forked from M-Labs/nac3
Compare commits
9 Commits
ndarray-st
...
ndarray-st
Author | SHA1 | Date | |
---|---|---|---|
e719d9396d | |||
27f2e8b391 | |||
5f4c406b37 | |||
31ab9675ca | |||
5fd5d65377 | |||
01042aecfb | |||
8754f252f6 | |||
17207a4ebe | |||
e3a4675fc6 |
@ -212,11 +212,11 @@ namespace {
|
||||
return this->size() * itemsize;
|
||||
}
|
||||
|
||||
void set_value_at_pelement(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement(const SizeT *indices) {
|
||||
uint8_t* get_pelement_by_indices(const SizeT *indices) {
|
||||
uint8_t* element = data;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
|
||||
element += indices[dim_i] * strides[dim_i];
|
||||
@ -229,7 +229,7 @@ namespace {
|
||||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
|
||||
return get_pelement(indices);
|
||||
return get_pelement_by_indices(indices);
|
||||
}
|
||||
|
||||
// Get pointer to the first element of this ndarray, assuming
|
||||
@ -259,8 +259,8 @@ namespace {
|
||||
iter.set_indices_zero();
|
||||
|
||||
for (SizeT i = 0; i < this->size(); i++, iter.next()) {
|
||||
uint8_t* pelement = get_pelement(iter.indices);
|
||||
set_value_at_pelement(pelement, pvalue);
|
||||
uint8_t* pelement = get_pelement_by_indices(iter.indices);
|
||||
set_pelement_value(pelement, pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
@ -283,8 +283,8 @@ namespace {
|
||||
|
||||
if (!in_bounds(indices)) continue;
|
||||
|
||||
uint8_t* pelement = get_pelement(indices);
|
||||
set_value_at_pelement(pelement, one_pvalue);
|
||||
uint8_t* pelement = get_pelement_by_indices(indices);
|
||||
set_pelement_value(pelement, one_pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
@ -435,9 +435,9 @@ namespace {
|
||||
};
|
||||
const SizeT this_size = this->size();
|
||||
for (SizeT i = 0; i < this_size; i++, iter.next()) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_pelement(indices);
|
||||
uint8_t* this_pelement = this->get_pelement(indices);
|
||||
this->set_value_at_pelement(src_pelement, src_pelement);
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_pelement_by_indices(indices);
|
||||
uint8_t* this_pelement = this->get_pelement_by_indices(indices);
|
||||
this->set_pelement_value(src_pelement, src_pelement);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -81,7 +81,7 @@ void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* curso
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
|
||||
for (SizeT i = 0; i < dim; i++) {
|
||||
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement(indices);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement_by_indices(indices);
|
||||
ElementT element = *pelement;
|
||||
|
||||
if (i != 0) printf(", "); // List delimiter
|
||||
@ -394,10 +394,10 @@ void test_ndslice_1() {
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 1 })));
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_2() {
|
||||
@ -471,8 +471,8 @@ void test_ndslice_2() {
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
// [5.0, 3.0]
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1 })));
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1 })));
|
||||
}
|
||||
|
||||
void test_can_broadcast_shape() {
|
||||
@ -618,24 +618,15 @@ void test_ndarray_broadcast_1() {
|
||||
|
||||
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {1, 2, 3})));
|
||||
}
|
||||
|
||||
void test_assign_with() {
|
||||
/*
|
||||
```
|
||||
xs = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64)
|
||||
ys = xs.shape
|
||||
```
|
||||
*/
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {1, 2, 3})));
|
||||
}
|
||||
|
||||
int main() {
|
||||
@ -653,6 +644,5 @@ int main() {
|
||||
test_ndslice_2();
|
||||
test_can_broadcast_shape();
|
||||
test_ndarray_broadcast_1();
|
||||
test_assign_with();
|
||||
return 0;
|
||||
}
|
@ -702,53 +702,54 @@ pub fn call_numpy_min<'ctx, G: CodeGenerator + ?Sized>(
|
||||
BasicValueEnum::PointerValue(n)
|
||||
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
|
||||
{
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
todo!()
|
||||
// let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
// let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
|
||||
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let n_sz_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
// let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
// let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
// if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
// let n_sz_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
// .unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
n_sz_eqz,
|
||||
"0:ValueError",
|
||||
"zero-size array to reduction operation minimum which has no identity",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// n_sz_eqz,
|
||||
// "0:ValueError",
|
||||
// "zero-size array to reduction operation minimum which has no identity",
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
// }
|
||||
|
||||
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
unsafe {
|
||||
let identity =
|
||||
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
}
|
||||
// let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
// unsafe {
|
||||
// let identity =
|
||||
// n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
// ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
// }
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
llvm_usize.const_int(1, false),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
// gen_for_callback_incrementing(
|
||||
// generator,
|
||||
// ctx,
|
||||
// llvm_usize.const_int(1, false),
|
||||
// (n_sz, false),
|
||||
// |generator, ctx, _, idx| {
|
||||
// let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
let result = call_min(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// let result = call_min(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
// ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
// Ok(())
|
||||
// },
|
||||
// llvm_usize.const_int(1, false),
|
||||
// )?;
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
accumulator
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// accumulator
|
||||
}
|
||||
|
||||
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
|
||||
@ -920,53 +921,54 @@ pub fn call_numpy_max<'ctx, G: CodeGenerator + ?Sized>(
|
||||
BasicValueEnum::PointerValue(n)
|
||||
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
|
||||
{
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
todo!()
|
||||
// let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
// let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
|
||||
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let n_sz_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
// let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
// let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
// if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
// let n_sz_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
// .unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
n_sz_eqz,
|
||||
"0:ValueError",
|
||||
"zero-size array to reduction operation minimum which has no identity",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// n_sz_eqz,
