -> Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>> {
// Sanity check on `self.dtype` and `item_model`.
let dtype_llvm = ctx.get_llvm_type(generator, self.dtype);
item_model.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
let cdarray_model = Struct(ContiguousNDArray { item: item_model });
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
// Allocate and setup the resulting [`ContiguousNDArray`].
let result = cdarray_model.alloca(generator, ctx);
// Set ndims and shape.
let ndims = self.ndims_llvm(generator, ctx.ctx);
result.set(ctx, |f| f.ndims, ndims);
let shape = self.instance.get(generator, ctx, |f| f.shape);
result.set(ctx, |f| f.shape, shape);
let is_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb; This ndarray is contiguous.
ctx.builder.position_at_end(then_bb);
let data = self.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb; This ndarray is not contiguous. Do a full-copy on `data`.
// `make_copy` produces an ndarray with contiguous `data`.
ctx.builder.position_at_end(else_bb);
let copied_ndarray = self.make_copy(generator, ctx);
let data = copied_ndarray.instance.get(generator, ctx, |f| f.data);
let data = data.pointer_cast(generator, ctx, item_model);
result.set(ctx, |f| f.data, data);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition to end_bb for continuation
ctx.builder.position_at_end(end_bb);
result
}
/// Create an [`NDArrayObject`] from a [`ContiguousNDArray`].
///
/// The operation is super cheap. The newly created [`NDArrayObject`] will share the
/// same memory as the [`ContiguousNDArray`].
///
/// `ndims` has to be provided as [`NDArrayObject`] requires a statically known `ndims` value, despite
/// the fact that the information should be contained within the [`ContiguousNDArray`].
pub fn from_contiguous_ndarray<G: CodeGenerator + ?Sized, Item: Model<'ctx>>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
carray: Instance<'ctx, Ptr<Struct<ContiguousNDArray<Item>>>>,
dtype: Type,
ndims: u64,
) -> Self {
// Sanity check on `dtype` and `contiguous_array`'s `Item` model.
let dtype_llvm = ctx.get_llvm_type(generator, dtype);
carray.model.0 .0.item.check_type(generator, ctx.ctx, dtype_llvm).unwrap();
// TODO: Debug assert `ndims == carray.ndims` to catch bugs.
// Allocate the resulting ndarray.
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
// Copy shape and update strides
let shape = carray.get(generator, ctx, |f| f.shape);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.set_strides_contiguous(generator, ctx);
// Share data
let data = carray.get(generator, ctx, |f| f.data).pointer_cast(generator, ctx, Int(Byte));
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
}

View File

@ -0,0 +1,176 @@
use inkwell::{values::BasicValueEnum, IntPredicate};
use crate::{
codegen::{
irrt::call_nac3_ndarray_util_assert_shape_no_negative, model::*, CodeGenContext,
CodeGenerator,
},
typecheck::typedef::Type,
};
use super::NDArrayObject;
/// Get the zero value in `np.zeros()` of a `dtype`.
fn ndarray_zero_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i32_type().const_zero().into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
ctx.ctx.i64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_zero().into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "").value.into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
/// Get the one value in `np.ones()` of a `dtype`.
fn ndarray_one_value<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
) -> BasicValueEnum<'ctx> {
if [ctx.primitives.int32, ctx.primitives.uint32]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int32);
ctx.ctx.i32_type().const_int(1, is_signed).into()
} else if [ctx.primitives.int64, ctx.primitives.uint64]
.iter()
.any(|ty| ctx.unifier.unioned(dtype, *ty))
{
let is_signed = ctx.unifier.unioned(dtype, ctx.primitives.int64);
ctx.ctx.i64_type().const_int(1, is_signed).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.float) {
ctx.ctx.f64_type().const_float(1.0).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.bool) {
ctx.ctx.bool_type().const_int(1, false).into()
} else if ctx.unifier.unioned(dtype, ctx.primitives.str) {
ctx.gen_string(generator, "1").value.into()
} else {
panic!("unrecognized dtype: {}", ctx.unifier.stringify(dtype));
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Create an ndarray like `np.empty`.
pub fn make_np_empty<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// Validate `shape`
let ndims_llvm = Int(SizeT).const_int(generator, ctx.ctx, ndims);
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, ndims_llvm, shape);
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, ndims);
ndarray.copy_shape_from_array(generator, ctx, shape);
ndarray.create_data(generator, ctx);
ndarray
}
/// Create an ndarray like `np.full`.
pub fn make_np_full<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
fill_value: BasicValueEnum<'ctx>,
) -> Self {
let ndarray = NDArrayObject::make_np_empty(generator, ctx, dtype, ndims, shape);
ndarray.fill(generator, ctx, fill_value);
ndarray
}
/// Create an ndarray like `np.zero`.
pub fn make_np_zeros<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_zero_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.ones`.
pub fn make_np_ones<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
let fill_value = ndarray_one_value(generator, ctx, dtype);
NDArrayObject::make_np_full(generator, ctx, dtype, ndims, shape, fill_value)
}
/// Create an ndarray like `np.eye`.
pub fn make_np_eye<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
nrows: Instance<'ctx, Int<SizeT>>,
ncols: Instance<'ctx, Int<SizeT>>,
offset: Instance<'ctx, Int<SizeT>>,
) -> Self {
let ndzero = ndarray_zero_value(generator, ctx, dtype);
let ndone = ndarray_one_value(generator, ctx, dtype);
let ndarray = NDArrayObject::alloca_dynamic_shape(generator, ctx, dtype, &[nrows, ncols]);
// Create data and make the matrix like look np.eye()
ndarray.create_data(generator, ctx);
ndarray
.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
// NOTE: rows and cols can never be zero here, since this ndarray's `np.size` would be zero
// and this loop would not execute.
// Load up `row_i` and `col_i` from indices.
let row_i = nditer.get_indices().get_index_const(generator, ctx, 0);
let col_i = nditer.get_indices().get_index_const(generator, ctx, 1);
let be_one = row_i.add(ctx, offset).compare(ctx, IntPredicate::EQ, col_i);
let value = ctx.builder.build_select(be_one.value, ndone, ndzero, "value").unwrap();
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
ndarray
}
/// Create an ndarray like `np.identity`.
pub fn make_np_identity<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
size: Instance<'ctx, Int<SizeT>>,
) -> Self {
// Convenient implementation
let offset = Int(SizeT).const_0(generator, ctx.ctx);
NDArrayObject::make_np_eye(generator, ctx, dtype, size, size, offset)
}
}

View File

@ -0,0 +1,223 @@
use crate::codegen::{
irrt::call_nac3_ndarray_index,
model::*,
object::slice::{RustSlice, Slice},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
pub type NDIndexType = Byte;
/// Fields of [`NDIndex`]
#[derive(Debug, Clone, Copy)]
pub struct NDIndexFields<'ctx, F: FieldTraversal<'ctx>> {
pub type_: F::Out<Int<NDIndexType>>, // Defined to be uint8_t in IRRT
pub data: F::Out<Ptr<Int<Byte>>>,
}
/// An IRRT representation of an ndarray subscript index.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NDIndex;
impl<'ctx> StructKind<'ctx> for NDIndex {
type Fields<F: FieldTraversal<'ctx>> = NDIndexFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields { type_: traversal.add_auto("type"), data: traversal.add_auto("data") }
}
}
// A convenience enum to prepare an [`NDIndex`].
#[derive(Debug, Clone)]
pub enum RustNDIndex<'ctx> {
SingleElement(Instance<'ctx, Int<Int32>>), // TODO: To be SizeT
Slice(RustSlice<'ctx, Int32>), // TODO: To be SizeT
NewAxis,
Ellipsis,
}
impl<'ctx> RustNDIndex<'ctx> {
/// Get the value to set `NDIndex::type` for this variant.
fn get_type_id(&self) -> u64 {
// Defined in IRRT, must be in sync
match self {
RustNDIndex::SingleElement(_) => 0,
RustNDIndex::Slice(_) => 1,
RustNDIndex::NewAxis => 2,
RustNDIndex::Ellipsis => 3,
}
}
/// Write the contents to an LLVM [`NDIndex`].
fn write_to_ndindex<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_ndindex_ptr: Instance<'ctx, Ptr<Struct<NDIndex>>>,
) {
// Set `dst_ndindex_ptr->type`
dst_ndindex_ptr.gep(ctx, |f| f.type_).store(
ctx,
Int(NDIndexType::default()).const_int(generator, ctx.ctx, self.get_type_id()),
);
// Set `dst_ndindex_ptr->data`
match self {
RustNDIndex::SingleElement(in_index) => {
let index_ptr = Int(Int32).alloca(generator, ctx);
index_ptr.store(ctx, *in_index);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, index_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::Slice(in_rust_slice) => {
let user_slice_ptr = Struct(Slice(Int32)).alloca(generator, ctx);
in_rust_slice.write_to_slice(generator, ctx, user_slice_ptr);
dst_ndindex_ptr
.gep(ctx, |f| f.data)
.store(ctx, user_slice_ptr.pointer_cast(generator, ctx, Int(Byte)));
}
RustNDIndex::NewAxis | RustNDIndex::Ellipsis => {}
}
}
/// Allocate an array of `NDIndex`es on the stack and return its stack pointer.
pub fn alloca_ndindices<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
in_ndindices: &[RustNDIndex<'ctx>],
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Struct<NDIndex>>>) {
let ndindex_model = Struct(NDIndex);
let num_ndindices = Int(SizeT).const_int(generator, ctx.ctx, in_ndindices.len() as u64);
let ndindices = ndindex_model.array_alloca(generator, ctx, num_ndindices.value);
for (i, in_ndindex) in in_ndindices.iter().enumerate() {
let pndindex = ndindices.offset_const(ctx, i as u64);
in_ndindex.write_to_ndindex(generator, ctx, pndindex);
}
(num_ndindices, ndindices)
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Get the ndims [`Type`] after indexing with a given slice.
#[must_use]
pub fn deduce_ndims_after_indexing_with(&self, indices: &[RustNDIndex<'ctx>]) -> u64 {
let mut ndims = self.ndims;
for index in indices {
match index {
RustNDIndex::SingleElement(_) => {
ndims -= 1; // Single elements decrements ndims
}
RustNDIndex::NewAxis => {
ndims += 1; // `np.newaxis` / `none` adds a new axis
}
RustNDIndex::Ellipsis | RustNDIndex::Slice(_) => {}
}
}
ndims
}
/// Index into the ndarray, and return a newly-allocated view on this ndarray.
///
/// This function behaves like NumPy's ndarray indexing, but if the indices index
/// into a single element, an unsized ndarray is returned.
#[must_use]
pub fn index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: &[RustNDIndex<'ctx>],
) -> Self {
let dst_ndims = self.deduce_ndims_after_indexing_with(indices);
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, dst_ndims);
let (num_indices, indices) = RustNDIndex::alloca_ndindices(generator, ctx, indices);
call_nac3_ndarray_index(
generator,
ctx,
num_indices,
indices,
self.instance,
dst_ndarray.instance,
);
dst_ndarray
}
}
pub mod util {
use itertools::Itertools;
use nac3parser::ast::{Expr, ExprKind};
use crate::{
codegen::{model::*, object::slice::util::gen_slice, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::RustNDIndex;
/// Generate LLVM code to transform an ndarray subscript expression to
/// its list of [`RustNDIndex`]
///
/// i.e.,
/// ```python
/// my_ndarray[::3, 1, :2:]
/// ^^^^^^^^^^^ Then these into a three `RustNDIndex`es
/// ```
pub fn gen_ndarray_subscript_ndindices<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
subscript: &Expr<Option<Type>>,
) -> Result<Vec<RustNDIndex<'ctx>>, String> {
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
// Annoying notes about `slice`
// - `my_array[5]`
// - slice is a `Constant`
// - `my_array[:5]`
// - slice is a `Slice`
// - `my_array[:]`
// - slice is a `Slice`, but lower upper step would all be `Option::None`
// - `my_array[:, :]`
// - slice is now a `Tuple` of two `Slice`-s
//
// In summary:
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
//
// So we first "flatten" out the slice expression
let index_exprs = match &subscript.node {
ExprKind::Tuple { elts, .. } => elts.iter().collect_vec(),
_ => vec![subscript],
};
// Process all index expressions
let mut rust_ndindices: Vec<RustNDIndex> = Vec::with_capacity(index_exprs.len()); // Not using iterators here because `?` is used here.
for index_expr in index_exprs {
// NOTE: Currently nac3core's slices do not have an object representation,
// so the code/implementation looks awkward - we have to do pattern matching on the expression
let ndindex = if let ExprKind::Slice { lower, upper, step } = &index_expr.node {
// Handle slices
let slice = gen_slice(generator, ctx, lower, upper, step)?;
RustNDIndex::Slice(slice)
} else {
// Treat and handle everything else as a single element index.
let index = generator.gen_expr(ctx, index_expr)?.unwrap().to_basic_value_enum(
ctx,
generator,
ctx.primitives.int32, // Must be int32, this checks for illegal values
)?;
let index = Int(Int32).check_value(generator, ctx.ctx, index).unwrap();
RustNDIndex::SingleElement(index)
};
rust_ndindices.push(ndindex);
}
Ok(rust_ndindices)
}
}

