forked from M-Labs/nac3
core/expr: Add support for multi-dim slicing of NDArrays
This commit is contained in:
parent
c35ad06949
commit
ed79d5bb9e
|
@ -1667,6 +1667,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
slice: &Expr<Option<Type>>,
|
||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let TypeEnum::TLiteral { values, .. } = &*ctx.unifier.get_ty_immutable(ndims) else {
|
||||
|
@ -1712,32 +1713,11 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
slice.location,
|
||||
);
|
||||
|
||||
if let ExprKind::Slice { lower, upper, step } = &slice.node {
|
||||
let dim0_sz = unsafe {
|
||||
v.dim_sizes().get_typed_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
};
|
||||
|
||||
let Some((start, stop, step)) = handle_slice_indices(
|
||||
lower,
|
||||
upper,
|
||||
step,
|
||||
ctx,
|
||||
generator,
|
||||
dim0_sz,
|
||||
)? else { return Ok(None) };
|
||||
|
||||
return Ok(Some(numpy::ndarray_sliced_copy(
|
||||
generator,
|
||||
ctx,
|
||||
ty,
|
||||
v,
|
||||
&[(start, stop, step)],
|
||||
)?.as_ptr_value().into()))
|
||||
}
|
||||
|
||||
let index = if let Some(index) = generator.gen_expr(ctx, slice)? {
|
||||
let index = index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value();
|
||||
|
||||
// Normalizes a possibly-negative index to its corresponding positive index
|
||||
let normalize_index = |generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
index: IntValue<'ctx>,
|
||||
dim: u64| {
|
||||
gen_if_else_expr_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|
@ -1757,7 +1737,7 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
v.dim_sizes().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_zero(),
|
||||
&llvm_usize.const_int(dim, true),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
@ -1770,97 +1750,194 @@ fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
|||
|
||||
Ok(Some(ctx.builder.build_int_truncate(index, llvm_i32, "").unwrap()))
|
||||
},
|
||||
)?.map(BasicValueEnum::into_int_value).unwrap()
|
||||
} else {
|
||||
return Ok(None)
|
||||
).map(|v| v.map(BasicValueEnum::into_int_value))
|
||||
};
|
||||
let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?;
|
||||
ctx.builder.build_store(index_addr, index).unwrap();
|
||||
|
||||
if ndims.len() == 1 && ndims[0] == 1 {
|
||||
// Accessing an element from a 1-dimensional `ndarray`
|
||||
// Converts a slice expression into a slice-range tuple
|
||||
let expr_to_slice = |generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
node: &ExprKind<Option<Type>>,
|
||||
dim: u64| {
|
||||
match node {
|
||||
ExprKind::Constant { value: Constant::Int(v), .. } => {
|
||||
let Some(index) = normalize_index(
|
||||
generator, ctx, llvm_i32.const_int(*v as u64, true), dim,
|
||||
)? else {
|
||||
return Ok(None)
|
||||
};
|
||||
|
||||
Ok(Some(v.data()
|
||||
.get(
|
||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
||||
}
|
||||
|
||||
ExprKind::Slice { lower, upper, step } => {
|
||||
let dim_sz = unsafe {
|
||||
v.dim_sizes()
|
||||
.get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(dim, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
|
||||
handle_slice_indices(lower, upper, step, ctx, generator, dim_sz)
|
||||
}
|
||||
|
||||
_ => {
|
||||
let Some(index) = generator.gen_expr(ctx, slice)? else {
|
||||
return Ok(None)
|
||||
};
|
||||
let index = index
|
||||
.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?