|
||||
// "0:ValueError",
|
||||
// "zero-size array to reduction operation minimum which has no identity",
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
// }
|
||||
|
||||
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
unsafe {
|
||||
let identity =
|
||||
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
}
|
||||
// let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
// unsafe {
|
||||
// let identity =
|
||||
// n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
// ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
// }
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
llvm_usize.const_int(1, false),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
// gen_for_callback_incrementing(
|
||||
// generator,
|
||||
// ctx,
|
||||
// llvm_usize.const_int(1, false),
|
||||
// (n_sz, false),
|
||||
// |generator, ctx, _, idx| {
|
||||
// let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
let result = call_max(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// let result = call_max(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
// ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
// Ok(())
|
||||
// },
|
||||
// llvm_usize.const_int(1, false),
|
||||
// )?;
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
accumulator
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// accumulator
|
||||
}
|
||||
|
||||
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
|
||||
|
@ -1,5 +1,8 @@
|
||||
use crate::codegen::{
|
||||
llvm_intrinsics::call_int_umin, stmt::gen_for_callback_incrementing, CodeGenContext,
|
||||
// irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
||||
llvm_intrinsics::call_int_umin,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
};
|
||||
use inkwell::context::Context;
|
||||
@ -1207,25 +1210,27 @@ impl<'ctx> NDArrayType<'ctx> {
|
||||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_usize = generator.get_size_type(ctx);
|
||||
todo!()
|
||||
|
||||
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
//
|
||||
// * num_dims: Number of dimensions in the array
|
||||
// * dims: Pointer to an array containing the size of each dimension
|
||||
// * data: Pointer to an array containing the array data
|
||||
let llvm_ndarray = ctx
|
||||
.struct_type(
|
||||
&[
|
||||
llvm_usize.into(),
|
||||
llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
dtype.ptr_type(AddressSpace::default()).into(),
|
||||
],
|
||||
false,
|
||||
)
|
||||
.ptr_type(AddressSpace::default());
|
||||
// let llvm_usize = generator.get_size_type(ctx);
|
||||
|
||||
NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
// // struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
// //
|
||||
// // * num_dims: Number of dimensions in the array
|
||||
// // * dims: Pointer to an array containing the size of each dimension
|
||||
// // * data: Pointer to an array containing the array data
|
||||
// let llvm_ndarray = ctx
|
||||
// .struct_type(
|
||||
// &[
|
||||
// llvm_usize.into(),
|
||||
// llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
// dtype.ptr_type(AddressSpace::default()).into(),
|
||||
// ],
|
||||
// false,
|
||||
// )
|
||||
// .ptr_type(AddressSpace::default());
|
||||
|
||||
// NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [`PointerType`].
|
||||
@ -1659,23 +1664,22 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
|
||||
indices: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let indices_elem_ty = indices
|
||||
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
.get_type()
|
||||
.get_element_type();
|
||||
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
};
|
||||
assert_eq!(
|
||||
indices_elem_ty.get_bit_width(),
|
||||
32,
|
||||
"Expected list[int32] but got list[int{}]",
|
||||
indices_elem_ty.get_bit_width()
|
||||
);
|
||||
|
||||
todo!()
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// let indices_elem_ty = indices
|
||||
// .ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
// .get_type()
|
||||
// .get_element_type();
|
||||
// let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
// panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
// };
|
||||
// assert_eq!(
|
||||
// indices_elem_ty.get_bit_width(),
|
||||
// 32,
|
||||
// "Expected list[int32] but got list[int{}]",
|
||||
// indices_elem_ty.get_bit_width()
|
||||
// );
|
||||
|
||||
// let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
||||
|
||||
@ -1797,27 +1801,39 @@ struct StructFieldsBuilder<'ctx> {
|
||||
}
|
||||
|
||||
impl<'ctx> StructField<'ctx> {
|
||||
/// TODO: DOCUMENT ME
|
||||
pub fn gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder.build_struct_gep(ptr, self.gep_index, self.name).unwrap()
|
||||
let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to use i32 for GEP like that
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
struct_ptr,
|
||||
&[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
|
||||
self.name,
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME
|
||||
pub fn load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
ctx.builder.build_load(self.gep(ctx, ptr), self.name).unwrap()
|
||||
ctx.builder.build_load(self.gep(ctx, struct_ptr), self.name).unwrap()
|
||||
}
|
||||
|
||||
pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>, value: V)
|
||||
/// TODO: DOCUMENT ME
|
||||
pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, struct_ptr: PointerValue<'ctx>, value: V)
|
||||
where
|
||||
V: BasicValue<'ctx>,
|
||||
{
|
||||
ctx.builder.build_store(ptr, value).unwrap();
|
||||
ctx.builder.build_store(self.gep(ctx, struct_ptr), value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
@ -1856,7 +1872,7 @@ impl<'ctx> StructFields<'ctx> {
|
||||
self.fields.len() as u32
|
||||
}
|
||||
|
||||
pub fn as_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
let llvm_fields = self.fields.iter().map(|field| field.ty).collect_vec();
|
||||
ctx.struct_type(llvm_fields.as_slice(), false)
|
||||
}
|
||||
@ -1900,7 +1916,11 @@ impl<'ctx> StructFieldsBuilder<'ctx> {
|
||||
fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
let index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
StructField { gep_index: index, name, ty }
|
||||
|
||||
let field = StructField { gep_index: index, name, ty };
|
||||
self.fields.push(field); // Register into self.fields
|
||||
|
||||
field // Return to the caller to conveniently let them do whatever they want
|
||||
}
|
||||
|
||||
fn end(self) -> StructFields<'ctx> {
|
||||
@ -1931,8 +1951,8 @@ impl<'ctx> NpArrayType<'ctx> {
|
||||
NpArrayType { size_type, elem_type: ctx.ctx.i8_type().as_basic_type_enum() }
|
||||
}
|
||||
|
||||
pub fn struct_type(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructType<'ctx> {
|
||||
self.fields().whole_struct.as_struct_type(ctx.ctx)
|
||||
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
self.fields().whole_struct.get_struct_type(ctx)
|
||||
}
|
||||
|
||||
pub fn fields(&self) -> NpArrayStructFields<'ctx> {
|
||||
@ -1958,29 +1978,43 @@ impl<'ctx> NpArrayType<'ctx> {
|
||||
/// - `ndarray.itemsize` will be initialized to the size of `self.elem_type.size_of()`.