View File

@ -0,0 +1,220 @@
use inkwell::values::BasicValueEnum;
use itertools::Itertools;
use crate::{
codegen::{
object::ndarray::{AnyObject, NDArrayObject},
stmt::gen_for_callback,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::Type,
};
use super::{nditer::NDIterHandle, NDArrayOut, ScalarOrNDArray};
impl<'ctx> NDArrayObject<'ctx> {
/// Generate LLVM IR to broadcast `ndarray`s together, and starmap through them with `mapping` elementwise.
///
/// `mapping` is an LLVM IR generator. The input of `mapping` is the list of elements when iterating through
/// the input `ndarrays` after broadcasting. The output of `mapping` is the result of the elementwise operation.
///
/// `out` specifies whether the result should be a new ndarray or to be written an existing ndarray.
pub fn broadcast_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ndarrays: &[Self],
out: NDArrayOut<'ctx>,
mapping: MappingFn,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Broadcast inputs
let broadcast_result = NDArrayObject::broadcast(generator, ctx, ndarrays);
let out_ndarray = match out {
NDArrayOut::NewNDArray { dtype } => {
// Create a new ndarray based on the broadcast shape.
let result_ndarray =
NDArrayObject::alloca(generator, ctx, dtype, broadcast_result.ndims);
result_ndarray.copy_shape_from_array(generator, ctx, broadcast_result.shape);
result_ndarray.create_data(generator, ctx);
result_ndarray
}
NDArrayOut::WriteToNDArray { ndarray: result_ndarray } => {
// Use an existing ndarray.
// Check that its shape is compatible with the broadcast shape.
result_ndarray.assert_can_be_written_by_out(
generator,
ctx,
broadcast_result.ndims,
broadcast_result.shape,
);
result_ndarray
}
};
// Map element-wise and store results into `mapped_ndarray`.
let nditer = NDIterHandle::new(generator, ctx, out_ndarray);
gen_for_callback(
generator,
ctx,
Some("broadcast_starmap"),
|generator, ctx| {
// Create NDIters for all broadcasted input ndarrays.
let other_nditers = broadcast_result
.ndarrays
.iter()
.map(|ndarray| NDIterHandle::new(generator, ctx, *ndarray))
.collect_vec();
Ok((nditer, other_nditers))
},
|generator, ctx, (out_nditer, _in_nditers)| {
// We can simply use `out_nditer`'s `has_next()`.
// `in_nditers`' `has_next()`s should return the same value.
Ok(out_nditer.has_next(generator, ctx).value)
},
|generator, ctx, _hooks, (out_nditer, in_nditers)| {
// Get all the scalars from the broadcasted input ndarrays, pass them to `mapping`,
// and write to `out_ndarray`.
let in_scalars = in_nditers
.iter()
.map(|nditer| nditer.get_scalar(generator, ctx).value)
.collect_vec();
let result = mapping(generator, ctx, &in_scalars)?;
let p = out_nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, result).unwrap();
Ok(())
},
|generator, ctx, (out_nditer, in_nditers)| {
// Advance all iterators
out_nditer.next(generator, ctx);
in_nditers.iter().for_each(|nditer| nditer.next(generator, ctx));
Ok(())
},
)?;
Ok(out_ndarray)
}
/// Map through this ndarray with an elementwise function.
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
out: NDArrayOut<'ctx>,
mapping: Mapping,
) -> Result<Self, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
NDArrayObject::broadcast_starmap(
generator,
ctx,
&[*self],
out,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Starmap through a list of inputs using `mapping`, where an input could be an ndarray, a scalar.
///
/// This function is very helpful when implementing NumPy functions that takes on either scalars or ndarrays or a mix of them
/// as their inputs and produces either an ndarray with broadcast, or a scalar if all its inputs are all scalars.
///
/// For example ,this function can be used to implement `np.add`, which has the following behaviors:
/// - `np.add(3, 4) = 7` # (scalar, scalar) -> scalar
/// - `np.add(3, np.array([4, 5, 6]))` # (scalar, ndarray) -> ndarray; the first `scalar` is converted into an ndarray and broadcasted.
/// - `np.add(np.array([[1], [2], [3]]), np.array([[4, 5, 6]]))` # (ndarray, ndarray) -> ndarray; there is broadcasting.
///
/// ## Details:
///
/// If `inputs` are all [`ScalarOrNDArray::Scalar`], the output will be a [`ScalarOrNDArray::Scalar`] with type `ret_dtype`.
///
/// Otherwise (if there are any [`ScalarOrNDArray::NDArray`] in `inputs`), all inputs will be 'as-ndarray'-ed into ndarrays,
/// then all inputs (now all ndarrays) will be passed to [`NDArrayObject::broadcasting_starmap`] and **create** a new ndarray
/// with dtype `ret_dtype`.
pub fn broadcasting_starmap<'a, G, MappingFn>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
inputs: &[ScalarOrNDArray<'ctx>],
ret_dtype: Type,
mapping: MappingFn,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
MappingFn: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
&[BasicValueEnum<'ctx>],
) -> Result<BasicValueEnum<'ctx>, String>,
{
// Check if all inputs are Scalars
let all_scalars: Option<Vec<_>> = inputs.iter().map(AnyObject::try_from).try_collect().ok();
if let Some(scalars) = all_scalars {
let scalars = scalars.iter().map(|scalar| scalar.value).collect_vec();
let value = mapping(generator, ctx, &scalars)?;
Ok(ScalarOrNDArray::Scalar(AnyObject { ty: ret_dtype, value }))
} else {
// Promote all input to ndarrays and map through them.
let inputs = inputs.iter().map(|input| input.to_ndarray(generator, ctx)).collect_vec();
let ndarray = NDArrayObject::broadcast_starmap(
generator,
ctx,
&inputs,
NDArrayOut::NewNDArray { dtype: ret_dtype },
mapping,
)?;
Ok(ScalarOrNDArray::NDArray(ndarray))
}
}
/// Map through this [`ScalarOrNDArray`] with an elementwise function.
///
/// If this is a scalar, `mapping` will directly act on the scalar. This function will return a [`ScalarOrNDArray::Scalar`] of that result.
///
/// If this is an ndarray, `mapping` will be applied to the elements of the ndarray. A new ndarray of the results will be created and
/// returned as a [`ScalarOrNDArray::NDArray`].
pub fn map<'a, G, Mapping>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
ret_dtype: Type,
mapping: Mapping,
) -> Result<ScalarOrNDArray<'ctx>, String>
where
G: CodeGenerator + ?Sized,
Mapping: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BasicValueEnum<'ctx>,
) -> Result<BasicValueEnum<'ctx>, String>,
{
ScalarOrNDArray::broadcasting_starmap(
generator,
ctx,
&[*self],
ret_dtype,
|generator, ctx, scalars| mapping(generator, ctx, scalars[0]),
)
}
}

View File

@ -0,0 +1,218 @@
use std::cmp::max;
use nac3parser::ast::Operator;
use util::gen_for_model;
use crate::{
codegen::{
expr::gen_binop_expr_with_values, irrt::call_nac3_ndarray_matmul_calculate_shapes,
model::*, object::ndarray::indexing::RustNDIndex, CodeGenContext, CodeGenerator,
},
typecheck::{magic_methods::Binop, typedef::Type},
};
use super::{NDArrayObject, NDArrayOut};
/// Perform `np.einsum("...ij,...jk->...ik", in_a, in_b)`.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
fn matmul_at_least_2d<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst_dtype: Type,
in_a: NDArrayObject<'ctx>,
in_b: NDArrayObject<'ctx>,
) -> NDArrayObject<'ctx> {
assert!(in_a.ndims >= 2);
assert!(in_b.ndims >= 2);
// Deduce ndims of the result of matmul.
let ndims_int = max(in_a.ndims, in_b.ndims);
let ndims = Int(SizeT).const_int(generator, ctx.ctx, ndims_int);
let num_0 = Int(SizeT).const_int(generator, ctx.ctx, 0);
let num_1 = Int(SizeT).const_int(generator, ctx.ctx, 1);
// Broadcasts `in_a.shape[:-2]` and `in_b.shape[:-2]` together and allocate the
// destination ndarray to store the result of matmul.
let (lhs, rhs, dst) = {
let in_lhs_ndims = in_a.ndims_llvm(generator, ctx.ctx);
let in_lhs_shape = in_a.instance.get(generator, ctx, |f| f.shape);
let in_rhs_ndims = in_b.ndims_llvm(generator, ctx.ctx);
let in_rhs_shape = in_b.instance.get(generator, ctx, |f| f.shape);
let lhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let rhs_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
let dst_shape = Int(SizeT).array_alloca(generator, ctx, ndims.value);
// Matmul dimension compatibility is checked here.
call_nac3_ndarray_matmul_calculate_shapes(
generator,
ctx,
in_lhs_ndims,
in_lhs_shape,
in_rhs_ndims,
in_rhs_shape,
ndims,
lhs_shape,
rhs_shape,
dst_shape,
);
let lhs = in_a.broadcast_to(generator, ctx, ndims_int, lhs_shape);
let rhs = in_b.broadcast_to(generator, ctx, ndims_int, rhs_shape);
let dst = NDArrayObject::alloca(generator, ctx, dst_dtype, ndims_int);
dst.copy_shape_from_array(generator, ctx, dst_shape);
dst.create_data(generator, ctx);
(lhs, rhs, dst)
};
let len = lhs.instance.get(generator, ctx, |f| f.shape).get_index_const(
generator,
ctx,
ndims_int - 1,
);
let at_row = ndims_int - 2;
let at_col = ndims_int - 1;
let dst_dtype_llvm = ctx.get_llvm_type(generator, dst_dtype);
let dst_zero = dst_dtype_llvm.const_zero();
dst.foreach(generator, ctx, |generator, ctx, _, hdl| {
let pdst_ij = hdl.get_pointer(generator, ctx);
ctx.builder.build_store(pdst_ij, dst_zero).unwrap();
let indices = hdl.get_indices();
let i = indices.get_index_const(generator, ctx, at_row);
let j = indices.get_index_const(generator, ctx, at_col);
gen_for_model(generator, ctx, num_0, len, num_1, |generator, ctx, _, k| {
// `indices` is modified to index into `a` and `b`, and restored.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, k);
let a_ik = lhs.get_scalar_by_indices(generator, ctx, indices);
indices.set_index_const(ctx, at_row, k);
indices.set_index_const(ctx, at_col, j);
let b_kj = rhs.get_scalar_by_indices(generator, ctx, indices);
// Restore `indices`.
indices.set_index_const(ctx, at_row, i);
indices.set_index_const(ctx, at_col, j);
// x = a_[...]ik * b_[...]kj
let x = gen_binop_expr_with_values(
generator,
ctx,
(&Some(lhs.dtype), a_ik.value),
Binop::normal(Operator::Mult),
(&Some(rhs.dtype), b_kj.value),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
// dst_[...]ij += x
let dst_ij = ctx.builder.build_load(pdst_ij, "").unwrap();
let dst_ij = gen_binop_expr_with_values(
generator,
ctx,
(&Some(dst_dtype), dst_ij),
Binop::normal(Operator::Add),
(&Some(dst_dtype), x),
ctx.current_loc,
)?
.unwrap()
.to_basic_value_enum(ctx, generator, dst_dtype)?;
ctx.builder.build_store(pdst_ij, dst_ij).unwrap();
Ok(())
})
})
.unwrap();
dst
}
impl<'ctx> NDArrayObject<'ctx> {
/// Perform `np.matmul` according to the rules in
/// <https://numpy.org/doc/stable/reference/generated/numpy.matmul.html>.
///
/// This function always return an [`NDArrayObject`]. You may want to use [`NDArrayObject::split_unsized`]
/// to handle when the output could be a scalar.
///
/// `dst_dtype` defines the dtype of the returned ndarray.
pub fn matmul<G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
a: Self,
b: Self,
out: NDArrayOut<'ctx>,
) -> Self {
// Sanity check, but type inference should prevent this.
assert!(a.ndims > 0 && b.ndims > 0, "np.matmul disallows scalar input");
/*
If both arguments are 2-D they are multiplied like conventional matrices.
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indices and broadcast accordingly.
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
*/
let new_a = if a.ndims == 1 {
// Prepend 1 to its dimensions
a.index(generator, ctx, &[RustNDIndex::NewAxis, RustNDIndex::Ellipsis])
} else {
a
};
let new_b = if b.ndims == 1 {
// Append 1 to its dimensions
b.index(generator, ctx, &[RustNDIndex::Ellipsis, RustNDIndex::NewAxis])
} else {
b
};
// NOTE: `result` will always be a newly allocated ndarray.
// Current implementation cannot do in-place matrix muliplication.
let mut result = matmul_at_least_2d(generator, ctx, out.get_dtype(), new_a, new_b);
// Postprocessing on the result to remove prepended/appended axes.
let mut postindices = vec![];
let zero = Int(Int32).const_0(generator, ctx.ctx);
if a.ndims == 1 {
// Remove the prepended 1
postindices.push(RustNDIndex::SingleElement(zero));
}
if b.ndims == 1 {
// Remove the appended 1
postindices.push(RustNDIndex::Ellipsis);
postindices.push(RustNDIndex::SingleElement(zero));
}
if !postindices.is_empty() {
result = result.index(generator, ctx, &postindices);
}
match out {
NDArrayOut::NewNDArray { .. } => result,
NDArrayOut::WriteToNDArray { ndarray: out_ndarray } => {
let result_shape = result.instance.get(generator, ctx, |f| f.shape);
out_ndarray.assert_can_be_written_by_out(
generator,
ctx,
result.ndims,
result_shape,
);
out_ndarray.copy_data_from(generator, ctx, result);
out_ndarray
}
}
}
}