|
||||
.into_int_value();
|
||||
let Some(index) = normalize_index(generator, ctx, index, dim)? else {
|
||||
return Ok(None)
|
||||
};
|
||||
|
||||
Ok(Some((index, index, llvm_i32.const_int(1, true))))
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
Ok(Some(match &slice.node {
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
let slices = elts.iter().enumerate()
|
||||
.map(|(dim, elt)| expr_to_slice(generator, ctx, &elt.node, dim as u64))
|
||||
.take_while_inclusive(|slice| slice.as_ref().is_ok_and(Option::is_some))
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
if slices.len() < elts.len() {
|
||||
return Ok(None)
|
||||
}
|
||||
|
||||
let slices = slices.into_iter()
|
||||
.map(Option::unwrap)
|
||||
.collect_vec();
|
||||
|
||||
numpy::ndarray_sliced_copy(
|
||||
generator,
|
||||
ctx,
|
||||
ty,
|
||||
v,
|
||||
&slices,
|
||||
)?.as_ptr_value().into()
|
||||
}
|
||||
|
||||
ExprKind::Slice { .. } => {
|
||||
let Some(slice) = expr_to_slice(generator, ctx, &slice.node, 0)? else {
|
||||
return Ok(None)
|
||||
};
|
||||
|
||||
numpy::ndarray_sliced_copy(
|
||||
generator,
|
||||
ctx,
|
||||
ty,
|
||||
v,
|
||||
&[slice],
|
||||
)?.as_ptr_value().into()
|
||||
}
|
||||
|
||||
_ => {
|
||||
let index = if let Some(index) = generator.gen_expr(ctx, slice)? {
|
||||
index.to_basic_value_enum(ctx, generator, slice.custom.unwrap())?.into_int_value()
|
||||
} else {
|
||||
return Ok(None)
|
||||
};
|
||||
let Some(index) = normalize_index(generator, ctx, index, 0)? else {
|
||||
return Ok(None)
|
||||
};
|
||||
let index_addr = generator.gen_var_alloc(ctx, index.get_type().into(), None)?;
|
||||
ctx.builder.build_store(index_addr, index).unwrap();
|
||||
|
||||
if ndims.len() == 1 && ndims[0] == 1 {
|
||||
// Accessing an element from a 1-dimensional `ndarray`
|
||||
|
||||
return Ok(Some(v.data()
|
||||
.get(
|
||||
ctx,
|
||||
generator,
|
||||
&ArraySliceValue::from_ptr_val(
|
||||
index_addr,
|
||||
llvm_usize.const_int(1, false),
|
||||
None,
|
||||
),
|
||||
None,
|
||||
)
|
||||
.into()))
|
||||
}
|
||||
|
||||
// Accessing an element from a multi-dimensional `ndarray`
|
||||
|
||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
||||
// elements over
|
||||
let subscripted_ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(
|
||||
subscripted_ndarray,
|
||||
llvm_usize,
|
||||
None
|
||||
);
|
||||
|
||||
let num_dims = v.load_ndims(ctx);
|
||||
ndarray.store_ndims(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.builder.build_int_sub(num_dims, llvm_usize.const_int(1, false), "").unwrap(),
|
||||
);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let v_dims_src_ptr = unsafe {
|
||||
v.dim_sizes().ptr_offset_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.dim_sizes().base_ptr(ctx, generator),
|
||||
v_dims_src_ptr,
|
||||
ctx.builder
|
||||
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
||||
(None, None),
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
let v_data_src_ptr = v.data().ptr_offset(
|
||||
ctx,
|
||||
generator,
|
||||
&ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None),
|
||||
None,
|
||||
)
|
||||
.into()))
|
||||
} else {
|
||||
// Accessing an element from a multi-dimensional `ndarray`
|
||||
|
||||
// Create a new array, remove the top dimension from the dimension-size-list, and copy the
|
||||
// elements over
|
||||
let subscripted_ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(
|
||||
subscripted_ndarray,
|
||||
llvm_usize,
|
||||
None
|
||||
);
|
||||
|
||||
let num_dims = v.load_ndims(ctx);
|
||||
ndarray.store_ndims(
|
||||
ctx,
|
||||
generator,
|
||||
ctx.builder.build_int_sub(num_dims, llvm_usize.const_int(1, false), "").unwrap(),
|
||||
);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
let v_dims_src_ptr = unsafe {
|
||||
v.dim_sizes().ptr_offset_unchecked(
|
||||
None
|
||||
);
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_int(1, false),
|
||||
None,
|
||||
)
|
||||
};
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.dim_sizes().base_ptr(ctx, generator),
|
||||
v_dims_src_ptr,
|
||||
ctx.builder
|
||||
.build_int_mul(ndarray_num_dims, llvm_usize.size_of(), "")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
ndarray.data().base_ptr(ctx, generator),
|
||||
v_data_src_ptr,
|
||||
ctx.builder
|
||||
.build_int_mul(ndarray_num_elems, llvm_ndarray_data_t.size_of().unwrap(), "")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
&ndarray.dim_sizes().as_slice_value(ctx, generator),
|
||||
(None, None),
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
let v_data_src_ptr = v.data().ptr_offset(
|
||||
ctx,
|
||||
generator,
|
||||
&ArraySliceValue::from_ptr_val(index_addr, llvm_usize.const_int(1, false), None),
|
||||
None
|
||||
);
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.data().base_ptr(ctx, generator),
|
||||
v_data_src_ptr,
|
||||
ctx.builder
|
||||
.build_int_mul(ndarray_num_elems, llvm_ndarray_data_t.size_of().unwrap(), "")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
Ok(Some(ndarray.as_ptr_value().into()))
|
||||
}
|
||||
ndarray.as_ptr_value().into()
|
||||
}
|
||||
}))
|
||||
}
|
||||
|
||||
/// See [`CodeGenerator::gen_expr`].