|
||||
/// - `ndarray.shape` and `ndarray.strides` will be allocated on the stack with number of elements being `in_ndims`,
|
||||
/// all with empty/uninitialized values.
|
||||
pub fn alloca(
|
||||
pub fn var_alloc<G>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
in_ndims: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> NpArrayValue<'ctx> {
|
||||
let fields = self.fields();
|
||||
let ptr =
|
||||
ctx.builder.build_alloca(fields.whole_struct.as_struct_type(ctx.ctx), name).unwrap();
|
||||
name: Option<&str>,
|
||||
) -> NpArrayValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let ptr = generator
|
||||
.gen_var_alloc(ctx, self.get_struct_type(ctx.ctx).as_basic_type_enum(), name)
|
||||
.unwrap();
|
||||
|
||||
// Allocate `in_dims` number of `size_type` on the stack for `shape` and `strides`
|
||||
let allocated_shape =
|
||||
ctx.builder.build_array_alloca(fields.shape.ty, in_ndims, "allocated_shape").unwrap();
|
||||
let allocated_strides = ctx
|
||||
.builder
|
||||
.build_array_alloca(fields.strides.ty, in_ndims, "allocated_strides")
|
||||
let allocated_shape = generator
|
||||
.gen_array_var_alloc(
|
||||
ctx,
|
||||
self.size_type.as_basic_type_enum(),
|
||||
in_ndims,
|
||||
Some("allocated_shape"),
|
||||
)
|
||||
.unwrap();
|
||||
let allocated_strides = generator
|
||||
.gen_array_var_alloc(
|
||||
ctx,
|
||||
self.size_type.as_basic_type_enum(),
|
||||
in_ndims,
|
||||
Some("allocated_strides"),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let value = NpArrayValue { ty: *self, ptr };
|
||||
value.store_ndims(ctx, in_ndims);
|
||||
value.store_itemsize(ctx, self.elem_type.size_of().unwrap());
|
||||
value.store_shape(ctx, allocated_shape);
|
||||
value.store_strides(ctx, allocated_strides);
|
||||
value.store_shape(ctx, allocated_shape.base_ptr(ctx, generator));
|
||||
value.store_strides(ctx, allocated_strides.base_ptr(ctx, generator));
|
||||
|
||||
return value;
|
||||
}
|
||||
@ -2038,13 +2072,15 @@ impl<'ctx> NpArrayValue<'ctx> {
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// Get the pointer to `shape`
|
||||
let field = self.ty.fields().shape;
|
||||
field.gep(ctx, self.ptr);
|
||||
let shape = field.load(ctx, self.ptr).into_pointer_value();
|
||||
|
||||
// Load `ndims`
|
||||
let ndims = self.load_ndims(ctx);
|
||||
|
||||
TypedArrayLikeAdapter {
|
||||
adapted: ArraySliceValue(self.ptr, ndims, Some(field.name)),
|
||||
adapted: ArraySliceValue(shape, ndims, Some(field.name)),
|
||||
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
|
||||
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
|
||||
}
|
||||
@ -2055,13 +2091,15 @@ impl<'ctx> NpArrayValue<'ctx> {
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// Get the pointer to `strides`
|
||||
let field = self.ty.fields().strides;
|
||||
field.gep(ctx, self.ptr);
|
||||
let strides = field.load(ctx, self.ptr).into_pointer_value();
|
||||
|
||||
// Load `ndims`
|
||||
let ndims = self.load_ndims(ctx);
|
||||
|
||||
TypedArrayLikeAdapter {
|
||||
adapted: ArraySliceValue(self.ptr, ndims, Some(field.name)),
|
||||
adapted: ArraySliceValue(strides, ndims, Some(field.name)),
|
||||
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
|
||||
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
|
||||
}
|
||||
|
@ -4,8 +4,8 @@ mod test;
|
||||
|
||||
use super::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue, NpArrayType,
|
||||
NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
check_basic_types_match, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue,
|
||||
NDArrayValue, NpArrayType, NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
|
||||
},
|
||||
llvm_intrinsics, CodeGenContext, CodeGenerator,
|
||||
};
|
||||
@ -17,7 +17,7 @@ use inkwell::{
|
||||
memory_buffer::MemoryBuffer,
|
||||
module::Module,
|
||||
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType},
|
||||
values::{BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Either;
|
||||
@ -565,370 +565,370 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
/// calculated total size.
|
||||
///
|
||||
/// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
/// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
/// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
|
||||
pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
dims: &Dims,
|
||||
(begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dims: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_size",
|
||||
64 => "__nac3_ndarray_calc_size64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
let ndarray_calc_size_fn =
|
||||
ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
});
|
||||
|
||||
let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_size_fn,
|
||||
&[
|
||||
dims.base_ptr(ctx, generator).into(),
|
||||
dims.size(ctx, generator).into(),
|
||||
begin.into(),
|
||||
end.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
/// containing `i32` indices of the flattened index.
|
||||
///
|
||||
/// * `index` - The index to compute the multidimensional index for.