View File

@ -0,0 +1,671 @@
pub mod array;
pub mod broadcast;
pub mod contiguous;
pub mod factory;
pub mod indexing;
pub mod map;
pub mod matmul;
pub mod nditer;
pub mod shape_util;
pub mod view;
use inkwell::{
context::Context,
types::BasicType,
values::{BasicValue, BasicValueEnum, PointerValue},
AddressSpace,
};
use crate::{
codegen::{
irrt::{
call_nac3_ndarray_copy_data, call_nac3_ndarray_get_nth_pelement,
call_nac3_ndarray_get_pelement_by_indices, call_nac3_ndarray_is_c_contiguous,
call_nac3_ndarray_len, call_nac3_ndarray_nbytes,
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
call_nac3_ndarray_util_assert_output_shape_same,
},
model::*,
CodeGenContext, CodeGenerator,
},
toplevel::{
helper::{create_ndims, extract_ndims},
numpy::{make_ndarray_ty, unpack_ndarray_var_tys},
},
typecheck::typedef::{Type, TypeEnum},
};
use super::{any::AnyObject, tuple::TupleObject};
/// Fields of [`NDArray`]
pub struct NDArrayFields<'ctx, F: FieldTraversal<'ctx>> {
pub data: F::Out<Ptr<Int<Byte>>>,
pub itemsize: F::Out<Int<SizeT>>,
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
}
/// A strided ndarray in NAC3.
///
/// See IRRT implementation for details about its fields.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDArray;
impl<'ctx> StructKind<'ctx> for NDArray {
type Fields<F: FieldTraversal<'ctx>> = NDArrayFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
data: traversal.add_auto("data"),
itemsize: traversal.add_auto("itemsize"),
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
}
}
}
/// A NAC3 Python ndarray object.
#[derive(Debug, Clone, Copy)]
pub struct NDArrayObject<'ctx> {
pub dtype: Type,
pub ndims: u64,
pub instance: Instance<'ctx, Ptr<Struct<NDArray>>>,
}
impl<'ctx> NDArrayObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into an [`NDArrayObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
let (dtype, ndims) = unpack_ndarray_var_tys(&mut ctx.unifier, object.ty);
let ndims = extract_ndims(&ctx.unifier, ndims);
Self::from_value_and_unpacked_types(generator, ctx, object.value, dtype, ndims)
}
/// Like [`NDArrayObject::from_object`] but you directly supply the ndarray's
/// `dtype` and `ndims`.
pub fn from_value_and_unpacked_types<V: BasicValue<'ctx>, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: V,
dtype: Type,
ndims: u64,
) -> Self {
let value = Ptr(Struct(NDArray)).check_value(generator, ctx.ctx, value).unwrap();
NDArrayObject { dtype, ndims, instance: value }
}
/// Get this ndarray's `ndims` as an LLVM constant.
pub fn ndims_llvm<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &'ctx Context,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx, self.ndims)
}
/// Get the typechecker ndarray type of this [`NDArrayObject`].
pub fn get_type(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> Type {
let ndims = create_ndims(&mut ctx.unifier, self.ndims);
make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(self.dtype), Some(ndims))
}
/// Forget that this is an ndarray and convert into an [`AnyObject`].
pub fn to_any(&self, ctx: &mut CodeGenContext<'ctx, '_>) -> AnyObject<'ctx> {
let ty = self.get_type(ctx);
AnyObject { value: self.instance.value.as_basic_value_enum(), ty }
}
/// Allocate an ndarray on the stack given its `ndims` and `dtype`.
///
/// `shape` and `strides` will be automatically allocated on the stack.
//e
/// The returned ndarray's content will be:
/// - `data`: set to `nullptr`.
/// - `itemsize`: set to the `sizeof()` of `dtype`.
/// - `ndims`: set to the value of `ndims`.
/// - `shape`: allocated with an array of length `ndims` with uninitialized values.
/// - `strides`: allocated with an array of length `ndims` with uninitialized values.
pub fn alloca<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
ndims: u64,
) -> Self {
let ndarray = Struct(NDArray).alloca(generator, ctx);
let data = Ptr(Int(Byte)).nullptr(generator, ctx.ctx);
ndarray.set(ctx, |f| f.data, data);
let itemsize = ctx.get_llvm_type(generator, dtype).size_of().unwrap();
let itemsize = Int(SizeT).z_extend_or_truncate(generator, ctx, itemsize);
ndarray.set(ctx, |f| f.itemsize, itemsize);
let ndims_val = Int(SizeT).const_int(generator, ctx.ctx, ndims);
ndarray.set(ctx, |f| f.ndims, ndims_val);
let shape = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.shape, shape);
let strides = Int(SizeT).array_alloca(generator, ctx, ndims_val.value);
ndarray.set(ctx, |f| f.strides, strides);
NDArrayObject { dtype, ndims, instance: ndarray }
}
/// Convenience function. Allocate an [`NDArrayObject`] with a statically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_constant_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[u64],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
let dim = Int(SizeT).const_int(generator, ctx.ctx, *dim);
dst_shape.offset_const(ctx, i as u64).store(ctx, dim);
}
ndarray
}
/// Convenience function. Allocate an [`NDArrayObject`] with a dynamically known shape.
///
/// The returned [`NDArrayObject`]'s `data` and `strides` are uninitialized.
pub fn alloca_dynamic_shape<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dtype: Type,
shape: &[Instance<'ctx, Int<SizeT>>],
) -> Self {
let ndarray = NDArrayObject::alloca(generator, ctx, dtype, shape.len() as u64);
// Write shape
let dst_shape = ndarray.instance.get(generator, ctx, |f| f.shape);
for (i, dim) in shape.iter().enumerate() {
dst_shape.offset_const(ctx, i as u64).store(ctx, *dim);
}
ndarray
}
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
/// The allocated data buffer is considered to be *owned* by the ndarray.
///
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
///
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
pub fn create_data<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
let nbytes = self.nbytes(generator, ctx);
let data = Int(Byte).array_alloca(generator, ctx, nbytes.value);
self.instance.set(ctx, |f| f.data, data);
self.set_strides_contiguous(generator, ctx);
}
/// Copy shape dimensions from an array.
pub fn copy_shape_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance.get(generator, ctx, |f| f.shape).copy_from(generator, ctx, shape, num_items);
}
/// Copy shape dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_shape_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_shape = src_ndarray.instance.get(generator, ctx, |f| f.shape);
self.copy_shape_from_array(generator, ctx, src_shape);
}
/// Copy strides dimensions from an array.
pub fn copy_strides_from_array<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
strides: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let num_items = self.ndims_llvm(generator, ctx.ctx).value;
self.instance
.get(generator, ctx, |f| f.strides)
.copy_from(generator, ctx, strides, num_items);
}
/// Copy strides dimensions from an ndarray.
/// Panics if `ndims` mismatches.
pub fn copy_strides_from_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src_ndarray: NDArrayObject<'ctx>,
) {
assert_eq!(self.ndims, src_ndarray.ndims);
let src_strides = src_ndarray.instance.get(generator, ctx, |f| f.strides);
self.copy_strides_from_array(generator, ctx, src_strides);
}
/// Get the `np.size()` of this ndarray.
pub fn size<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_size(generator, ctx, self.instance)
}
/// Get the `ndarray.nbytes` of this ndarray.
pub fn nbytes<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_nbytes(generator, ctx, self.instance)
}
/// Get the `len()` of this ndarray.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
call_nac3_ndarray_len(generator, ctx, self.instance)
}
/// Check if this ndarray is C-contiguous.
///
/// See NumPy's `flags["C_CONTIGUOUS"]`: <https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags>
pub fn is_c_contiguous<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_ndarray_is_c_contiguous(generator, ctx, self.instance)
}
/// Get the pointer to the n-th (0-based) element.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_nth_pelement<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_nth_pelement(generator, ctx, self.instance, nth);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the n-th (0-based) scalar.
pub fn get_nth_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
nth: Instance<'ctx, Int<SizeT>>,
) -> AnyObject<'ctx> {
let ptr = self.get_nth_pelement(generator, ctx, nth);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Get the pointer to the element indexed by `indices`.
///
/// The returned pointer has the element type of the LLVM type of this ndarray's `dtype`.
pub fn get_pelement_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.dtype);
let p = call_nac3_ndarray_get_pelement_by_indices(generator, ctx, self.instance, indices);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "")
.unwrap()
}
/// Get the scalar indexed by `indices`.
pub fn get_scalar_by_indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> AnyObject<'ctx> {
let ptr = self.get_pelement_by_indices(generator, ctx, indices);
let value = ctx.builder.build_load(ptr, "").unwrap();
AnyObject { ty: self.dtype, value }
}
/// Call [`call_nac3_ndarray_set_strides_by_shape`] on this ndarray to update `strides`.
///
/// Update the ndarray's strides to make the ndarray contiguous.
pub fn set_strides_contiguous<G: CodeGenerator + ?Sized>(
self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_ndarray_set_strides_by_shape(generator, ctx, self.instance);
}
/// Clone/Copy this ndarray - Allocate a new ndarray with the same shape as this ndarray and copy the contents over.
///
/// The new ndarray will own its data and will be C-contiguous.
#[must_use]
pub fn make_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Self {
let clone = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let shape = self.instance.gep(ctx, |f| f.shape).load(generator, ctx);
clone.copy_shape_from_array(generator, ctx, shape);
clone.create_data(generator, ctx);
clone.copy_data_from(generator, ctx, *self);
clone
}
/// Copy data from another ndarray.
///
/// This ndarray and `src` is that their `np.size()` should be the same. Their shapes
/// do not matter. The copying order is determined by how their flattened views look.
///
/// Panics if the `dtype`s of ndarrays are different.
pub fn copy_data_from<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
src: NDArrayObject<'ctx>,
) {
assert!(ctx.unifier.unioned(self.dtype, src.dtype), "self and src dtype should match");
call_nac3_ndarray_copy_data(generator, ctx, src.instance, self.instance);
}
/// Returns true if this ndarray is unsized - `ndims == 0` and only contains a scalar.
#[must_use]
pub fn is_unsized(&self) -> bool {
self.ndims == 0
}
/// If this ndarray is unsized, return its sole value as an [`AnyObject`].
/// Otherwise, do nothing and return the ndarray itself.
pub fn split_unsized<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> ScalarOrNDArray<'ctx> {
if self.is_unsized() {
// NOTE: `np.size(self) == 0` here is never possible.
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let value = self.get_nth_scalar(generator, ctx, zero).value;
ScalarOrNDArray::Scalar(AnyObject { ty: self.dtype, value })
} else {
ScalarOrNDArray::NDArray(*self)
}
}
/// Fill the ndarray with a scalar.
///
/// `fill_value` must have the same LLVM type as the `dtype` of this ndarray.
pub fn fill<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
value: BasicValueEnum<'ctx>,
) {
self.foreach(generator, ctx, |generator, ctx, _hooks, nditer| {
let p = nditer.get_pointer(generator, ctx);
ctx.builder.build_store(p, value).unwrap();
Ok(())
})
.unwrap();
}
/// Create the shape tuple of this ndarray like `np.shape(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_shape_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.shape)
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create the strides tuple of this ndarray like `np.strides(<ndarray>)`.
///
/// The returned integers in the tuple are in int32.
pub fn make_strides_tuple<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> TupleObject<'ctx> {
// TODO: Return a tuple of SizeT.
let mut objects = Vec::with_capacity(self.ndims as usize);
for i in 0..self.ndims {
let dim = self
.instance
.get(generator, ctx, |f| f.strides)
.get_index_const(generator, ctx, i)
.truncate_or_bit_cast(generator, ctx, Int32);
objects.push(AnyObject {
ty: ctx.primitives.int32,
value: dim.value.as_basic_value_enum(),
});
}
TupleObject::from_objects(generator, ctx, objects)
}
/// Create an unsized ndarray to contain `object`.
pub fn make_unsized<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> NDArrayObject<'ctx> {
// We have to put the value on the stack to get a data pointer.
let data = ctx.builder.build_alloca(object.value.get_type(), "make_unsized").unwrap();
ctx.builder.build_store(data, object.value).unwrap();
let data = Ptr(Int(Byte)).pointer_cast(generator, ctx, data);
let ndarray = NDArrayObject::alloca(generator, ctx, object.ty, 0);
ndarray.instance.set(ctx, |f| f.data, data);
ndarray
}
/// Check if this `NDArray` can be used as an `out` ndarray for an operation.
///
/// Raise an exception if the shapes do not match.
pub fn assert_can_be_written_by_out<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
out_ndims: u64,
out_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) {
let ndarray_ndims = self.ndims_llvm(generator, ctx.ctx);
let ndarray_shape = self.instance.get(generator, ctx, |f| f.shape);
let output_ndims = Int(SizeT).const_int(generator, ctx.ctx, out_ndims);
let output_shape = out_shape;
call_nac3_ndarray_util_assert_output_shape_same(
generator,
ctx,
ndarray_ndims,
ndarray_shape,
output_ndims,
output_shape,
);
}
}
/// A convenience enum for implementing functions that acts on scalars or ndarrays or both.
#[derive(Debug, Clone, Copy)]
pub enum ScalarOrNDArray<'ctx> {
Scalar(AnyObject<'ctx>),
NDArray(NDArrayObject<'ctx>),
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for AnyObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(scalar) => Ok(*scalar),
ScalarOrNDArray::NDArray(_ndarray) => Err(()),
}
}
}
impl<'ctx> TryFrom<&ScalarOrNDArray<'ctx>> for NDArrayObject<'ctx> {
type Error = ();
fn try_from(value: &ScalarOrNDArray<'ctx>) -> Result<Self, Self::Error> {
match value {
ScalarOrNDArray::Scalar(_scalar) => Err(()),
ScalarOrNDArray::NDArray(ndarray) => Ok(*ndarray),
}
}
}
impl<'ctx> ScalarOrNDArray<'ctx> {
/// Split on `object` either into a scalar or an ndarray.
///
/// If `object` is an ndarray, [`ScalarOrNDArray::NDArray`].
///
/// For everything else, it is wrapped with [`ScalarOrNDArray::Scalar`].
pub fn split_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> ScalarOrNDArray<'ctx> {
match &*ctx.unifier.get_ty(object.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
{
let ndarray = NDArrayObject::from_object(generator, ctx, object);
ScalarOrNDArray::NDArray(ndarray)
}
_ => ScalarOrNDArray::Scalar(object),
}
}
/// Get the underlying [`BasicValueEnum<'ctx>`] of this [`ScalarOrNDArray`].
#[must_use]
pub fn to_basic_value_enum(self) -> BasicValueEnum<'ctx> {
match self {
ScalarOrNDArray::Scalar(scalar) => scalar.value,
ScalarOrNDArray::NDArray(ndarray) => ndarray.instance.value.as_basic_value_enum(),
}
}
/// Convert this [`ScalarOrNDArray`] to an ndarray - behaves like `np.asarray`.
/// - If this is an ndarray, the ndarray is returned.
/// - If this is a scalar, this function returns new ndarray created with [`NDArrayObject::make_unsized`].
pub fn to_ndarray<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> NDArrayObject<'ctx> {
match self {
ScalarOrNDArray::NDArray(ndarray) => *ndarray,
ScalarOrNDArray::Scalar(scalar) => NDArrayObject::make_unsized(generator, ctx, *scalar),
}
}
/// Get the dtype of the ndarray created if this were called with [`ScalarOrNDArray::to_ndarray`].
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
ScalarOrNDArray::NDArray(ndarray) => ndarray.dtype,
ScalarOrNDArray::Scalar(scalar) => scalar.ty,
}
}
}
/// An helper enum specifying how a function should produce its output.
///
/// Many functions in NumPy has an optional `out` parameter (e.g., `matmul`). If `out` is specified
/// with an ndarray, the result of a function will be written to `out`. If `out` is not specified, a function will
/// create a new ndarray and store the result in it.
#[derive(Debug, Clone, Copy)]
pub enum NDArrayOut<'ctx> {
/// Tell a function should create a new ndarray with the expected element type `dtype`.
NewNDArray { dtype: Type },
/// Tell a function to write the result to `ndarray`.
WriteToNDArray { ndarray: NDArrayObject<'ctx> },
}
impl<'ctx> NDArrayOut<'ctx> {
/// Get the dtype of this output.
#[must_use]
pub fn get_dtype(&self) -> Type {
match self {
NDArrayOut::NewNDArray { dtype } => *dtype,
NDArrayOut::WriteToNDArray { ndarray } => ndarray.dtype,
}
}
}
/// A version of [`call_nac3_ndarray_set_strides_by_shape`] in Rust.
///
/// This function is used generating strides for globally defined contiguous ndarrays.
#[must_use]
pub fn make_contiguous_strides(itemsize: u64, ndims: u64, shape: &[u64]) -> Vec<u64> {
let mut strides = Vec::with_capacity(ndims as usize);
let mut stride_product = 1u64;
for i in 0..ndims {
let axis = ndims - i - 1;
strides[axis as usize] = stride_product * itemsize;
stride_product *= shape[axis as usize];
}
strides
}

