forked from M-Labs/nac3
1
0
Fork 0

core/codegen: add ArrayWriter & parse_input_shape_arg

This commit is contained in:
lyken 2024-07-26 15:26:39 +08:00
parent 19c2beffbb
commit f78a60a644
4 changed files with 164 additions and 0 deletions

View File

@ -47,6 +47,7 @@ pub mod model;
pub mod numpy; pub mod numpy;
pub mod stmt; pub mod stmt;
pub mod structs; pub mod structs;
pub mod util;
#[cfg(test)] #[cfg(test)]
mod test; mod test;

View File

@ -0,0 +1,17 @@
use inkwell::{types::IntType, values::IntValue};
use crate::codegen::{model::*, CodeGenContext, CodeGenerator};
pub type ArrayWriterWrite<'ctx, G, N, E> = Box<
dyn Fn(&mut G, &mut CodeGenContext<'ctx, '_>, &ArraySlice<'ctx, N, E>) -> Result<(), String>
+ 'ctx,
>;
// TODO: Document
pub struct ArrayWriter<'ctx, G: CodeGenerator + ?Sized, N, E: Model<'ctx>>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
pub count: Instance<'ctx, N>,
pub write: ArrayWriterWrite<'ctx, G, N, E>,
}

View File

@ -0,0 +1,2 @@
pub mod array_writer;
pub mod shape;

View File

@ -0,0 +1,144 @@
use inkwell::values::BasicValueEnum;
use crate::{
codegen::{
classes::{ListValue, UntypedArrayLikeAccessor},
model::*,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
},
typecheck::typedef::{Type, TypeEnum},
};
use super::array_writer::ArrayWriter;
/// TODO: UPDATE DOCUMENTATION
/// LLVM-typed implementation for generating a [`ArrayWriter`] that sets a list of ints.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
///
/// ### Notes on `shape`
///
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
/// learn how `shape` gets from being a Python user expression to here.
pub fn parse_input_shape_arg<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
) -> ArrayWriter<'ctx, G, SizeTModel<'ctx>, SizeTModel<'ctx>>
where
G: CodeGenerator + ?Sized,
{
let sizet = generator.get_sizet(ctx.ctx);
match &*ctx.unifier.get_ty(shape_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
// A list has to be a PointerValue
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), sizet.0, None);
// Create `ArrayWriter`
let ndims =
sizet.review_value(ctx.ctx, shape_list.load_size(ctx, Some("count"))).unwrap();
ArrayWriter {
count: ndims,
write: Box::new(move |generator, ctx, dst_array| {
// Basically iterate through the list and write to `dst_slice` accordingly
let init_val = sizet.constant(ctx.ctx, 0).value;
let max_val = (ndims.value, false);
let incr_val = sizet.constant(ctx.ctx, 1).value;
gen_for_callback_incrementing(
generator,
ctx,
init_val,
max_val,
|generator, ctx, _hooks, axis| {
let axis = sizet.review_value(ctx.ctx, axis).unwrap();
// TODO: Remove ProxyValue ListValue
// Get the dimension at `axis`
let dim: Int<'ctx> = shape_list
.data()
.get(ctx, generator, &axis.value, None)
.into_int_value()
.into();
let dim = dim.s_extend_or_bit_cast(ctx, sizet, "dim_casted");
dst_array.ix(generator, ctx, axis, "dim").store(ctx, dim);
Ok(())
},
incr_val,
)
}),
}
}
TypeEnum::TTuple { ty: tuple_types } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = tuple_types.len();
// A tuple has to be a StructValue
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
let shape_tuple = shape.into_struct_value();
ArrayWriter {
count: sizet.constant(ctx.ctx, ndims as u64),
write: Box::new(move |generator, ctx, dst_array| {
for axis in 0..ndims {
// Get the dimension at `axis`
let dim: Int<'ctx> = ctx
.builder
.build_extract_value(
shape_tuple,
axis as u32,
format!("dim{axis}").as_str(),
)
.unwrap()
.into_int_value()
.into();
let dim = dim.s_extend_or_bit_cast(ctx, sizet, "dim_casted");
dst_array
.ix(generator, ctx, sizet.constant(ctx.ctx, axis as u64), "dim")
.store(ctx, dim);
}
Ok(())
}),
}
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
// The value has to be an integer
let shape_int: Int<'ctx> = shape.into_int_value().into();
ArrayWriter {
count: sizet.constant(ctx.ctx, 1),
write: Box::new(move |generator, ctx, dst_array| {
// Cast `shape_int` to SizeT
let dim = shape_int.s_extend_or_bit_cast(ctx, sizet, "dim_casted");
// Set shape[0] = shape_int
dst_array.ix(generator, ctx, sizet.constant(ctx.ctx, 0), "dim").store(ctx, dim);
Ok(())
}),
}
}
_ => panic!("parse_input_shape_arg encountered unknown type"),
}
}