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_nd_indices",
|
||||
64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_nd_indices_fn =
|
||||
ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_void.fn_type(
|
||||
&[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_nd_indices_fn,
|
||||
&[
|
||||
index.into(),
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
generator: &G,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Indices,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Indices: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
debug_assert_eq!(
|
||||
IntType::try_from(indices.element_type(ctx, generator))
|
||||
.map(IntType::get_bit_width)
|
||||
.unwrap_or_default(),
|
||||
llvm_i32.get_bit_width(),
|
||||
"Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
debug_assert_eq!(
|
||||
indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
llvm_usize.get_bit_width(),
|
||||
"Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
);
|
||||
|
||||
let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_flatten_index",
|
||||
64 => "__nac3_ndarray_flatten_index64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_flatten_index_fn =
|
||||
ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let ndarray_dims = ndarray.dim_sizes();
|
||||
|
||||
let index = ctx
|
||||
.builder
|
||||
.build_call(
|
||||
ndarray_flatten_index_fn,
|
||||
&[
|
||||
ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
ndarray_num_dims.into(),
|
||||
indices.base_ptr(ctx, generator).into(),
|
||||
indices.size(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
.map(Either::unwrap_left)
|
||||
.unwrap();
|
||||
|
||||
index
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
/// multidimensional index.
|
||||
///
|
||||
/// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
/// `NDArray`.
|
||||
/// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
indices: &Index,
|
||||
) -> IntValue<'ctx>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Index: ArrayLikeIndexer<'ctx>,
|
||||
{
|
||||
call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
/// dimension and size of each dimension of the resultant `ndarray`.
|
||||
pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
lhs: NDArrayValue<'ctx>,
|
||||
rhs: NDArrayValue<'ctx>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast",
|
||||
64 => "__nac3_ndarray_calc_broadcast64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
llvm_usize.into(),
|
||||
llvm_pusize.into(),
|
||||
],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
llvm_usize.const_zero(),
|
||||
(min_ndims, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
(
|
||||
lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
)
|
||||
};
|
||||
|
||||
let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
let lhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let rhs_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
.unwrap();
|
||||
let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
|
||||
let lhs_eq_rhs = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
.unwrap();
|
||||
|
||||
let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
is_compatible,
|
||||
"0:ValueError",
|
||||
"operands could not be broadcast together",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let lhs_ndims = lhs.load_ndims(ctx);
|
||||
let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||
let rhs_ndims = rhs.load_ndims(ctx);
|
||||
let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[
|
||||
lhs_dims.into(),
|
||||
lhs_ndims.into(),
|
||||
rhs_dims.into(),
|
||||
rhs_ndims.into(),
|
||||
out_dims.base_ptr(ctx, generator).into(),
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
out_dims,
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
/// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
/// array `broadcast_idx`.
|
||||
pub fn call_ndarray_calc_broadcast_index<
|
||||
'ctx,
|
||||
G: CodeGenerator + ?Sized,
|
||||
BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
array: NDArrayValue<'ctx>,
|
||||
broadcast_idx: &BroadcastIdx,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
|
||||
let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
};
|
||||
let ndarray_calc_broadcast_fn =
|
||||
ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
let fn_type = llvm_usize.fn_type(
|
||||
&[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
false,
|
||||
);
|
||||
|
||||
ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
});
|
||||
|
||||
let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
|
||||
let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||
let array_ndims = array.load_ndims(ctx);
|
||||
let broadcast_idx_ptr = unsafe {
|
||||
broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
ctx.builder
|
||||
.build_call(
|
||||
ndarray_calc_broadcast_fn,
|
||||
&[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
TypedArrayLikeAdapter::from(
|
||||
ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
Box::new(|_, v| v.into_int_value()),
|
||||
Box::new(|_, v| v.into()),
|
||||
)
|
||||
}
|
||||
// /// Generates a call to `__nac3_ndarray_calc_size`. Returns an [`IntValue`] representing the
|
||||
// /// calculated total size.
|
||||
// ///
|
||||
// /// * `dims` - An [`ArrayLikeIndexer`] containing the size of each dimension.
|
||||
// /// * `range` - The dimension index to begin and end (exclusively) calculating the dimensions for,
|
||||
// /// or [`None`] if starting from the first dimension and ending at the last dimension respectively.
|
||||
// pub fn call_ndarray_calc_size<'ctx, G, Dims>(
|
||||
// generator: &G,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// dims: &Dims,
|
||||
// (begin, end): (Option<IntValue<'ctx>>, Option<IntValue<'ctx>>),
|
||||
// ) -> IntValue<'ctx>
|
||||
// where
|
||||
// G: CodeGenerator + ?Sized,
|
||||
// Dims: ArrayLikeIndexer<'ctx>,
|
||||
// {
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
//
|
||||
// let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
|
||||
// 32 => "__nac3_ndarray_calc_size",
|
||||
// 64 => "__nac3_ndarray_calc_size64",
|
||||
// bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
// };
|
||||
// let ndarray_calc_size_fn_t = llvm_usize.fn_type(
|
||||
// &[llvm_pusize.into(), llvm_usize.into(), llvm_usize.into(), llvm_usize.into()],
|
||||
// false,
|
||||
// );
|
||||
// let ndarray_calc_size_fn =
|
||||
// ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
|
||||
// ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
|
||||
// });
|
||||
//
|
||||
// let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
|
||||
// let end = end.unwrap_or_else(|| dims.size(ctx, generator));
|
||||
// ctx.builder
|
||||
// .build_call(
|
||||
// ndarray_calc_size_fn,
|
||||
// &[
|
||||
// dims.base_ptr(ctx, generator).into(),
|
||||
// dims.size(ctx, generator).into(),
|
||||
// begin.into(),
|
||||
// end.into(),
|
||||
// ],
|
||||
// "",
|
||||
// )
|
||||
// .map(CallSiteValue::try_as_basic_value)
|
||||
// .map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
// .map(Either::unwrap_left)
|
||||
// .unwrap()
|
||||
// }
|
||||
//
|
||||
// /// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
|
||||
// /// containing `i32` indices of the flattened index.
|
||||
// ///
|
||||
// /// * `index` - The index to compute the multidimensional index for.
|
||||
// /// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
// /// `NDArray`.