View File

@ -0,0 +1,168 @@
use inkwell::{types::BasicType, values::PointerValue, AddressSpace};
use crate::codegen::{
irrt::{call_nac3_nditer_has_next, call_nac3_nditer_initialize, call_nac3_nditer_next},
model::*,
object::any::AnyObject,
stmt::{gen_for_callback, BreakContinueHooks},
CodeGenContext, CodeGenerator,
};
use super::NDArrayObject;
/// Fields of [`NDIter`]
pub struct NDIterFields<'ctx, F: FieldTraversal<'ctx>> {
pub ndims: F::Out<Int<SizeT>>,
pub shape: F::Out<Ptr<Int<SizeT>>>,
pub strides: F::Out<Ptr<Int<SizeT>>>,
pub indices: F::Out<Ptr<Int<SizeT>>>,
pub nth: F::Out<Int<SizeT>>,
pub element: F::Out<Ptr<Int<Byte>>>,
pub size: F::Out<Int<SizeT>>,
}
/// An IRRT helper structure used to iterate through an ndarray.
#[derive(Debug, Clone, Copy, Default)]
pub struct NDIter;
impl<'ctx> StructKind<'ctx> for NDIter {
type Fields<F: FieldTraversal<'ctx>> = NDIterFields<'ctx, F>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
ndims: traversal.add_auto("ndims"),
shape: traversal.add_auto("shape"),
strides: traversal.add_auto("strides"),
indices: traversal.add_auto("indices"),
nth: traversal.add_auto("nth"),
element: traversal.add_auto("element"),
size: traversal.add_auto("size"),
}
}
}
/// A helper structure containing extra details of an [`NDIter`].
#[derive(Debug, Clone)]
pub struct NDIterHandle<'ctx> {
instance: Instance<'ctx, Ptr<Struct<NDIter>>>,
/// The ndarray this [`NDIter`] to iterating over.
ndarray: NDArrayObject<'ctx>,
/// The current indices of [`NDIter`].
indices: Instance<'ctx, Ptr<Int<SizeT>>>,
}
impl<'ctx> NDIterHandle<'ctx> {
/// Allocate an [`NDIter`] that iterates through an ndarray.
pub fn new<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndarray: NDArrayObject<'ctx>,
) -> Self {
let nditer = Struct(NDIter).alloca(generator, ctx);
let ndims = ndarray.ndims_llvm(generator, ctx.ctx);
// The caller has the responsibility to allocate 'indices' for `NDIter`.
let indices = Int(SizeT).array_alloca(generator, ctx, ndims.value);
call_nac3_nditer_initialize(generator, ctx, nditer, ndarray.instance, indices);
NDIterHandle { ndarray, instance: nditer, indices }
}
#[must_use]
pub fn has_next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Bool>> {
call_nac3_nditer_has_next(generator, ctx, self.instance)
}
pub fn next<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
call_nac3_nditer_next(generator, ctx, self.instance);
}
/// Get pointer to the current element.
#[must_use]
pub fn get_pointer<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> PointerValue<'ctx> {
let elem_ty = ctx.get_llvm_type(generator, self.ndarray.dtype);
let p = self.instance.get(generator, ctx, |f| f.element);
ctx.builder
.build_pointer_cast(p.value, elem_ty.ptr_type(AddressSpace::default()), "element")
.unwrap()
}
/// Get the value of the current element.
#[must_use]
pub fn get_scalar<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> AnyObject<'ctx> {
let p = self.get_pointer(generator, ctx);
let value = ctx.builder.build_load(p, "value").unwrap();
AnyObject { ty: self.ndarray.dtype, value }
}
/// Get the index of the current element.
#[must_use]
pub fn get_index<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
self.instance.get(generator, ctx, |f| f.nth)
}
/// Get the indices of the current element.
#[must_use]
pub fn get_indices(&self) -> Instance<'ctx, Ptr<Int<SizeT>>> {
self.indices
}
}
impl<'ctx> NDArrayObject<'ctx> {
/// Iterate through every element in the ndarray.
///
/// `body` also access to [`BreakContinueHooks`] to short-circuit.
pub fn foreach<'a, G, F>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, 'a>,
body: F,
) -> Result<(), String>
where
G: CodeGenerator + ?Sized,
F: FnOnce(
&mut G,
&mut CodeGenContext<'ctx, 'a>,
BreakContinueHooks<'ctx>,
NDIterHandle<'ctx>,
) -> Result<(), String>,
{
gen_for_callback(
generator,
ctx,
Some("ndarray_foreach"),
|generator, ctx| Ok(NDIterHandle::new(generator, ctx, *self)),
|generator, ctx, nditer| Ok(nditer.has_next(generator, ctx).value),
|generator, ctx, hooks, nditer| body(generator, ctx, hooks, nditer),
|generator, ctx, nditer| {
nditer.next(generator, ctx);
Ok(())
},
)
}
}

View File

@ -0,0 +1,105 @@
use util::gen_for_model;
use crate::{
codegen::{
model::*,
object::{any::AnyObject, list::ListObject, tuple::TupleObject},
CodeGenContext, CodeGenerator,
},
typecheck::typedef::TypeEnum,
};
/// Parse a NumPy-like "int sequence" input and return the int sequence as an array and its length.
///
/// * `sequence` - The `sequence` parameter.
/// * `sequence_ty` - The typechecker type of `sequence`
///
/// The `sequence` argument type may only be one of the following:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// All `int32` values will be sign-extended to `SizeT`.
pub fn parse_numpy_int_sequence<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
input_sequence: AnyObject<'ctx>,
) -> (Instance<'ctx, Int<SizeT>>, Instance<'ctx, Ptr<Int<SizeT>>>) {
let zero = Int(SizeT).const_0(generator, ctx.ctx);
let one = Int(SizeT).const_1(generator, ctx.ctx);
// The result `list` to return.
match &*ctx.unifier.get_ty(input_sequence.ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
// Check `input_sequence`
let input_sequence = ListObject::from_object(generator, ctx, input_sequence);
let len = input_sequence.instance.get(generator, ctx, |f| f.len);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
// Load all the `int32`s from the input_sequence, cast them to `SizeT`, and store them into `result`
gen_for_model(generator, ctx, zero, len, one, |generator, ctx, _hooks, i| {
// Load the i-th int32 in the input sequence
let int = input_sequence
.instance
.get(generator, ctx, |f| f.items)
.get_index(generator, ctx, i.value)
.value
.into_int_value();
// Cast to SizeT
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
// Store
result.set_index(ctx, i.value, int);
Ok(())
})
.unwrap();
(len, result)
}
TypeEnum::TTuple { .. } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
let input_sequence = TupleObject::from_object(ctx, input_sequence);
let len = input_sequence.len(generator, ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
for i in 0..input_sequence.num_elements() {
// Get the i-th element off of the tuple and load it into `result`.
let int = input_sequence.index(ctx, i).value.into_int_value();
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, int);
result.set_index_const(ctx, i as u64, int);
}
(len, result)
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
let input_int = input_sequence.value.into_int_value();
let len = Int(SizeT).const_1(generator, ctx.ctx);
let result = Int(SizeT).array_alloca(generator, ctx, len.value);
let int = Int(SizeT).s_extend_or_bit_cast(generator, ctx, input_int);
// Storing into result[0]
result.store(ctx, int);
(len, result)
}
_ => panic!(
"encountered unknown sequence type: {}",
ctx.unifier.stringify(input_sequence.ty)
),
}
}

View File

@ -0,0 +1,3 @@
pub fn str_type() {
}

View File

@ -0,0 +1,119 @@
use crate::codegen::{
irrt::{call_nac3_ndarray_reshape_resolve_and_check_new_shape, call_nac3_ndarray_transpose},
model::*,
CodeGenContext, CodeGenerator,
};
use super::{indexing::RustNDIndex, NDArrayObject};
impl<'ctx> NDArrayObject<'ctx> {
/// Make sure the ndarray is at least `ndmin`-dimensional.
///
/// If this ndarray's `ndims` is less than `ndmin`, a view is created on this with 1s prepended to the shape.
/// If this ndarray's `ndims` is not less than `ndmin`, this function does nothing and return this ndarray.
#[must_use]
pub fn atleast_nd<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
ndmin: u64,
) -> Self {
if self.ndims < ndmin {
// return this_ndarray[np.newaxis, np.newaxis, and more, ...]
let mut indices = vec![];
for _ in self.ndims..ndmin {
indices.push(RustNDIndex::NewAxis);
}
indices.push(RustNDIndex::Ellipsis);
self.index(generator, ctx, &indices)
} else {
*self
}
}
/// Create a reshaped view on this ndarray like `np.reshape()`.
///
/// If there is a `-1` in `new_shape`, it will be resolved; `new_shape` would **NOT** be modified as a result.
///
/// If reshape without copying is impossible, this function will allocate a new ndarray and copy contents.
///
/// * `new_ndims` - The number of dimensions of `new_shape` as a [`Type`].
/// * `new_shape` - The target shape to do `np.reshape()`.
#[must_use]
pub fn reshape_or_copy<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
new_ndims: u64,
new_shape: Instance<'ctx, Ptr<Int<SizeT>>>,
) -> Self {
// TODO: The current criterion for whether to do a full copy or not is by checking `is_c_contiguous`,
// but this is not optimal - there are cases when the ndarray is not contiguous but could be reshaped
// without copying data. Look into how numpy does it.
let current_bb = ctx.builder.get_insert_block().unwrap();
let then_bb = ctx.ctx.insert_basic_block_after(current_bb, "then_bb");
let else_bb = ctx.ctx.insert_basic_block_after(then_bb, "else_bb");
let end_bb = ctx.ctx.insert_basic_block_after(else_bb, "end_bb");
let dst_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, new_ndims);
dst_ndarray.copy_shape_from_array(generator, ctx, new_shape);
// Reolsve negative indices
let size = self.size(generator, ctx);
let dst_ndims = dst_ndarray.ndims_llvm(generator, ctx.ctx);
let dst_shape = dst_ndarray.instance.get(generator, ctx, |f| f.shape);
call_nac3_ndarray_reshape_resolve_and_check_new_shape(
generator, ctx, size, dst_ndims, dst_shape,
);
let is_c_contiguous = self.is_c_contiguous(generator, ctx);
ctx.builder.build_conditional_branch(is_c_contiguous.value, then_bb, else_bb).unwrap();
// Inserting into then_bb: reshape is possible without copying
ctx.builder.position_at_end(then_bb);
dst_ndarray.set_strides_contiguous(generator, ctx);
dst_ndarray.instance.set(ctx, |f| f.data, self.instance.get(generator, ctx, |f| f.data));
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Inserting into else_bb: reshape is impossible without copying
ctx.builder.position_at_end(else_bb);
dst_ndarray.create_data(generator, ctx);
dst_ndarray.copy_data_from(generator, ctx, *self);
ctx.builder.build_unconditional_branch(end_bb).unwrap();
// Reposition for continuation
ctx.builder.position_at_end(end_bb);
dst_ndarray
}
/// Create a transposed view on this ndarray like `np.transpose(<ndarray>, <axes> = None)`.
/// * `axes` - If specified, should be an array of the permutation (negative indices are **allowed**).
#[must_use]
pub fn transpose<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
axes: Option<Instance<'ctx, Ptr<Int<SizeT>>>>,
) -> Self {
// Define models
let transposed_ndarray = NDArrayObject::alloca(generator, ctx, self.dtype, self.ndims);
let num_axes = self.ndims_llvm(generator, ctx.ctx);
// `axes = nullptr` if `axes` is unspecified.
let axes = axes.unwrap_or_else(|| Ptr(Int(SizeT)).nullptr(generator, ctx.ctx));
call_nac3_ndarray_transpose(
generator,
ctx,
self.instance,
transposed_ndarray.instance,
num_axes,
axes,
);
transposed_ndarray
}
}

View File

@ -0,0 +1,139 @@
use inkwell::{values::IntValue, IntPredicate};
use crate::codegen::{irrt::call_nac3_range_len, model::*, CodeGenContext, CodeGenerator};
use super::any::AnyObject;
/// A range in NAC3.
pub type Range<N> = Array<Len<3>, Int<N>>;
/// An alias for `Range::<Int32>::default()`
#[must_use]
pub fn range_model() -> Range<Int32> {
Array::default()
}
impl<'ctx, N: IntKind<'ctx>> Instance<'ctx, Ptr<Range<N>>> {
/// Get GEP to `range.start`.
pub fn start(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 0)
}
/// Get GEP to `range.stop`.
pub fn stop(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 1)
}
/// Get GEP to `range.step`.
pub fn step(&self, ctx: &CodeGenContext<'ctx, '_>) -> Instance<'ctx, Ptr<Int<N>>> {
self.gep_const(ctx, 2)
}
/// Convenience function to load the `(start, stop, step)` of this range.
#[allow(clippy::type_complexity)]
pub fn destructure<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
) -> (Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>, Instance<'ctx, Int<N>>) {
let start = self.start(ctx).load(generator, ctx);
let stop = self.stop(ctx).load(generator, ctx);
let step = self.step(ctx).load(generator, ctx);
(start, stop, step)
}
}
/// Generate LLVM IR to check that a range's `step` is not zero.
/// Throws "range step must not be zero" if it is the case.
pub fn assert_range_step_non_zero<'ctx, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
step: IntValue<'ctx>,
) {
let int32 = ctx.ctx.i32_type();
let rangenez =
ctx.builder.build_int_compare(IntPredicate::NE, step, int32.const_zero(), "").unwrap();
ctx.make_assert(
generator,
rangenez,
"0:ValueError",
"range step must not be zero",
[None, None, None],
ctx.current_loc,
);
}
/// A Rust structure that has [`Range`] utilities and looks like a [`Range`] but
/// `start`, `stop` and `step` are held by LLVM registers only.
///
/// This structure exists because many implementations use [`Range`] utilities but
/// it might not be good to alloca an actual [`Range`] value on the stack in order
/// to perform calculations.
pub struct RustRange<'ctx, N: IntKind<'ctx>> {
pub start: Instance<'ctx, Int<N>>,
pub stop: Instance<'ctx, Int<N>>,
pub step: Instance<'ctx, Int<N>>,
}
impl<'ctx, N: IntKind<'ctx>> RustRange<'ctx, N> {
pub fn assert_step_non_zero<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) {
assert_range_step_non_zero(generator, ctx, self.step.value);
}
/// Calculate the `len()` of this range.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<N>> {
let int_kind = self.start.model.0;
call_nac3_range_len(generator, ctx, int_kind, self.start, self.stop, self.step)
}
}
// TODO: `RangeObject` in the future will have range32, range64
/// A NAC3 Python range object.
#[derive(Debug, Clone, Copy)]
pub struct RangeObject<'ctx> {
pub instance: Instance<'ctx, Ptr<Range<Int32>>>,
}
impl<'ctx> RangeObject<'ctx> {
/// Attempt to convert an [`AnyObject`] into a [`RangeObject`].
pub fn from_object<G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
object: AnyObject<'ctx>,
) -> RangeObject<'ctx> {
assert!(ctx.unifier.unioned(object.ty, ctx.primitives.range));
let instance = Ptr(Range::default()).check_value(generator, ctx.ctx, object.value).unwrap();
RangeObject { instance }
}
/// Convert into a [`RustRange`].
pub fn as_rust_range<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> RustRange<'ctx, Int32> {
let (start, stop, step) = self.instance.destructure(generator, ctx);
RustRange { start, stop, step }
}
/// Get the `len()` of this range.
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<Int32>> {
let range = self.as_rust_range(generator, ctx);
range.assert_step_non_zero(generator, ctx);
range.len(generator, ctx)
}
}