|
||||
|
|
|
@ -2,6 +2,7 @@ use std::collections::{HashMap, HashSet};
|
|||
use std::convert::{From, TryInto};
|
||||
use std::iter::once;
|
||||
use std::{cell::RefCell, sync::Arc};
|
||||
use std::ops::Not;
|
||||
|
||||
use super::typedef::{Call, FunSignature, FuncArg, RecordField, Type, TypeEnum, Unifier, VarMap};
|
||||
use super::{magic_methods::*, type_error::TypeError, typedef::CallId};
|
||||
|
@ -554,7 +555,10 @@ impl<'a> Fold<()> for Inferencer<'a> {
|
|||
ExprKind::ListComp { .. }
|
||||
| ExprKind::Lambda { .. }
|
||||
| ExprKind::Call { .. } => expr.custom, // already computed
|
||||
ExprKind::Slice { .. } => None, // we don't need it for slice
|
||||
ExprKind::Slice { .. } => {
|
||||
// slices aren't exactly ranges, but for our purposes this should suffice
|
||||
Some(self.primitives.range)
|
||||
}
|
||||
_ => return report_error("not supported", expr.location),
|
||||
};
|
||||
Ok(ast::Expr { custom, location: expr.location, node: expr.node })
|
||||
|
@ -1642,6 +1646,30 @@ impl<'a> Inferencer<'a> {
|
|||
}
|
||||
}
|
||||
}
|
||||
ExprKind::Tuple { elts, .. } => {
|
||||
if value.custom
|
||||
.unwrap()
|
||||
.obj_id(self.unifier)
|
||||
.is_some_and(|id| id == PRIMITIVE_DEF_IDS.ndarray)
|
||||
.not() {
|
||||
return report_error("Tuple slices are only supported for ndarrays", slice.location)
|
||||
}
|
||||
|
||||
for elt in elts {
|
||||
if let ExprKind::Slice { lower, upper, step } = &elt.node {
|
||||
for v in [lower.as_ref(), upper.as_ref(), step.as_ref()].iter().flatten() {
|
||||
self.constrain(v.custom.unwrap(), self.primitives.int32, &v.location)?;
|
||||
}
|
||||
} else {
|
||||
self.constrain(elt.custom.unwrap(), self.primitives.int32, &elt.location)?;
|
||||
}
|
||||
}
|
||||
|
||||
let (_, ndims) = unpack_ndarray_var_tys(self.unifier, value.custom.unwrap());
|
||||
let ndarray_ty = make_ndarray_ty(self.unifier, self.primitives, Some(ty), Some(ndims));
|
||||
self.constrain(value.custom.unwrap(), ndarray_ty, &value.location)?;
|
||||
Ok(ndarray_ty)
|
||||
}
|
||||
_ => {
|
||||
if let TypeEnum::TTuple { .. } = &*self.unifier.get_ty(value.custom.unwrap()) {
|
||||
return report_error("Tuple index must be a constant (KernelInvariant is also not supported)", slice.location)
|
||||
|
|
Loading…
Reference in New Issue