|
||||
// pub fn call_ndarray_calc_nd_indices<'ctx, G: CodeGenerator + ?Sized>(
|
||||
// generator: &G,
|
||||
// ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
// index: IntValue<'ctx>,
|
||||
// ndarray: NDArrayValue<'ctx>,
|
||||
// ) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// let llvm_void = ctx.ctx.void_type();
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
//
|
||||
// let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
|
||||
// 32 => "__nac3_ndarray_calc_nd_indices",
|
||||
// 64 => "__nac3_ndarray_calc_nd_indices64",
|
||||
// bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
// };
|
||||
// let ndarray_calc_nd_indices_fn =
|
||||
// ctx.module.get_function(ndarray_calc_nd_indices_fn_name).unwrap_or_else(|| {
|
||||
// let fn_type = llvm_void.fn_type(
|
||||
// &[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
|
||||
// false,
|
||||
// );
|
||||
//
|
||||
// ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
|
||||
// });
|
||||
//
|
||||
// let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
// let ndarray_dims = ndarray.dim_sizes();
|
||||
//
|
||||
// let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
|
||||
//
|
||||
// ctx.builder
|
||||
// .build_call(
|
||||
// ndarray_calc_nd_indices_fn,
|
||||
// &[
|
||||
// index.into(),
|
||||
// ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
// ndarray_num_dims.into(),
|
||||
// indices.into(),
|
||||
// ],
|
||||
// "",
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// TypedArrayLikeAdapter::from(
|
||||
// ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
|
||||
// Box::new(|_, v| v.into_int_value()),
|
||||
// Box::new(|_, v| v.into()),
|
||||
// )
|
||||
// }
|
||||
//
|
||||
// fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
|
||||
// generator: &G,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// ndarray: NDArrayValue<'ctx>,
|
||||
// indices: &Indices,
|
||||
// ) -> IntValue<'ctx>
|
||||
// where
|
||||
// G: CodeGenerator + ?Sized,
|
||||
// Indices: ArrayLikeIndexer<'ctx>,
|
||||
// {
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
//
|
||||
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
//
|
||||
// debug_assert_eq!(
|
||||
// IntType::try_from(indices.element_type(ctx, generator))
|
||||
// .map(IntType::get_bit_width)
|
||||
// .unwrap_or_default(),
|
||||
// llvm_i32.get_bit_width(),
|
||||
// "Expected i32 value for argument `indices` to `call_ndarray_flatten_index_impl`"
|
||||
// );
|
||||
// debug_assert_eq!(
|
||||
// indices.size(ctx, generator).get_type().get_bit_width(),
|
||||
// llvm_usize.get_bit_width(),
|
||||
// "Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
|
||||
// );
|
||||
//
|
||||
// let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
|
||||
// 32 => "__nac3_ndarray_flatten_index",
|
||||
// 64 => "__nac3_ndarray_flatten_index64",
|
||||
// bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
// };
|
||||
// let ndarray_flatten_index_fn =
|
||||
// ctx.module.get_function(ndarray_flatten_index_fn_name).unwrap_or_else(|| {
|
||||
// let fn_type = llvm_usize.fn_type(
|
||||
// &[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
|
||||
// false,
|
||||
// );
|
||||
//
|
||||
// ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
|
||||
// });
|
||||
//
|
||||
// let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
// let ndarray_dims = ndarray.dim_sizes();
|
||||
//
|
||||
// let index = ctx
|
||||
// .builder
|
||||
// .build_call(
|
||||
// ndarray_flatten_index_fn,
|
||||
// &[
|
||||
// ndarray_dims.base_ptr(ctx, generator).into(),
|
||||
// ndarray_num_dims.into(),
|
||||
// indices.base_ptr(ctx, generator).into(),
|
||||
// indices.size(ctx, generator).into(),
|
||||
// ],
|
||||
// "",
|
||||
// )
|
||||
// .map(CallSiteValue::try_as_basic_value)
|
||||
// .map(|v| v.map_left(BasicValueEnum::into_int_value))
|
||||
// .map(Either::unwrap_left)
|
||||
// .unwrap();
|
||||
//
|
||||
// index
|
||||
// }
|
||||
//
|
||||
// /// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
|
||||
// /// multidimensional index.
|
||||
// ///
|
||||
// /// * `ndarray` - LLVM pointer to the `NDArray`. This value must be the LLVM representation of an
|
||||
// /// `NDArray`.
|
||||
// /// * `indices` - The multidimensional index to compute the flattened index for.
|
||||
// pub fn call_ndarray_flatten_index<'ctx, G, Index>(
|
||||
// generator: &mut G,
|
||||
// ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
// ndarray: NDArrayValue<'ctx>,
|
||||
// indices: &Index,
|
||||
// ) -> IntValue<'ctx>
|
||||
// where
|
||||
// G: CodeGenerator + ?Sized,
|
||||
// Index: ArrayLikeIndexer<'ctx>,
|
||||
// {
|
||||
// call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
|
||||
// }
|
||||
//
|
||||
// /// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
|
||||
// /// dimension and size of each dimension of the resultant `ndarray`.