View File

@ -0,0 +1,185 @@
use crate::codegen::{irrt::call_nac3_slice_indices, model::*, CodeGenContext, CodeGenerator};
use super::range::RustRange;
/// Fields of [`Slice`]
#[derive(Debug, Clone)]
pub struct SliceFields<'ctx, F: FieldTraversal<'ctx>, N: IntKind<'ctx>> {
pub start_defined: F::Out<Int<Bool>>,
pub start: F::Out<Int<N>>,
pub stop_defined: F::Out<Int<Bool>>,
pub stop: F::Out<Int<N>>,
pub step_defined: F::Out<Int<Bool>>,
pub step: F::Out<Int<N>>,
}
/// An IRRT representation of an (unresolved) slice.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Slice<N>(pub N);
impl<'ctx, N: IntKind<'ctx>> StructKind<'ctx> for Slice<N> {
type Fields<F: FieldTraversal<'ctx>> = SliceFields<'ctx, F, N>;
fn traverse_fields<F: FieldTraversal<'ctx>>(&self, traversal: &mut F) -> Self::Fields<F> {
Self::Fields {
start_defined: traversal.add_auto("start_defined"),
start: traversal.add("start", Int(self.0)),
stop_defined: traversal.add_auto("stop_defined"),
stop: traversal.add("stop", Int(self.0)),
step_defined: traversal.add_auto("step_defined"),
step: traversal.add("step", Int(self.0)),
}
}
}
/// A Rust structure that has [`Slice`] utilities and looks like a [`Slice`] but
/// `start`, `stop` and `step` are held by LLVM registers only and possibly
/// [`Option::None`] if unspecified.
#[derive(Debug, Clone)]
pub struct RustSlice<'ctx, N: IntKind<'ctx>> {
// It is possible that `start`, `stop`, and `step` are all `None`.
// We need to know the `int_kind` even when that is the case.
pub int_kind: N,
pub start: Option<Instance<'ctx, Int<N>>>,
pub stop: Option<Instance<'ctx, Int<N>>>,
pub step: Option<Instance<'ctx, Int<N>>>,
}
impl<'ctx, N: IntKind<'ctx>> RustSlice<'ctx, N> {
/// Write the contents to an LLVM [`Slice`].
pub fn write_to_slice<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &CodeGenContext<'ctx, '_>,
dst_slice_ptr: Instance<'ctx, Ptr<Struct<Slice<N>>>>,
) {
let false_ = Int(Bool).const_false(generator, ctx.ctx);
let true_ = Int(Bool).const_true(generator, ctx.ctx);
match self.start {
Some(start) => {
dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.start).store(ctx, start);
}
None => dst_slice_ptr.gep(ctx, |f| f.start_defined).store(ctx, false_),
}
match self.stop {
Some(stop) => {
dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.stop).store(ctx, stop);
}
None => dst_slice_ptr.gep(ctx, |f| f.stop_defined).store(ctx, false_),
}
match self.step {
Some(step) => {
dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, true_);
dst_slice_ptr.gep(ctx, |f| f.step).store(ctx, step);
}
None => dst_slice_ptr.gep(ctx, |f| f.step_defined).store(ctx, false_),
}
}
/// Resolve this [`RustSlice`] into a [`RustRange`] like `slice.indices` in Python.
///
/// NOTE: This function does stack allocation.
pub fn indices<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
length: Instance<'ctx, Int<N>>,
) -> RustRange<'ctx, N> {
let mut is_defined = |value: Option<_>| -> Instance<'ctx, Int<Bool>> {
Int(Bool).const_int(generator, ctx.ctx, u64::from(value.is_some()))
};
let start_defined = is_defined(self.start);
let stop_defined = is_defined(self.stop);
let step_defined = is_defined(self.step);
let mut defined_or_zero = |value: Option<_>| -> Instance<'ctx, Int<N>> {
if let Some(value) = value {
value
} else {
// If undefined, return 0 as a placeholder.
Int(self.int_kind).const_0(generator, ctx.ctx)
}
};
let start = defined_or_zero(self.start);
let stop = defined_or_zero(self.stop);
let step = defined_or_zero(self.step);
// Stack allocation here.
let range_start = Int(self.int_kind).alloca(generator, ctx);
let range_stop = Int(self.int_kind).alloca(generator, ctx);
let range_step = Int(self.int_kind).alloca(generator, ctx);
call_nac3_slice_indices(
generator,
ctx,
self.int_kind,
start_defined,
start,
stop_defined,
stop,
step_defined,
step,
length,
range_start,
range_stop,
range_step,
);
let start = range_start.load(generator, ctx);
let stop = range_stop.load(generator, ctx);
let step = range_step.load(generator, ctx);
RustRange { start, stop, step }
}
}
pub mod util {
use nac3parser::ast::Expr;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::Type,
};
use super::RustSlice;
/// Generate LLVM IR for an [`ExprKind::Slice`] and convert it into a [`RustSlice`].
#[allow(clippy::type_complexity)]
pub fn gen_slice<'ctx, G: CodeGenerator>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
lower: &Option<Box<Expr<Option<Type>>>>,
upper: &Option<Box<Expr<Option<Type>>>>,
step: &Option<Box<Expr<Option<Type>>>>,
) -> Result<RustSlice<'ctx, Int32>, String> {
let mut help = |value_expr: &Option<Box<Expr<Option<Type>>>>| -> Result<_, String> {
Ok(match value_expr {
None => None,
Some(value_expr) => {
let value_expr = generator
.gen_expr(ctx, value_expr)?
.unwrap()
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?;
let value_expr =
Int(Int32).check_value(generator, ctx.ctx, value_expr).unwrap();
Some(value_expr)
}
})
};
let start = help(lower)?;
let stop = help(upper)?;
let step = help(step)?;
Ok(RustSlice { int_kind: Int32, start, stop, step })
}
}

View File

@ -0,0 +1,11 @@
use super::cslice::CSlice;
use crate::codegen::model::*;
/// A string in NAC3.
pub type Str = Struct<CSlice<Int<Byte>>>;
/// An alias for `Str::default()`
#[must_use]
pub fn str_model() -> Str {
Str::default()
}

View File

@ -0,0 +1,99 @@
use inkwell::values::StructValue;
use itertools::Itertools;
use crate::{
codegen::{model::*, CodeGenContext, CodeGenerator},
typecheck::typedef::{Type, TypeEnum},
};
use super::any::AnyObject;
/// A NAC3 tuple object.
///
/// NOTE: This struct has no copy trait.
#[derive(Debug, Clone)]
pub struct TupleObject<'ctx> {
/// The type of the tuple.
pub tys: Vec<Type>,
/// The underlying LLVM struct value of this tuple.
pub value: StructValue<'ctx>,
}
impl<'ctx> TupleObject<'ctx> {
pub fn from_object(ctx: &mut CodeGenContext<'ctx, '_>, object: AnyObject<'ctx>) -> Self {
// TODO: Keep `is_vararg_ctx` from TTuple?
// Sanity check on object type.
let TypeEnum::TTuple { ty: tys, .. } = &*ctx.unifier.get_ty(object.ty) else {
panic!(
"Expected type to be a TypeEnum::TTuple, got {}",
ctx.unifier.stringify(object.ty)
);
};
// Check number of fields
let value = object.value.into_struct_value();
let value_num_fields = value.get_type().count_fields() as usize;
assert!(
value_num_fields == tys.len(),
"Tuple type has {} item(s), but the LLVM struct value has {} field(s)",
tys.len(),
value_num_fields
);
TupleObject { tys: tys.clone(), value }
}
/// Convenience function. Create a [`TupleObject`] from an iterator of objects.
pub fn from_objects<I, G: CodeGenerator + ?Sized>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
objects: I,
) -> Self
where
I: IntoIterator<Item = AnyObject<'ctx>>,
{
let (values, tys): (Vec<_>, Vec<_>) =
objects.into_iter().map(|object| (object.value, object.ty)).unzip();
let llvm_tys = tys.iter().map(|ty| ctx.get_llvm_type(generator, *ty)).collect_vec();
let llvm_tuple_ty = ctx.ctx.struct_type(&llvm_tys, false);
let pllvm_tuple = ctx.builder.build_alloca(llvm_tuple_ty, "tuple").unwrap();
for (i, val) in values.into_iter().enumerate() {
let pval = ctx.builder.build_struct_gep(pllvm_tuple, i as u32, "value").unwrap();
ctx.builder.build_store(pval, val).unwrap();
}
let value = ctx.builder.build_load(pllvm_tuple, "").unwrap().into_struct_value();
TupleObject { tys, value }
}
#[must_use]
pub fn num_elements(&self) -> usize {
self.tys.len()
}
/// Get the `len()` of this tuple.
#[must_use]
pub fn len<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
) -> Instance<'ctx, Int<SizeT>> {
Int(SizeT).const_int(generator, ctx.ctx, self.num_elements() as u64)
}
/// Get the `i`-th (0-based) object in this tuple.
pub fn index(&self, ctx: &mut CodeGenContext<'ctx, '_>, i: usize) -> AnyObject<'ctx> {
assert!(
i < self.num_elements(),
"Tuple object with length {} have index {i}",
self.num_elements()
);
let value = ctx.builder.build_extract_value(self.value, i as u32, "tuple[{i}]").unwrap();
let ty = self.tys[i];
AnyObject { ty, value }
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
use crate::{ use crate::{
codegen::{ codegen::{
classes::{ListType, NDArrayType, ProxyType, RangeType}, classes::{ListType, ProxyType},
concrete_type::ConcreteTypeStore, concrete_type::ConcreteTypeStore,
CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask, CodeGenContext, CodeGenLLVMOptions, CodeGenTargetMachineOptions, CodeGenTask,
CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry, CodeGenerator, DefaultCodeGenerator, WithCall, WorkerRegistry,
@ -94,7 +94,7 @@ fn test_primitives() {
"}; "};
let statements = parse_program(source, FileName::default()).unwrap(); let statements = parse_program(source, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0; let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone(); let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty; let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
@ -109,8 +109,18 @@ fn test_primitives() {
let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()]; let threads = vec![DefaultCodeGenerator::new("test".into(), 32).into()];
let signature = FunSignature { let signature = FunSignature {
args: vec![ args: vec![
FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }, FuncArg {
FuncArg { name: "b".into(), ty: primitives.int32, default_value: None }, name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
FuncArg {
name: "b".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
},
], ],
ret: primitives.int32, ret: primitives.int32,
vars: VarMap::new(), vars: VarMap::new(),
@ -189,6 +199,8 @@ fn test_primitives() {
let expected = indoc! {" let expected = indoc! {"
; ModuleID = 'test' ; ModuleID = 'test'
source_filename = \"test\" source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn ; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 { define i32 @testing(i32 %0, i32 %1) local_unnamed_addr #0 !dbg !4 {
@ -246,14 +258,19 @@ fn test_simple_call() {
"}; "};
let statements_2 = parse_program(source_2, FileName::default()).unwrap(); let statements_2 = parse_program(source_2, FileName::default()).unwrap();
let composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 32).0; let composer = TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 32).0;
let mut unifier = composer.unifier.clone(); let mut unifier = composer.unifier.clone();
let primitives = composer.primitives_ty; let primitives = composer.primitives_ty;
let top_level = Arc::new(composer.make_top_level_context()); let top_level = Arc::new(composer.make_top_level_context());
unifier.top_level = Some(top_level.clone()); unifier.top_level = Some(top_level.clone());
let signature = FunSignature { let signature = FunSignature {
args: vec![FuncArg { name: "a".into(), ty: primitives.int32, default_value: None }], args: vec![FuncArg {
name: "a".into(),
ty: primitives.int32,
default_value: None,
is_vararg: false,
}],
ret: primitives.int32, ret: primitives.int32,
vars: VarMap::new(), vars: VarMap::new(),
}; };
@ -368,6 +385,8 @@ fn test_simple_call() {
let expected = indoc! {" let expected = indoc! {"
; ModuleID = 'test' ; ModuleID = 'test'
source_filename = \"test\" source_filename = \"test\"
target datalayout = \"e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128\"
target triple = \"x86_64-unknown-linux-gnu\"
; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn ; Function Attrs: mustprogress nofree norecurse nosync nounwind readnone willreturn
define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 { define i32 @testing(i32 %0) local_unnamed_addr #0 !dbg !5 {
@ -429,23 +448,3 @@ fn test_classes_list_type_new() {
let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into()); let llvm_list = ListType::new(&generator, &ctx, llvm_i32.into());
assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok()); assert!(ListType::is_type(llvm_list.as_base_type(), llvm_usize).is_ok());
} }
#[test]
fn test_classes_range_type_new() {
let ctx = inkwell::context::Context::create();
let llvm_range = RangeType::new(&ctx);
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
}
#[test]
fn test_classes_ndarray_type_new() {
let ctx = inkwell::context::Context::create();
let generator = DefaultCodeGenerator::new(String::new(), 64);
let llvm_i32 = ctx.i32_type();
let llvm_usize = generator.get_size_type(&ctx);
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
}

