1
0
forked from M-Labs/nac3
Commit Graph

75 Commits

Author SHA1 Message Date
45e9360c4d standalone: Add np_argmax and np_argmin tests 2024-07-12 18:19:56 +08:00
25d2de67f7 standalone: Add output_range and tests 2024-07-09 04:44:40 +08:00
9238a5e86e standalone: Rename output_str to output_strln and add output_str
output_str is for outputting strings without newline, and the newly
introduced output_strln now has the old behavior of ending with a
newline.
2024-07-09 04:44:40 +08:00
ba32fab374 standalone: Add demos for list arithmetic operators 2024-07-04 16:01:15 +08:00
83154ef8e1 core/llvm_intrinsics: remove llvm.roundeven call from call_float_roundeven 2024-07-03 14:17:47 +08:00
5b11a1dbdd core: support tuple and int32 input for np_empty, np_ones, and more 2024-06-27 14:30:17 +08:00
5bade81ddb standalone: Add test for multidim array index with one index 2024-06-20 12:50:30 +08:00
f00e458f60 add test for class without __init__ 2024-06-19 18:16:54 +08:00
53d44b9595 standalone: Add np_array tests 2024-06-11 16:44:36 +08:00
23b2fee4e7 standalone: Add test case for ndarray slicing 2024-06-03 16:40:05 +08:00
520e1adc56 core/builtins: Add np_minimum/np_maximum 2024-05-09 15:01:20 +08:00
73e81259f3 core/builtins: Add np_min/np_max 2024-05-09 15:01:20 +08:00
30c6cffbad core/builtins: Refactored numpy builtins to accept scalar and ndarrays 2024-05-06 15:38:29 +08:00
9566047241 standalone: Fix cbrt never tested 2024-05-06 13:21:54 +08:00
847615fc2f core: Implement numpy.matmul for 2D-2D ndarrays 2024-04-23 10:27:37 +08:00
e0f440040c core/expr: Implement negative indices for ndarray 2024-04-15 12:49:42 +08:00
52c731c312 core: Implement Not/UAdd/USub for booleans
Not sure if this is deliberate or an oversight, but we implement it
anyway for consistency with other Python implementations.
2024-04-12 18:29:58 +08:00
00d1b9be9b core: Fix __inv__ for i8-based boolean operands 2024-04-12 15:35:54 +08:00
a920fe0501 core: Implement elementwise comparison operators 2024-04-03 00:07:33 +08:00
727a1886b3 core: Implement elementwise unary operators 2024-04-03 00:07:33 +08:00
6af13a8261 core: Implement elementwise binary operators
Including immediate variants of these operators.
2024-04-03 00:07:33 +08:00
2edc1de0b6 standalone: Update ndarray.py to output all elements in ndarrays 2024-03-07 14:59:13 +08:00
96b7f29679 core: Implement ndarray.fill 2024-03-07 14:59:13 +08:00
22e831cb76 core: Add test for indexing into ndarray 2024-02-19 17:13:10 +08:00
5cecb2bb74 core: Fix Literal use in variable type annotation 2024-02-06 18:16:14 +08:00
fef4b2a5ce standalone: Disable tests requiring return of non-primitive values 2024-01-29 12:49:50 +08:00
c679474f5c standalone: Fix redefinition of ndarray consumer functions 2024-01-17 09:38:13 +08:00
140f8f8a08 core: Implement most ndarray-creation functions 2023-12-22 16:29:55 +08:00
27fcf8926e core: Implement ndarray constructor and numpy.empty 2023-12-22 16:29:54 +08:00
6dccb343bb Revert "core: Do not keep unification result for function arguments"
This reverts commit f09f3c27a5.
2023-12-18 10:01:23 +08:00
f09f3c27a5 core: Do not keep unification result for function arguments
For some reason, when unifying a function call parameter with an
argument, subsequent calls to the same function will only accept the
type of the substituted argument.

This affect snippets like:

```
def make1() -> C[Literal[1]]:
    return ...

def make2() -> C[Literal[2]]:
    return ...

def consume(instance: C[Literal[1, 2]]):
    pass

consume(make1())
consume(make2())
```

The last statement will result in a compiler error, as the parameter of
consume is replaced with C[Literal[1]].

We fix this by getting a snapshot before performing unification, and
restoring the snapshot after unification succeeds.
2023-12-16 18:40:48 +08:00
457d3b6cd7 core: Refactor generic constants to Literal
Better matches the syntax of `typing.Literal`.
2023-12-16 18:40:48 +08:00
031e660f18 core: Initial implementation for const generics 2023-12-08 18:02:11 +08:00
68b97347b1 core: Infer builtins name list using builtin declaration list 2023-12-08 17:29:34 +08:00
5c5620692f core: Add np_{round,floor,ceil}
These functions are NumPy variants of round/floor/ceil, which returns
floats instead of ints.
2023-11-23 13:45:07 +08:00
0af1e37e99 core: Prefix all NumPy/SciPy functions with np_/sp_spec 2023-11-23 13:35:23 +08:00
d322c91697 core: Change bitshift operators to accept int32/uint32 for RHS operand 2023-11-09 12:16:20 +08:00
fd787ca3f5 core: Remove trunc
The behavior of trunc is already implemented by casts and is therefore
redundant.
2023-11-04 13:35:53 +08:00
4dbe07a0c0 core: Revert breaking changes to round-family functions
These functions should return ints as the math.* functions do instead of
following the convention of numpy.* functions.
2023-11-04 13:35:53 +08:00
9d737743c1 standalone: Add regression test for numeric primitive operations 2023-11-03 16:24:26 +08:00
7e4dab15ae standalone: Add math tests for non-number arguments 2023-11-01 18:03:29 +08:00
2b635a0b97 core: Implement numpy and scipy functions 2023-11-01 18:03:29 +08:00
60ad100fbb core: Implement and expose {isinf,isnan} 2023-11-01 18:03:29 +08:00
e95586f61e core: Fix IR generation of for loop containing break/continue
Fix cases where the body BB would have two terminators because of a
preceding continue/break statement already emitting a terminator.
2023-11-01 13:21:27 +08:00
bb5147521f standalone: Fix indentation of test files 2023-11-01 13:20:26 +08:00
c7de22287e core: Fix restoration of stack address
All allocas for temporary objects are now placed in the beginning of the
function. Allocas for on-temporary objects are not modified because
these variables may appear in a loop and thus must be uniquely
represented.
2023-10-06 11:34:23 +08:00
a79286113e standalone: Add output_bool in demo library 2023-10-06 10:19:22 +08:00
2a775d822e core: Demote dead code into a stdout warning 2023-10-04 18:03:25 +08:00
059d3da58b standalone: Add float64 output tests 2023-09-30 09:31:18 +08:00
48c6498d1f core: Fix restoration of loop target in try statement
old_loop_target is only assigned if ctx.loop_target is overwritten,
meaning that if ctx.loop_target is never overwritten, ctx.loop_target
will always be overwritten to None.

We fix this by only restoring from old_loop_target if we previously
assigned to old_loop_target.
2023-09-28 20:00:02 +08:00