|
||||
// pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
|
||||
// generator: &mut G,
|
||||
// ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
// lhs: NDArrayValue<'ctx>,
|
||||
// rhs: NDArrayValue<'ctx>,
|
||||
// ) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
//
|
||||
// let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
// 32 => "__nac3_ndarray_calc_broadcast",
|
||||
// 64 => "__nac3_ndarray_calc_broadcast64",
|
||||
// bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
// };
|
||||
// let ndarray_calc_broadcast_fn =
|
||||
// ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
// let fn_type = llvm_usize.fn_type(
|
||||
// &[
|
||||
// llvm_pusize.into(),
|
||||
// llvm_usize.into(),
|
||||
// llvm_pusize.into(),
|
||||
// llvm_usize.into(),
|
||||
// llvm_pusize.into(),
|
||||
// ],
|
||||
// false,
|
||||
// );
|
||||
//
|
||||
// ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
// });
|
||||
//
|
||||
// let lhs_ndims = lhs.load_ndims(ctx);
|
||||
// let rhs_ndims = rhs.load_ndims(ctx);
|
||||
// let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
|
||||
//
|
||||
// gen_for_callback_incrementing(
|
||||
// generator,
|
||||
// ctx,
|
||||
// llvm_usize.const_zero(),
|
||||
// (min_ndims, false),
|
||||
// |generator, ctx, _, idx| {
|
||||
// let idx = ctx.builder.build_int_sub(min_ndims, idx, "").unwrap();
|
||||
// let (lhs_dim_sz, rhs_dim_sz) = unsafe {
|
||||
// (
|
||||
// lhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
// rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
|
||||
// )
|
||||
// };
|
||||
//
|
||||
// let llvm_usize_const_one = llvm_usize.const_int(1, false);
|
||||
// let lhs_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::EQ, lhs_dim_sz, llvm_usize_const_one, "")
|
||||
// .unwrap();
|
||||
// let rhs_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
|
||||
// .unwrap();
|
||||
// let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
|
||||
//
|
||||
// let lhs_eq_rhs = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
|
||||
// .unwrap();
|
||||
//
|
||||
// let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
|
||||
//
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// is_compatible,
|
||||
// "0:ValueError",
|
||||
// "operands could not be broadcast together",
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
//
|
||||
// Ok(())
|
||||
// },
|
||||
// llvm_usize.const_int(1, false),
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
|
||||
// let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
|
||||
// let lhs_ndims = lhs.load_ndims(ctx);
|
||||
// let rhs_dims = rhs.dim_sizes().base_ptr(ctx, generator);
|
||||
// let rhs_ndims = rhs.load_ndims(ctx);
|
||||
// let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
|
||||
// let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
|
||||
//
|
||||
// ctx.builder
|
||||
// .build_call(
|
||||
// ndarray_calc_broadcast_fn,
|
||||
// &[
|
||||
// lhs_dims.into(),
|
||||
// lhs_ndims.into(),
|
||||
// rhs_dims.into(),
|
||||
// rhs_ndims.into(),
|
||||
// out_dims.base_ptr(ctx, generator).into(),
|
||||
// ],
|
||||
// "",
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// TypedArrayLikeAdapter::from(
|
||||
// out_dims,
|
||||
// Box::new(|_, v| v.into_int_value()),
|
||||
// Box::new(|_, v| v.into()),
|
||||
// )
|
||||
// }
|
||||
//
|
||||
// /// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
|
||||
// /// containing the indices used for accessing `array` corresponding to the index of the broadcasted
|
||||
// /// array `broadcast_idx`.
|
||||
// pub fn call_ndarray_calc_broadcast_index<
|
||||
// 'ctx,
|
||||
// G: CodeGenerator + ?Sized,
|
||||
// BroadcastIdx: UntypedArrayLikeAccessor<'ctx>,
|
||||
// >(
|
||||
// generator: &mut G,
|
||||
// ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
// array: NDArrayValue<'ctx>,
|
||||
// broadcast_idx: &BroadcastIdx,
|
||||
// ) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
|
||||
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
|
||||
//
|
||||
// let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
|
||||
// 32 => "__nac3_ndarray_calc_broadcast_idx",
|
||||
// 64 => "__nac3_ndarray_calc_broadcast_idx64",
|
||||
// bw => unreachable!("Unsupported size type bit width: {}", bw),
|
||||
// };
|
||||
// let ndarray_calc_broadcast_fn =
|
||||
// ctx.module.get_function(ndarray_calc_broadcast_fn_name).unwrap_or_else(|| {
|
||||
// let fn_type = llvm_usize.fn_type(
|
||||
// &[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
|
||||
// false,
|
||||
// );
|
||||
//
|
||||
// ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
|
||||
// });
|
||||
//
|
||||
// let broadcast_size = broadcast_idx.size(ctx, generator);
|
||||
// let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
|
||||
//
|
||||
// let array_dims = array.dim_sizes().base_ptr(ctx, generator);
|
||||
// let array_ndims = array.load_ndims(ctx);
|
||||
// let broadcast_idx_ptr = unsafe {
|
||||
// broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
// };
|
||||
//
|
||||
// ctx.builder
|
||||
// .build_call(
|
||||
// ndarray_calc_broadcast_fn,
|
||||
// &[array_dims.into(), array_ndims.into(), broadcast_idx_ptr.into(), out_idx.into()],
|
||||
// "",
|
||||
// )
|
||||
// .unwrap();
|
||||
//
|
||||
// TypedArrayLikeAdapter::from(
|
||||
// ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
|
||||
// Box::new(|_, v| v.into_int_value()),
|
||||
// Box::new(|_, v| v.into()),
|
||||
// )
|
||||
// }
|
||||
|
||||
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant {
|
||||
match ty.get_bit_width() {
|
||||
@ -965,21 +965,28 @@ where
|
||||
})
|
||||
}
|
||||
|
||||
fn get_ndarray_struct_ptr<'ctx>(ctx: &'ctx Context, size_type: IntType<'ctx>) -> PointerType<'ctx> {
|
||||
let i8_type = ctx.i8_type();
|
||||
fn get_irrt_ndarray_ptr_type<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size_type: IntType<'ctx>,
|
||||
) -> PointerType<'ctx> {
|
||||
let i8_type = ctx.ctx.i8_type();
|
||||
|
||||
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() };
|
||||
let struct_ty = ndarray_ty.fields().whole_struct.as_struct_type(ctx);
|
||||
let struct_ty = ndarray_ty.get_struct_type(ctx.ctx);
|
||||
struct_ty.ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