View File

@ -23,4 +23,3 @@ pub mod codegen;
pub mod symbol_resolver; pub mod symbol_resolver;
pub mod toplevel; pub mod toplevel;
pub mod typecheck; pub mod typecheck;
pub mod util;

View File

@ -78,14 +78,14 @@ impl SymbolValue {
} }
Constant::Tuple(t) => { Constant::Tuple(t) => {
let expected_ty = unifier.get_ty(expected_ty); let expected_ty = unifier.get_ty(expected_ty);
let TypeEnum::TTuple { ty } = expected_ty.as_ref() else { let TypeEnum::TTuple { ty, is_vararg_ctx } = expected_ty.as_ref() else {
return Err(format!( return Err(format!(
"Expected {:?}, but got Tuple", "Expected {:?}, but got Tuple",
expected_ty.get_type_name() expected_ty.get_type_name()
)); ));
}; };
assert_eq!(ty.len(), t.len()); assert!(*is_vararg_ctx || ty.len() == t.len());
let elems = t let elems = t
.iter() .iter()
@ -155,7 +155,7 @@ impl SymbolValue {
SymbolValue::Bool(_) => primitives.bool, SymbolValue::Bool(_) => primitives.bool,
SymbolValue::Tuple(vs) => { SymbolValue::Tuple(vs) => {
let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>(); let vs_tys = vs.iter().map(|v| v.get_type(primitives, unifier)).collect::<Vec<_>>();
unifier.add_ty(TypeEnum::TTuple { ty: vs_tys }) unifier.add_ty(TypeEnum::TTuple { ty: vs_tys, is_vararg_ctx: false })
} }
SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option, SymbolValue::OptionSome(_) | SymbolValue::OptionNone => primitives.option,
} }
@ -482,7 +482,7 @@ pub fn parse_type_annotation<T>(
parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt) parse_type_annotation(resolver, top_level_defs, unifier, primitives, elt)
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty })) Ok(unifier.add_ty(TypeEnum::TTuple { ty, is_vararg_ctx: false }))
} else { } else {
Err(HashSet::from(["Expected multiple elements for tuple".into()])) Err(HashSet::from(["Expected multiple elements for tuple".into()]))
} }

File diff suppressed because it is too large Load Diff

View File

@ -44,12 +44,27 @@ pub struct TopLevelComposer {
pub size_t: u32, pub size_t: u32,
} }
/// The specification for a builtin function, consisting of the function name, the function
/// signature, and a [code generation callback][`GenCall`].
pub type BuiltinFuncSpec = (StrRef, FunSignature, Arc<GenCall>);
/// A function that creates a [`BuiltinFuncSpec`] using the provided [`PrimitiveStore`] and
/// [`Unifier`].
pub type BuiltinFuncCreator = dyn Fn(&PrimitiveStore, &mut Unifier) -> BuiltinFuncSpec;
impl TopLevelComposer { impl TopLevelComposer {
/// return a composer and things to make a "primitive" symbol resolver, so that the symbol /// return a composer and things to make a "primitive" symbol resolver, so that the symbol
/// resolver can later figure out primitive type definitions when passed a primitive type name /// resolver can later figure out primitive tye definitions when passed a primitive type name
///
/// `lateinit_builtins` are specifically for the ARTIQ module. Since the [`Unifier`] instance
/// used to create builtin functions do not persist until method compilation, any types
/// created (e.g. [`TypeEnum::TVar`]) also do not persist. Those functions should be instead put
/// in `lateinit_builtins`, where they will be instantiated with the [`Unifier`] instance used
/// for method compilation.
#[must_use] #[must_use]
pub fn new( pub fn new(
builtins: Vec<(StrRef, FunSignature, Arc<GenCall>)>, builtins: Vec<BuiltinFuncSpec>,
lateinit_builtins: Vec<Box<BuiltinFuncCreator>>,
core_config: ComposerConfig, core_config: ComposerConfig,
size_t: u32, size_t: u32,
) -> (Self, HashMap<StrRef, DefinitionId>, HashMap<StrRef, Type>) { ) -> (Self, HashMap<StrRef, DefinitionId>, HashMap<StrRef, Type>) {
@ -119,7 +134,13 @@ impl TopLevelComposer {
} }
} }
for (name, sig, codegen_callback) in builtins { // Materialize lateinit_builtins, now that the unifier is ready
let lateinit_builtins = lateinit_builtins
.into_iter()
.map(|builtin| builtin(&primitives_ty, &mut unifier))
.collect_vec();
for (name, sig, codegen_callback) in builtins.into_iter().chain(lateinit_builtins) {
let fun_sig = unifier.add_ty(TypeEnum::TFunc(sig)); let fun_sig = unifier.add_ty(TypeEnum::TFunc(sig));
builtin_ty.insert(name, fun_sig); builtin_ty.insert(name, fun_sig);
builtin_id.insert(name, DefinitionId(definition_ast_list.len())); builtin_id.insert(name, DefinitionId(definition_ast_list.len()));
@ -766,6 +787,7 @@ impl TopLevelComposer {
let target_ty = get_type_from_type_annotation_kinds( let target_ty = get_type_from_type_annotation_kinds(
&temp_def_list, &temp_def_list,
unifier, unifier,
primitives,
&def, &def,
&mut subst_list, &mut subst_list,
)?; )?;
@ -859,7 +881,73 @@ impl TopLevelComposer {
let resolver = &**resolver; let resolver = &**resolver;
let mut function_var_map = VarMap::new(); let mut function_var_map = VarMap::new();
let arg_types = {
let vararg = args
.vararg
.as_ref()
.map(|vararg| -> Result<_, HashSet<String>> {
let vararg = vararg.as_ref();
let annotation = vararg
.node
.annotation
.as_ref()
.ok_or_else(|| {
HashSet::from([format!(
"function parameter `{}` needs type annotation at {}",
vararg.node.arg, vararg.location
)])
})?
.as_ref();
let type_annotation = parse_ast_to_type_annotation_kinds(
resolver,
temp_def_list.as_slice(),
unifier,
primitives_store,
annotation,
// NOTE: since only class need this, for function
// it should be fine to be empty map
HashMap::new(),
)?;
let type_vars_within =
get_type_var_contained_in_type_annotation(&type_annotation)
.into_iter()
.map(|x| -> Result<TypeVar, HashSet<String>> {
let TypeAnnotation::TypeVar(ty) = x else {
unreachable!("must be type var annotation kind")
};
let id = Self::get_var_id(ty, unifier)?;
Ok(TypeVar { id, ty })
})
.collect::<Result<Vec<_>, _>>()?;
for var in type_vars_within {
if let Some(prev_ty) = function_var_map.insert(var.id, var.ty) {
// if already have the type inserted, make sure they are the same thing
assert_eq!(prev_ty, var.ty);
}
}
let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(),
unifier,
primitives_store,
&type_annotation,
&mut None,
)?;
Ok(FuncArg {
name: vararg.node.arg,
ty,
default_value: Some(SymbolValue::Tuple(Vec::default())),
is_vararg: true,
})
})
.transpose()?;
let mut arg_types = {
// make sure no duplicate parameter // make sure no duplicate parameter
let mut defined_parameter_name: HashSet<_> = HashSet::new(); let mut defined_parameter_name: HashSet<_> = HashSet::new();
for x in &args.args { for x in &args.args {
@ -936,6 +1024,7 @@ impl TopLevelComposer {
let ty = get_type_from_type_annotation_kinds( let ty = get_type_from_type_annotation_kinds(
temp_def_list.as_ref(), temp_def_list.as_ref(),
unifier, unifier,
primitives_store,
&type_annotation, &type_annotation,
&mut None, &mut None,
)?; )?;
@ -959,11 +1048,18 @@ impl TopLevelComposer {
v v
}), }),
}, },
is_vararg: false,
}) })
}) })
.collect::<Result<Vec<_>, _>>()? .collect::<Result<Vec<_>, _>>()?
}; };
if let Some(vararg) = vararg {
arg_types.push(vararg);
};
let arg_types = arg_types;
let return_ty = { let return_ty = {
if let Some(returns) = returns { if let Some(returns) = returns {
let return_ty_annotation = { let return_ty_annotation = {
@ -1002,6 +1098,7 @@ impl TopLevelComposer {
get_type_from_type_annotation_kinds( get_type_from_type_annotation_kinds(
&temp_def_list, &temp_def_list,
unifier, unifier,
primitives_store,
&return_ty_annotation, &return_ty_annotation,
&mut None, &mut None,
)? )?
@ -1214,6 +1311,7 @@ impl TopLevelComposer {
}) })
} }
}, },
is_vararg: false,
}; };
// push the dummy type and the type annotation // push the dummy type and the type annotation
// into the list for later unification // into the list for later unification
@ -1622,6 +1720,7 @@ impl TopLevelComposer {
let self_type = get_type_from_type_annotation_kinds( let self_type = get_type_from_type_annotation_kinds(
&def_list, &def_list,
unifier, unifier,
primitives_ty,
&make_self_type_annotation(type_vars, *object_id), &make_self_type_annotation(type_vars, *object_id),
&mut None, &mut None,
)?; )?;
@ -1638,21 +1737,25 @@ impl TopLevelComposer {
name: "msg".into(), name: "msg".into(),
ty: string, ty: string,
default_value: Some(SymbolValue::Str(String::new())), default_value: Some(SymbolValue::Str(String::new())),
is_vararg: false,
}, },
FuncArg { FuncArg {
name: "param0".into(), name: "param0".into(),
ty: int64, ty: int64,
default_value: Some(SymbolValue::I64(0)), default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
}, },
FuncArg { FuncArg {
name: "param1".into(), name: "param1".into(),
ty: int64, ty: int64,
default_value: Some(SymbolValue::I64(0)), default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
}, },
FuncArg { FuncArg {
name: "param2".into(), name: "param2".into(),
ty: int64, ty: int64,
default_value: Some(SymbolValue::I64(0)), default_value: Some(SymbolValue::I64(0)),
is_vararg: false,
}, },
], ],
ret: self_type, ret: self_type,
@ -1803,7 +1906,11 @@ impl TopLevelComposer {
let ty_ann = make_self_type_annotation(type_vars, *class_id); let ty_ann = make_self_type_annotation(type_vars, *class_id);
let self_ty = get_type_from_type_annotation_kinds( let self_ty = get_type_from_type_annotation_kinds(
&def_list, unifier, &ty_ann, &mut None, &def_list,
unifier,
primitives_ty,
&ty_ann,
&mut None,
)?; )?;
vars.extend(type_vars.iter().map(|ty| { vars.extend(type_vars.iter().map(|ty| {
let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else { let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*ty) else {
@ -1858,6 +1965,7 @@ impl TopLevelComposer {
name: a.name, name: a.name,
ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty), ty: unifier.subst(a.ty, &subst).unwrap_or(a.ty),
default_value: a.default_value.clone(), default_value: a.default_value.clone(),
is_vararg: false,
}) })
.collect_vec() .collect_vec()
}; };