fn get_irrt_opaque_uint8_ptr_type<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> PointerType<'ctx> {
|
||||
ctx.ctx.i8_type().ptr_type(AddressSpace::default())
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_size<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
) -> IntValue<'ctx> {
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || {
|
||||
size_type.fn_type(&[get_ndarray_struct_ptr(ctx.ctx, size_type).into()], false)
|
||||
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx, size_type).into()], false)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
@ -989,3 +996,44 @@ pub fn call_nac3_ndarray_size<'ctx>(
|
||||
.unwrap_left()
|
||||
.into_int_value()
|
||||
}
|
||||
|
||||
pub fn call_nac3_ndarray_fill_generic<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
// Sanity check on type of `fill_value`
|
||||
check_basic_types_match(ndarray.ty.elem_type, fill_value.get_type().as_basic_type_enum())
|
||||
.unwrap();
|
||||
|
||||
let size_type = ndarray.ty.size_type;
|
||||
let function =
|
||||
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_fill_generic", || {
|
||||
ctx.ctx.void_type().fn_type(
|
||||
&[
|
||||
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
|
||||
get_irrt_opaque_uint8_ptr_type(ctx).into(), // uint8_t* pvalue
|
||||
],
|
||||
false,
|
||||
)
|
||||
});
|
||||
|
||||
// Put `fill_value` onto the stack and get a pointer to it, and that pointer will be `pvalue`
|
||||
let pvalue = ctx.builder.build_alloca(ndarray.ty.elem_type, "fill_value").unwrap();
|
||||
ctx.builder.build_store(pvalue, fill_value).unwrap();
|
||||
|
||||
// Cast pvalue to `uint8_t*`
|
||||
let pvalue = ctx.builder.build_pointer_cast(pvalue, get_irrt_opaque_uint8_ptr_type(ctx), "").unwrap();
|
||||
|
||||
// Call the IRRT function
|
||||
ctx.builder
|
||||
.build_call(
|
||||
function,
|
||||
&[
|
||||
ndarray.ptr.into(), // ndarray
|
||||
pvalue.into(), // pvalue
|
||||
],
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ use crate::{
|
||||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
};
|
||||
use classes::NpArrayType;
|
||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
@ -476,7 +477,11 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
||||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
let ndarray_ty = NpArrayType {
|
||||
size_type: generator.get_size_type(ctx),
|
||||
elem_type: element_type,
|
||||
};
|
||||
ndarray_ty.get_struct_type(ctx).as_basic_type_enum()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
@ -2,15 +2,11 @@ use crate::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
|
||||
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
NpArrayType, ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
},
|
||||
expr::gen_binop_expr_with_values,
|
||||
irrt::{
|
||||
calculate_len_for_slice_range, call_ndarray_calc_broadcast,
|
||||
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
|
||||
call_ndarray_calc_size,
|
||||
},
|
||||
irrt::call_nac3_ndarray_fill_generic,
|
||||
llvm_intrinsics::{self, call_memcpy_generic},
|
||||
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
|
||||
CodeGenContext, CodeGenerator,
|
||||
@ -26,7 +22,7 @@ use crate::{
|
||||
typedef::{FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, PointerType};
|
||||
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType};
|
||||
use inkwell::{
|
||||
types::BasicType,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
@ -34,6 +30,8 @@ use inkwell::{
|
||||
};
|
||||
use nac3parser::ast::{Operator, StrRef};
|
||||
|
||||
use super::{classes::NpArrayValue, stmt::gen_return};
|
||||
|
||||
// /// Creates an uninitialized `NDArray` instance.
|
||||
// fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
||||
// generator: &mut G,
|
||||
@ -2015,3 +2013,335 @@ use nac3parser::ast::{Operator, StrRef};
|
||||
// Ok(())
|
||||
// }
|
||||
//
|
||||
|
||||
fn simple_assert<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
cond: IntValue<'ctx>,
|
||||
msg: &str,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let mut full_msg = String::from("simple_assert failed: ");
|
||||
full_msg.push_str(msg);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
full_msg.as_str(),
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
fn copy_array_slice<'ctx, G, Src, Dst>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst: Dst,
|
||||
src: Src,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dst: TypedArrayLikeMutator<'ctx, IntType<'ctx>>,
|
||||
Src: TypedArrayLikeAccessor<'ctx, IntType<'ctx>>,
|
||||
{
|
||||
// Sanity check
|
||||
let len_match = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
src.size(ctx, generator),
|
||||
dst.size(ctx, generator),
|
||||
"len_match",
|
||||
)
|
||||
.unwrap();
|
||||
simple_assert(generator, ctx, len_match, "copy_array_slice length mismatched");
|
||||
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let init_val = size_type.const_zero();
|
||||
let max_val = (dst.size(ctx, generator), false);
|
||||
let incr_val = size_type.const_int(1, false);
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
init_val,
|
||||
max_val,
|
||||
|generator, ctx, _hooks, idx| {
|
||||
let value = src.get_typed(ctx, generator, &idx, Some("copy_array_slice.tmp"));
|
||||
dst.set_typed(ctx, generator, &idx, value);
|
||||
Ok(())
|
||||
},
|
||||
incr_val,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
pub fn alloca_ndarray_uninitialized<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
name: Option<&str>,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_ty = NpArrayType { size_type, elem_type };
|
||||
let ndarray = ndarray_ty.var_alloc(generator, ctx, ndims, name);
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
pub struct Producer<'ctx, G: CodeGenerator + ?Sized, T> {
|
||||
pub count: IntValue<'ctx>,
|
||||
pub write_to_slice: Box<
|
||||
dyn Fn(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, '_>,
|
||||
&TypedArrayLikeAdapter<'ctx, T>,
|
||||
) -> Result<(), String>
|
||||
+ 'ctx,
|
||||
>,
|
||||
}
|
||||
|
||||
/// TODO: UPDATE DOCUMENTATION
|
||||
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
///
|
||||
/// ### Notes on `shape`
|
||||
///
|
||||
/// Just like numpy, the `shape` argument can be:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
|
||||
/// learn how `shape` gets from being a Python user expression to here.