View File

@ -27,17 +27,22 @@ pub enum PrimDef {
List, List,
NDArray, NDArray,
// Member Functions // Option methods
OptionIsSome, FunOptionIsSome,
OptionIsNone, FunOptionIsNone,
OptionUnwrap, FunOptionUnwrap,
NDArrayCopy,
NDArrayFill, // Option-related functions
FunInt32, FunSome,
FunInt64,
FunUInt32, // NDArray methods
FunUInt64, FunNDArrayCopy,
FunFloat, FunNDArrayFill,
// Range methods
FunRangeInit,
// NumPy factory functions
FunNpNDArray, FunNpNDArray,
FunNpEmpty, FunNpEmpty,
FunNpZeros, FunNpZeros,
@ -46,26 +51,27 @@ pub enum PrimDef {
FunNpArray, FunNpArray,
FunNpEye, FunNpEye,
FunNpIdentity, FunNpIdentity,
FunRound,
FunRound64, // NumPy ndarray property getters
FunNpSize,
FunNpShape,
FunNpStrides,
// NumPy ndarray view functions
FunNpBroadcastTo,
FunNpTranspose,
FunNpReshape,
// Miscellaneous NumPy & SciPy functions
FunNpRound, FunNpRound,
FunRangeInit,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunNpFloor, FunNpFloor,
FunCeil,
FunCeil64,
FunNpCeil, FunNpCeil,
FunLen,
FunMin,
FunNpMin, FunNpMin,
FunNpMinimum, FunNpMinimum,
FunMax, FunNpArgmin,
FunNpMax, FunNpMax,
FunNpMaximum, FunNpMaximum,
FunAbs, FunNpArgmax,
FunNpIsNan, FunNpIsNan,
FunNpIsInf, FunNpIsInf,
FunNpSin, FunNpSin,
@ -104,14 +110,43 @@ pub enum PrimDef {
FunNpHypot, FunNpHypot,
FunNpNextAfter, FunNpNextAfter,
// Top-Level Functions // Linalg functions
FunSome, FunNpDot,
FunNpLinalgCholesky,
FunNpLinalgQr,
FunNpLinalgSvd,
FunNpLinalgInv,
FunNpLinalgPinv,
FunNpLinalgMatrixPower,
FunNpLinalgDet,
FunSpLinalgLu,
FunSpLinalgSchur,
FunSpLinalgHessenberg,
// Miscellaneous Python & NAC3 functions
FunInt32,
FunInt64,
FunUInt32,
FunUInt64,
FunFloat,
FunRound,
FunRound64,
FunStr,
FunBool,
FunFloor,
FunFloor64,
FunCeil,
FunCeil64,
FunLen,
FunMin,
FunMax,
FunAbs,
} }
/// Associated details of a [`PrimDef`] /// Associated details of a [`PrimDef`]
pub enum PrimDefDetails { pub enum PrimDefDetails {
PrimFunction { name: &'static str, simple_name: &'static str }, PrimFunction { name: &'static str, simple_name: &'static str },
PrimClass { name: &'static str }, PrimClass { name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type },
} }
impl PrimDef { impl PrimDef {
@ -153,15 +188,17 @@ impl PrimDef {
#[must_use] #[must_use]
pub fn name(&self) -> &'static str { pub fn name(&self) -> &'static str {
match self.details() { match self.details() {
PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name } => name, PrimDefDetails::PrimFunction { name, .. } | PrimDefDetails::PrimClass { name, .. } => {
name
}
} }
} }
/// Get the associated details of this [`PrimDef`] /// Get the associated details of this [`PrimDef`]
#[must_use] #[must_use]
pub fn details(self) -> PrimDefDetails { pub fn details(self) -> PrimDefDetails {
fn class(name: &'static str) -> PrimDefDetails { fn class(name: &'static str, get_ty_fn: fn(&PrimitiveStore) -> Type) -> PrimDefDetails {
PrimDefDetails::PrimClass { name } PrimDefDetails::PrimClass { name, get_ty_fn }
} }
fn fun(name: &'static str, simple_name: Option<&'static str>) -> PrimDefDetails { fn fun(name: &'static str, simple_name: Option<&'static str>) -> PrimDefDetails {
@ -169,29 +206,37 @@ impl PrimDef {
} }
match self { match self {
PrimDef::Int32 => class("int32"), // Classes
PrimDef::Int64 => class("int64"), PrimDef::Int32 => class("int32", |primitives| primitives.int32),
PrimDef::Float => class("float"), PrimDef::Int64 => class("int64", |primitives| primitives.int64),
PrimDef::Bool => class("bool"), PrimDef::Float => class("float", |primitives| primitives.float),
PrimDef::None => class("none"), PrimDef::Bool => class("bool", |primitives| primitives.bool),
PrimDef::Range => class("range"), PrimDef::None => class("none", |primitives| primitives.none),
PrimDef::Str => class("str"), PrimDef::Range => class("range", |primitives| primitives.range),
PrimDef::Exception => class("Exception"), PrimDef::Str => class("str", |primitives| primitives.str),
PrimDef::UInt32 => class("uint32"), PrimDef::Exception => class("Exception", |primitives| primitives.exception),
PrimDef::UInt64 => class("uint64"), PrimDef::UInt32 => class("uint32", |primitives| primitives.uint32),
PrimDef::Option => class("Option"), PrimDef::UInt64 => class("uint64", |primitives| primitives.uint64),
PrimDef::OptionIsSome => fun("Option.is_some", Some("is_some")), PrimDef::Option => class("Option", |primitives| primitives.option),
PrimDef::OptionIsNone => fun("Option.is_none", Some("is_none")), PrimDef::List => class("list", |primitives| primitives.list),
PrimDef::OptionUnwrap => fun("Option.unwrap", Some("unwrap")), PrimDef::NDArray => class("ndarray", |primitives| primitives.ndarray),
PrimDef::List => class("list"),
PrimDef::NDArray => class("ndarray"), // Option methods
PrimDef::NDArrayCopy => fun("ndarray.copy", Some("copy")), PrimDef::FunOptionIsSome => fun("Option.is_some", Some("is_some")),
PrimDef::NDArrayFill => fun("ndarray.fill", Some("fill")), PrimDef::FunOptionIsNone => fun("Option.is_none", Some("is_none")),
PrimDef::FunInt32 => fun("int32", None), PrimDef::FunOptionUnwrap => fun("Option.unwrap", Some("unwrap")),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None), // Option-related functions
PrimDef::FunUInt64 => fun("uint64", None), PrimDef::FunSome => fun("Some", None),
PrimDef::FunFloat => fun("float", None),
// NDArray methods
PrimDef::FunNDArrayCopy => fun("ndarray.copy", Some("copy")),
PrimDef::FunNDArrayFill => fun("ndarray.fill", Some("fill")),
// Range methods
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
// NumPy factory functions
PrimDef::FunNpNDArray => fun("np_ndarray", None), PrimDef::FunNpNDArray => fun("np_ndarray", None),
PrimDef::FunNpEmpty => fun("np_empty", None), PrimDef::FunNpEmpty => fun("np_empty", None),
PrimDef::FunNpZeros => fun("np_zeros", None), PrimDef::FunNpZeros => fun("np_zeros", None),
@ -200,26 +245,27 @@ impl PrimDef {
PrimDef::FunNpArray => fun("np_array", None), PrimDef::FunNpArray => fun("np_array", None),
PrimDef::FunNpEye => fun("np_eye", None), PrimDef::FunNpEye => fun("np_eye", None),
PrimDef::FunNpIdentity => fun("np_identity", None), PrimDef::FunNpIdentity => fun("np_identity", None),
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None), // NumPy NDArray property getters,
PrimDef::FunNpSize => fun("np_size", None),
PrimDef::FunNpShape => fun("np_shape", None),
PrimDef::FunNpStrides => fun("np_strides", None),
// NumPy NDArray view functions
PrimDef::FunNpBroadcastTo => fun("np_broadcast_to", None),
PrimDef::FunNpTranspose => fun("np_transpose", None),
PrimDef::FunNpReshape => fun("np_reshape", None),
// Miscellaneous NumPy & SciPy functions
PrimDef::FunNpRound => fun("np_round", None), PrimDef::FunNpRound => fun("np_round", None),
PrimDef::FunRangeInit => fun("range.__init__", Some("__init__")),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunNpFloor => fun("np_floor", None), PrimDef::FunNpFloor => fun("np_floor", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunNpCeil => fun("np_ceil", None), PrimDef::FunNpCeil => fun("np_ceil", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunNpMin => fun("np_min", None), PrimDef::FunNpMin => fun("np_min", None),
PrimDef::FunNpMinimum => fun("np_minimum", None), PrimDef::FunNpMinimum => fun("np_minimum", None),
PrimDef::FunMax => fun("max", None), PrimDef::FunNpArgmin => fun("np_argmin", None),
PrimDef::FunNpMax => fun("np_max", None), PrimDef::FunNpMax => fun("np_max", None),
PrimDef::FunNpMaximum => fun("np_maximum", None), PrimDef::FunNpMaximum => fun("np_maximum", None),
PrimDef::FunAbs => fun("abs", None), PrimDef::FunNpArgmax => fun("np_argmax", None),
PrimDef::FunNpIsNan => fun("np_isnan", None), PrimDef::FunNpIsNan => fun("np_isnan", None),
PrimDef::FunNpIsInf => fun("np_isinf", None), PrimDef::FunNpIsInf => fun("np_isinf", None),
PrimDef::FunNpSin => fun("np_sin", None), PrimDef::FunNpSin => fun("np_sin", None),
@ -257,7 +303,38 @@ impl PrimDef {
PrimDef::FunNpLdExp => fun("np_ldexp", None), PrimDef::FunNpLdExp => fun("np_ldexp", None),
PrimDef::FunNpHypot => fun("np_hypot", None), PrimDef::FunNpHypot => fun("np_hypot", None),
PrimDef::FunNpNextAfter => fun("np_nextafter", None), PrimDef::FunNpNextAfter => fun("np_nextafter", None),
PrimDef::FunSome => fun("Some", None),
// Linalg functions
PrimDef::FunNpDot => fun("np_dot", None),
PrimDef::FunNpLinalgCholesky => fun("np_linalg_cholesky", None),
PrimDef::FunNpLinalgQr => fun("np_linalg_qr", None),
PrimDef::FunNpLinalgSvd => fun("np_linalg_svd", None),
PrimDef::FunNpLinalgInv => fun("np_linalg_inv", None),
PrimDef::FunNpLinalgPinv => fun("np_linalg_pinv", None),
PrimDef::FunNpLinalgMatrixPower => fun("np_linalg_matrix_power", None),
PrimDef::FunNpLinalgDet => fun("np_linalg_det", None),
PrimDef::FunSpLinalgLu => fun("sp_linalg_lu", None),
PrimDef::FunSpLinalgSchur => fun("sp_linalg_schur", None),
PrimDef::FunSpLinalgHessenberg => fun("sp_linalg_hessenberg", None),
// Miscellaneous Python & NAC3 functions
PrimDef::FunInt32 => fun("int32", None),
PrimDef::FunInt64 => fun("int64", None),
PrimDef::FunUInt32 => fun("uint32", None),
PrimDef::FunUInt64 => fun("uint64", None),
PrimDef::FunFloat => fun("float", None),
PrimDef::FunRound => fun("round", None),
PrimDef::FunRound64 => fun("round64", None),
PrimDef::FunStr => fun("str", None),
PrimDef::FunBool => fun("bool", None),
PrimDef::FunFloor => fun("floor", None),
PrimDef::FunFloor64 => fun("floor64", None),
PrimDef::FunCeil => fun("ceil", None),
PrimDef::FunCeil64 => fun("ceil64", None),
PrimDef::FunLen => fun("len", None),
PrimDef::FunMin => fun("min", None),
PrimDef::FunMax => fun("max", None),
PrimDef::FunAbs => fun("abs", None),
} }
} }
} }
@ -408,9 +485,9 @@ impl TopLevelComposer {
let option = unifier.add_ty(TypeEnum::TObj { let option = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::Option.id(), obj_id: PrimDef::Option.id(),
fields: vec![ fields: vec![
(PrimDef::OptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)), (PrimDef::FunOptionIsSome.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)), (PrimDef::FunOptionIsNone.simple_name().into(), (is_some_type_fun_ty, true)),
(PrimDef::OptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)), (PrimDef::FunOptionUnwrap.simple_name().into(), (unwrap_fun_ty, true)),
] ]
.into_iter() .into_iter()
.collect::<HashMap<_, _>>(), .collect::<HashMap<_, _>>(),
@ -444,6 +521,7 @@ impl TopLevelComposer {
name: "value".into(), name: "value".into(),
ty: ndarray_dtype_tvar.ty, ty: ndarray_dtype_tvar.ty,
default_value: None, default_value: None,
is_vararg: false,
}], }],
ret: none, ret: none,
vars: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]), vars: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
@ -451,8 +529,8 @@ impl TopLevelComposer {
let ndarray = unifier.add_ty(TypeEnum::TObj { let ndarray = unifier.add_ty(TypeEnum::TObj {
obj_id: PrimDef::NDArray.id(), obj_id: PrimDef::NDArray.id(),
fields: Mapping::from([ fields: Mapping::from([
(PrimDef::NDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)), (PrimDef::FunNDArrayCopy.simple_name().into(), (ndarray_copy_fun_ty, true)),
(PrimDef::NDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)), (PrimDef::FunNDArrayFill.simple_name().into(), (ndarray_fill_fun_ty, true)),
]), ]),
params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]), params: into_var_map([ndarray_dtype_tvar, ndarray_ndims_tvar]),
}); });
@ -938,3 +1016,23 @@ pub fn arraylike_get_ndims(unifier: &mut Unifier, ty: Type) -> u64 {
_ => 0, _ => 0,
} }
} }
/// Extract an ndarray's `ndims` [type][`Type`] in `u64`. Panic if not possible.
/// The `ndims` must only contain 1 value.
#[must_use]
pub fn extract_ndims(unifier: &Unifier, ndims_ty: Type) -> u64 {
let ndims_ty_enum = unifier.get_ty_immutable(ndims_ty);
let TypeEnum::TLiteral { values, .. } = &*ndims_ty_enum else {
panic!("ndims_ty should be a TLiteral");
};
assert_eq!(values.len(), 1, "ndims_ty TLiteral should only contain 1 value");
let ndims = values[0].clone();
u64::try_from(ndims).unwrap()
}
/// Return an ndarray's `ndims` as a typechecker [`Type`] from its `u64` value.
pub fn create_ndims(unifier: &mut Unifier, ndims: u64) -> Type {
unifier.get_fresh_literal(vec![SymbolValue::U64(ndims)], None)
}

View File

@ -130,14 +130,14 @@ pub enum TopLevelDef {
/// Function instance to symbol mapping /// Function instance to symbol mapping
/// ///
/// * Key: String representation of type variable values, sorted by variable ID in ascending /// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. /// order, including type variables associated with the class.
/// * Value: Function symbol name. /// * Value: Function symbol name.
instance_to_symbol: HashMap<String, String>, instance_to_symbol: HashMap<String, String>,
/// Function instances to annotated AST mapping /// Function instances to annotated AST mapping
/// ///
/// * Key: String representation of type variable values, sorted by variable ID in ascending /// * Key: String representation of type variable values, sorted by variable ID in ascending
/// order, including type variables associated with the class. Excluding rigid type /// order, including type variables associated with the class. Excluding rigid type
/// variables. /// variables.
/// ///
/// Rigid type variables that would be substituted when the function is instantiated. /// Rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, FunInstance>, instance_to_stmt: HashMap<String, FunInstance>,

View File

@ -10,9 +10,9 @@ use itertools::Itertools;
/// Creates a `ndarray` [`Type`] with the given type arguments. /// Creates a `ndarray` [`Type`] with the given type arguments.
/// ///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not /// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized. /// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not /// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized. /// specialized.
pub fn make_ndarray_ty( pub fn make_ndarray_ty(
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore, primitives: &PrimitiveStore,
@ -25,9 +25,9 @@ pub fn make_ndarray_ty(
/// Substitutes type variables in `ndarray`. /// Substitutes type variables in `ndarray`.
/// ///
/// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not /// * `dtype` - The element type of the `ndarray`, or [`None`] if the type variable is not
/// specialized. /// specialized.
/// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not /// * `ndims` - The number of dimensions of the `ndarray`, or [`None`] if the type variable is not
/// specialized. /// specialized.
pub fn subst_ndarray_tvars( pub fn subst_ndarray_tvars(
unifier: &mut Unifier, unifier: &mut Unifier,
ndarray: Type, ndarray: Type,

View File

@ -5,7 +5,7 @@ expression: res_vec
[ [
"Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n", "Class {\nname: \"Generic_A\",\nancestors: [\"Generic_A[V]\", \"B\"],\nfields: [\"aa\", \"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\"), (\"fun\", \"fn[[a:int32], V]\")],\ntype_vars: [\"V\"]\n}\n",
"Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"Generic_A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(245)]\n}\n", "Function {\nname: \"Generic_A.fun\",\nsig: \"fn[[a:int32], V]\",\nvar_id: [TypeVarId(257)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [\"aa\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"foo\", \"fn[[b:T], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.foo\",\nsig: \"fn[[b:T], none]\",\nvar_id: []\n}\n",

View File

@ -7,7 +7,7 @@ expression: res_vec
"Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[t:T], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[c:C], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B[typevar234]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar234\"]\n}\n", "Class {\nname: \"B\",\nancestors: [\"B[typevar246]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: [\"typevar246\"]\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n", "Function {\nname: \"B.fun\",\nsig: \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"C\", \"B[bool]\", \"A[float]\"],\nfields: [\"a\", \"b\", \"c\", \"d\", \"e\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:int32, b:T], list[virtual[B[bool]]]]\"), (\"foo\", \"fn[[c:C], none]\")],\ntype_vars: []\n}\n",

View File

@ -5,8 +5,8 @@ expression: res_vec
[ [
"Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a:list[int32], b:tuple[T, float]], A[B, bool]]\",\nvar_id: []\n}\n",
"Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"A[T, V]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[v:V], none]\"), (\"fun\", \"fn[[a:T], V]\")],\ntype_vars: [\"T\", \"V\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(247)]\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[v:V], none]\",\nvar_id: [TypeVarId(259)]\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(252)]\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(264)]\n}\n",
"Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n", "Function {\nname: \"gfun\",\nsig: \"fn[[a:A[list[float], int32]], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\"],\nfields: [],\nmethods: [(\"__init__\", \"fn[[], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",

View File

@ -3,7 +3,7 @@ source: nac3core/src/toplevel/test.rs
expression: res_vec expression: res_vec
--- ---
[ [
"Class {\nname: \"A\",\nancestors: [\"A[typevar233, typevar234]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar233\", \"typevar234\"]\n}\n", "Class {\nname: \"A\",\nancestors: [\"A[typevar245, typevar246]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[a:A[float, bool], b:B], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\")],\ntype_vars: [\"typevar245\", \"typevar246\"]\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[a:A[float, bool], b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[a:A[float, bool]], A[bool, int32]]\",\nvar_id: []\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\", \"A[int64, bool]\"],\nfields: [\"a\", \"b\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[a:A[float, bool]], A[bool, int32]]\"), (\"foo\", \"fn[[b:B], B]\"), (\"bar\", \"fn[[a:A[list[B], int32]], tuple[A[virtual[A[B, int32]], bool], B]]\")],\ntype_vars: []\n}\n",

View File

@ -6,12 +6,12 @@ expression: res_vec
"Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"A\",\nancestors: [\"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"A.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(253)]\n}\n", "Function {\nname: \"A.foo\",\nsig: \"fn[[a:T, b:V], none]\",\nvar_id: [TypeVarId(265)]\n}\n",
"Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"B\",\nancestors: [\"B\", \"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"B.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n", "Class {\nname: \"C\",\nancestors: [\"C\", \"A\"],\nfields: [\"a\"],\nmethods: [(\"__init__\", \"fn[[], none]\"), (\"fun\", \"fn[[b:B], none]\"), (\"foo\", \"fn[[a:T, b:V], none]\")],\ntype_vars: []\n}\n",
"Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.__init__\",\nsig: \"fn[[], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n", "Function {\nname: \"C.fun\",\nsig: \"fn[[b:B], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n", "Function {\nname: \"foo\",\nsig: \"fn[[a:A], none]\",\nvar_id: []\n}\n",
"Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(261)]\n}\n", "Function {\nname: \"ff\",\nsig: \"fn[[a:T], V]\",\nvar_id: [TypeVarId(273)]\n}\n",
] ]

View File

@ -117,7 +117,8 @@ impl SymbolResolver for Resolver {
"register" "register"
)] )]
fn test_simple_register(source: Vec<&str>) { fn test_simple_register(source: Vec<&str>) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0; let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
for s in source { for s in source {
let ast = parse_program(s, FileName::default()).unwrap(); let ast = parse_program(s, FileName::default()).unwrap();
@ -137,7 +138,8 @@ fn test_simple_register(source: Vec<&str>) {
"register" "register"
)] )]
fn test_simple_register_without_constructor(source: &str) { fn test_simple_register_without_constructor(source: &str) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0; let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let ast = parse_program(source, FileName::default()).unwrap(); let ast = parse_program(source, FileName::default()).unwrap();
let ast = ast[0].clone(); let ast = ast[0].clone();
composer.register_top_level(ast, None, "", true).unwrap(); composer.register_top_level(ast, None, "", true).unwrap();
@ -171,7 +173,8 @@ fn test_simple_register_without_constructor(source: &str) {
"function compose" "function compose"
)] )]
fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) { fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0; let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = Arc::new(ResolverInternal { let internal_resolver = Arc::new(ResolverInternal {
id_to_def: Mutex::default(), id_to_def: Mutex::default(),
@ -519,7 +522,8 @@ fn test_simple_function_analyze(source: &[&str], tys: &[&str], names: &[&str]) {
)] )]
fn test_analyze(source: &[&str], res: &[&str]) { fn test_analyze(source: &[&str], res: &[&str]) {
let print = false; let print = false;
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0; let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar( let internal_resolver = make_internal_resolver_with_tvar(
vec![ vec![
@ -696,7 +700,8 @@ fn test_analyze(source: &[&str], res: &[&str]) {
)] )]
fn test_inference(source: Vec<&str>, res: &[&str]) { fn test_inference(source: Vec<&str>, res: &[&str]) {
let print = true; let print = true;
let mut composer = TopLevelComposer::new(Vec::new(), ComposerConfig::default(), 64).0; let mut composer =
TopLevelComposer::new(Vec::new(), Vec::new(), ComposerConfig::default(), 64).0;
let internal_resolver = make_internal_resolver_with_tvar( let internal_resolver = make_internal_resolver_with_tvar(
vec![ vec![

View File

@ -1,8 +1,9 @@
use super::*; use super::*;
use crate::symbol_resolver::SymbolValue; use crate::symbol_resolver::SymbolValue;
use crate::toplevel::helper::PrimDef; use crate::toplevel::helper::{PrimDef, PrimDefDetails};
use crate::typecheck::typedef::VarMap; use crate::typecheck::typedef::VarMap;
use nac3parser::ast::Constant; use nac3parser::ast::Constant;
use strum::IntoEnumIterator;
#[derive(Clone, Debug)] #[derive(Clone, Debug)]
pub enum TypeAnnotation { pub enum TypeAnnotation {
@ -63,9 +64,9 @@ impl TypeAnnotation {
/// Parses an AST expression `expr` into a [`TypeAnnotation`]. /// Parses an AST expression `expr` into a [`TypeAnnotation`].
/// ///
/// * `locked` - A [`HashMap`] containing the IDs of known definitions, mapped to a [`Vec`] of all /// * `locked` - A [`HashMap`] containing the IDs of known definitions, mapped to a [`Vec`] of all
/// generic variables associated with the definition. /// generic variables associated with the definition.
/// * `type_var` - The type variable associated with the type argument currently being parsed. Pass /// * `type_var` - The type variable associated with the type argument currently being parsed. Pass
/// [`None`] when this function is invoked externally. /// [`None`] when this function is invoked externally.
pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>( pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
resolver: &(dyn SymbolResolver + Send + Sync), resolver: &(dyn SymbolResolver + Send + Sync),
top_level_defs: &[Arc<RwLock<TopLevelDef>>], top_level_defs: &[Arc<RwLock<TopLevelDef>>],
@ -357,6 +358,7 @@ pub fn parse_ast_to_type_annotation_kinds<T, S: std::hash::BuildHasher + Clone>(
pub fn get_type_from_type_annotation_kinds( pub fn get_type_from_type_annotation_kinds(
top_level_defs: &[Arc<RwLock<TopLevelDef>>], top_level_defs: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier, unifier: &mut Unifier,
primitives: &PrimitiveStore,
ann: &TypeAnnotation, ann: &TypeAnnotation,
subst_list: &mut Option<Vec<Type>>, subst_list: &mut Option<Vec<Type>>,
) -> Result<Type, HashSet<String>> { ) -> Result<Type, HashSet<String>> {
@ -379,100 +381,141 @@ pub fn get_type_from_type_annotation_kinds(
let param_ty = params let param_ty = params
.iter() .iter()
.map(|x| { .map(|x| {
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list) get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
let subst = { let ty = if let Some(prim_def) = PrimDef::iter().find(|prim| prim.id() == *obj_id) {
// check for compatible range // Primitive TopLevelDefs do not contain all fields that are present in their Type
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check // counterparts, so directly perform subst on the Type instead.
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
}
TypeEnum::TVar { id, range, name, loc, is_const_generic: true, .. } => { let PrimDefDetails::PrimClass { get_ty_fn, .. } = prim_def.details() else {
let ty = range[0]; unreachable!()
let ok: bool = { };
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
_ => unreachable!("must be generic type var"), let base_ty = get_ty_fn(primitives);
let params =
if let TypeEnum::TObj { params, .. } = &*unifier.get_ty_immutable(base_ty) {
params.clone()
} else {
unreachable!()
};
unifier
.subst(
get_ty_fn(primitives),
&params
.iter()
.zip(param_ty)
.map(|(obj_tv, param)| (*obj_tv.0, param))
.collect(),
)
.unwrap_or(base_ty)
} else {
let subst = {
// check for compatible range
// TODO: if allow type var to be applied(now this disallowed in the parse_to_type_annotation), need more check
let mut result = VarMap::new();
for (tvar, p) in type_vars.iter().zip(param_ty) {
match unifier.get_ty(*tvar).as_ref() {
TypeEnum::TVar {
id,
range,
fields: None,
name,
loc,
is_const_generic: false,
} => {
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp = unifier.get_fresh_var_with_range(
range.as_slice(),
*name,
*loc,
);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable with id {:?}",
unifier.internal_stringify(
p,
&mut |id| format!("class{id}"),
&mut |id| format!("typevar{id}"),
&mut None
),
*id
)]));
}
}
TypeEnum::TVar {
id, range, name, loc, is_const_generic: true, ..
} => {
let ty = range[0];
let ok: bool = {
// create a temp type var and unify to check compatibility
p == *tvar || {
let temp =
unifier.get_fresh_const_generic_var(ty, *name, *loc);
unifier.unify(temp.ty, p).is_ok()
}
};
if ok {
result.insert(*id, p);
} else {
return Err(HashSet::from([format!(
"cannot apply type {} to type variable {}",
unifier.stringify(p),
name.unwrap_or_else(|| format!("typevar{id}").into()),
)]));
}
}
_ => unreachable!("must be generic type var"),
}
}
result
};
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
} }
} }
result
ty
}; };
// Class Attributes keep a copy with Class Definition and are not added to objects
let mut tobj_fields = methods
.iter()
.map(|(name, ty, _)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
// methods are immutable
(*name, (subst_ty, false))
})
.collect::<HashMap<_, _>>();
tobj_fields.extend(fields.iter().map(|(name, ty, mutability)| {
let subst_ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*name, (subst_ty, *mutability))
}));
let need_subst = !subst.is_empty();
let ty = unifier.add_ty(TypeEnum::TObj {
obj_id: *obj_id,
fields: tobj_fields,
params: subst,
});
if need_subst {
if let Some(wl) = subst_list.as_mut() {
wl.push(ty);
}
}
Ok(ty) Ok(ty)
} }
TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty), TypeAnnotation::Primitive(ty) | TypeAnnotation::TypeVar(ty) => Ok(*ty),
@ -490,6 +533,7 @@ pub fn get_type_from_type_annotation_kinds(
let ty = get_type_from_type_annotation_kinds( let ty = get_type_from_type_annotation_kinds(
top_level_defs, top_level_defs,
unifier, unifier,
primitives,
ty.as_ref(), ty.as_ref(),
subst_list, subst_list,
)?; )?;
@ -499,10 +543,16 @@ pub fn get_type_from_type_annotation_kinds(
let tys = tys let tys = tys
.iter() .iter()
.map(|x| { .map(|x| {
get_type_from_type_annotation_kinds(top_level_defs, unifier, x, subst_list) get_type_from_type_annotation_kinds(
top_level_defs,
unifier,
primitives,
x,
subst_list,
)
}) })
.collect::<Result<Vec<_>, _>>()?; .collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys })) Ok(unifier.add_ty(TypeEnum::TTuple { ty: tys, is_vararg_ctx: false }))
} }
} }
} }

View File

@ -34,13 +34,18 @@ impl<'a> Inferencer<'a> {
self.should_have_value(pattern)?; self.should_have_value(pattern)?;
Ok(()) Ok(())
} }
ExprKind::Tuple { elts, .. } => { ExprKind::List { elts, .. } | ExprKind::Tuple { elts, .. } => {
for elt in elts { for elt in elts {
self.check_pattern(elt, defined_identifiers)?; self.check_pattern(elt, defined_identifiers)?;
self.should_have_value(elt)?; self.should_have_value(elt)?;
} }
Ok(()) Ok(())
} }
ExprKind::Starred { value, .. } => {
self.check_pattern(value, defined_identifiers)?;
self.should_have_value(value)?;
Ok(())
}
ExprKind::Subscript { value, slice, .. } => { ExprKind::Subscript { value, slice, .. } => {
self.check_expr(value, defined_identifiers)?; self.check_expr(value, defined_identifiers)?;
self.should_have_value(value)?; self.should_have_value(value)?;
@ -207,19 +212,23 @@ impl<'a> Inferencer<'a> {
/// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which /// This is a workaround preventing the caller from using a variable `alloca`-ed in the body, which
/// is freed when the function returns. /// is freed when the function returns.
fn check_return_value_ty(&mut self, ret_ty: Type) -> bool { fn check_return_value_ty(&mut self, ret_ty: Type) -> bool {
match &*self.unifier.get_ty_immutable(ret_ty) { if cfg!(feature = "no-escape-analysis") {
TypeEnum::TObj { .. } => [ true
self.primitives.int32, } else {
self.primitives.int64, match &*self.unifier.get_ty_immutable(ret_ty) {
self.primitives.uint32, TypeEnum::TObj { .. } => [
self.primitives.uint64, self.primitives.int32,
self.primitives.float, self.primitives.int64,
self.primitives.bool, self.primitives.uint32,
] self.primitives.uint64,
.iter() self.primitives.float,
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)), self.primitives.bool,
TypeEnum::TTuple { ty } => ty.iter().all(|t| self.check_return_value_ty(*t)), ]
_ => false, .iter()
.any(|allowed_ty| self.unifier.unioned(ret_ty, *allowed_ty)),
TypeEnum::TTuple { ty, .. } => ty.iter().all(|t| self.check_return_value_ty(*t)),
_ => false,
}
} }
} }

Some files were not shown because too many files have changed in this diff Show More