|
||||
fn parse_input_shape_arg<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
) -> Result<Producer<'ctx, G, IntValue<'ctx>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
|
||||
match &*ctx.unifier.get_ty(shape_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// A list has to be a PointerValue
|
||||
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), size_type, None);
|
||||
|
||||
// Create `Producer`
|
||||
let ndims = shape_list.load_size(ctx, Some("count"));
|
||||
Ok(Producer {
|
||||
count: ndims,
|
||||
write_to_slice: Box::new(move |ctx, generator, dst_slice| {
|
||||
// Basically iterate through the list and write to `dst_slice` accordingly
|
||||
let init_val = size_type.const_zero();
|
||||
let max_val = (ndims, false);
|
||||
let incr_val = size_type.const_int(1, false);
|
||||
gen_for_callback_incrementing(
|
||||
ctx,
|
||||
generator,
|
||||
init_val,
|
||||
max_val,
|
||||
|generator, ctx, _hooks, idx| {
|
||||
// Get the dimension at `idx`
|
||||
let dim =
|
||||
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(ctx, generator, &idx, dim);
|
||||
Ok(())
|
||||
},
|
||||
incr_val,
|
||||
)?;
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
TypeEnum::TTuple { ty: tuple_types } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
|
||||
let ndims = tuple_types.len();
|
||||
|
||||
// A tuple has to be a StructValue
|
||||
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
|
||||
let shape_tuple = shape.into_struct_value();
|
||||
|
||||
Ok(Producer {
|
||||
count: size_type.const_int(ndims as u64, false),
|
||||
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
|
||||
for dim_i in 0..ndims {
|
||||
// Get the dimension at `dim_i`
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_extract_value(
|
||||
shape_tuple,
|
||||
dim_i as u32,
|
||||
format!("dim{dim_i}").as_str(),
|
||||
)
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(
|
||||
ctx,
|
||||
generator,
|
||||
&size_type.const_int(dim_i as u64, false),
|
||||
dim,
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
|
||||
// The value has to be an integer
|
||||
let shape_int = shape.into_int_value();
|
||||
|
||||
Ok(Producer {
|
||||
count: size_type.const_int(1, false),
|
||||
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
|
||||
// Only index 0 is set with the input value
|
||||
let dim_i = size_type.const_zero();
|
||||
|
||||
// Cast `shape_int` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(shape_int, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(ctx, generator, &dim_i, dim);
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
_ => panic!("parse_input_shape_arg encountered unknown type"),
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME
|
||||
fn alloca_ndarray_uninitialized_shaped<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
shape_producer: Producer<'ctx, G, IntValue<'ctx>>,
|
||||
name: Option<&str>,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
// Allocate an uninitialized ndarray
|
||||
let ndims = shape_producer.count;
|
||||
let ndarray = alloca_ndarray_uninitialized(generator, ctx, elem_type, ndims, name)?;
|
||||
|
||||
// Fill `ndarray.shape` with `shape_producer`
|
||||
(shape_producer.write_to_slice)(generator, ctx, &ndarray.shape_slice(ctx))?;
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
|
||||
fn call_ndarray_empty_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
name: Option<&str>,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let elem_type = ctx.get_llvm_type(generator, elem_ty);
|
||||
let shape_producer = parse_input_shape_arg(generator, ctx, shape, shape_ty)?;
|
||||
alloca_ndarray_uninitialized_shaped(generator, ctx, elem_type, shape_producer, name)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
let ndarray = call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
shape,
|
||||
shape_ty,
|
||||
None,
|
||||
)?;
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.zeros`.
|
||||
///
|
||||
/// NOTE: Current `dtype` is always `float64`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Allocate an ndarray and fill it later
|
||||
let ndarray = call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float, // float64
|
||||
shape,
|
||||
shape_ty,
|
||||
None,
|
||||
)?;
|
||||
|
||||
// TRICK: The float64 type could be conveniently extracted out of `ndarray`
|
||||
let float_type = ndarray.ty.elem_type.into_float_type();
|
||||
|
||||
// Fill the ndarray
|
||||
call_nac3_ndarray_fill_generic(context, ndarray, float_type.const_float(1.0).into());
|
||||
|
||||
// Return our ndarray
|
||||
println!("ndarray.ptr = {}", ndarray.ptr);
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
@ -23,4 +23,4 @@ pub mod codegen;
|
||||
pub mod symbol_resolver;
|
||||
pub mod toplevel;
|
||||
pub mod typecheck;
|
||||
pub mod util;
|
||||
pub mod util;
|
||||
|
@ -1193,14 +1193,13 @@ impl<'a> BuiltinBuilder<'a> {
|
||||
self.ndarray_float,
|
||||
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||
Box::new(move |ctx, obj, fun, args, generator| {
|
||||
todo!()
|
||||
// let func = match prim {
|
||||
// PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
// PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
// PrimDef::FunNpOnes => gen_ndarray_ones,
|
||||
// _ => unreachable!(),
|
||||
// };
|
||||
// func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
let func = match prim {
|
||||
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
PrimDef::FunNpOnes => todo!(), // gen_ndarray_ones,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
5
nac3core/src/util.rs
Normal file
5
nac3core/src/util.rs
Normal file
@ -0,0 +1,5 @@
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum SizeVariant {
|
||||
Bits32,
|
||||
Bits64,
|
||||
}
|
3
nac3standalone/demo/src/my_ndarray.py
Normal file
3
nac3standalone/demo/src/my_ndarray.py
Normal file
@ -0,0 +1,3 @@
|
||||
def run() -> int32:
|
||||
hello = np_zeros((3, 4))
|
||||
return 0
|
@ -449,6 +449,9 @@ fn main() {
|
||||
.create_target_machine(llvm_options.opt_level)
|
||||
.expect("couldn't create target machine");
|
||||
|
||||
// NOTE: DEBUG PRINT
|
||||
main.print_to_file("standalone.ll").unwrap();
|
||||
|
||||
let pass_options = PassBuilderOptions::create();
|
||||
pass_options.set_merge_functions(true);
|
||||
let passes = format!("default<O{}>", opt_level as u32);
|
||||
|
Loading…
Reference in New Issue
Block a user