forked from M-Labs/nac3
split top level handling in several functions
This commit is contained in:
parent
d3ad894521
commit
d8c3c063ec
|
@ -60,8 +60,6 @@ pub struct TopLevelContext {
|
|||
pub struct TopLevelComposer {
|
||||
// list of top level definitions, same as top level context
|
||||
pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
|
||||
// list of top level Type, the index is same as the field `definition_list`
|
||||
pub ty_list: RwLock<Vec<Type>>,
|
||||
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
|
||||
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
|
||||
// start as a primitive unifier, will add more top_level defs inside
|
||||
|
@ -70,6 +68,8 @@ pub struct TopLevelComposer {
|
|||
pub primitives: PrimitiveStore,
|
||||
// mangled class method name to def_id
|
||||
pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
|
||||
// record the def id of the classes whoses fields and methods are to be analyzed
|
||||
pub to_be_analyzed_class: RwLock<Vec<DefinitionId>>,
|
||||
}
|
||||
|
||||
impl TopLevelComposer {
|
||||
|
@ -133,21 +133,13 @@ impl TopLevelComposer {
|
|||
|
||||
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
|
||||
|
||||
let ty_list: Vec<Type> = vec![
|
||||
primitives.0.int32,
|
||||
primitives.0.int64,
|
||||
primitives.0.float,
|
||||
primitives.0.bool,
|
||||
primitives.0.none,
|
||||
];
|
||||
|
||||
let composer = TopLevelComposer {
|
||||
definition_list: RwLock::new(top_level_def_list).into(),
|
||||
ty_list: RwLock::new(ty_list),
|
||||
ast_list: RwLock::new(ast_list),
|
||||
primitives: primitives.0,
|
||||
unifier: primitives.1.into(),
|
||||
class_method_to_def_id: Default::default(),
|
||||
to_be_analyzed_class: Default::default(),
|
||||
};
|
||||
(
|
||||
vec![
|
||||
|
@ -190,17 +182,20 @@ impl TopLevelComposer {
|
|||
}
|
||||
}
|
||||
|
||||
/// step 0, register, just remeber the names of top level classes/function
|
||||
pub fn register_top_level(
|
||||
&mut self,
|
||||
ast: ast::Stmt<()>,
|
||||
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
|
||||
) -> Result<(String, DefinitionId, Type), String> {
|
||||
// get write access to the lists
|
||||
let (mut def_list, mut ty_list, mut ast_list) =
|
||||
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
|
||||
) -> Result<(String, DefinitionId), String> {
|
||||
let (
|
||||
mut def_list,
|
||||
mut ast_list
|
||||
) = (
|
||||
self.definition_list.write(),
|
||||
self.ast_list.write()
|
||||
);
|
||||
|
||||
// will be deleted after tested
|
||||
assert_eq!(ty_list.len(), def_list.len());
|
||||
assert_eq!(def_list.len(), ast_list.len());
|
||||
|
||||
match &ast.node {
|
||||
|
@ -208,25 +203,17 @@ impl TopLevelComposer {
|
|||
let class_name = name.to_string();
|
||||
let class_def_id = def_list.len();
|
||||
|
||||
// add the class to the unifier
|
||||
let ty = self.unifier.write().add_ty(TypeEnum::TObj {
|
||||
obj_id: DefinitionId(class_def_id),
|
||||
fields: Default::default(),
|
||||
params: Default::default(),
|
||||
});
|
||||
|
||||
// add the class to the definition lists
|
||||
def_list
|
||||
.push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
|
||||
ty_list.push(ty);
|
||||
// since later when registering class method, ast will still be used,
|
||||
// here push None temporarly, later will push the ast
|
||||
// here push None temporarly, later will move the ast inside
|
||||
ast_list.push(None);
|
||||
|
||||
// parse class def body and register class methods into the def list.
|
||||
// module's symbol resolver would not know the name of the class methods,
|
||||
// thus cannot return their definition_id? so we have to manage it ourselves
|
||||
// by using the field `class_method_to_def_id`
|
||||
// by using `class_method_to_def_id`
|
||||
for b in body {
|
||||
if let ast::StmtKind::FunctionDef { name, .. } = &b.node {
|
||||
let fun_name = Self::name_mangling(class_name.clone(), name);
|
||||
|
@ -248,144 +235,82 @@ impl TopLevelComposer {
|
|||
)
|
||||
.into(),
|
||||
);
|
||||
ty_list.push(ty);
|
||||
// the ast of class method is in the class, push None in to the list here
|
||||
ast_list.push(None);
|
||||
|
||||
// class method, do not let the symbol manager manage it, use our own map
|
||||
self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
|
||||
|
||||
// if it is the contructor, special handling is needed. In the above
|
||||
// handling, we still add __init__ function to the class method
|
||||
if name == "__init__" {
|
||||
// NOTE: how can this later be fetched?
|
||||
def_list.push(
|
||||
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
||||
.into(),
|
||||
);
|
||||
// arbitarily push one to make sure the index is correct
|
||||
ty_list.push(self.primitives.none);
|
||||
ast_list.push(None);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// move the ast to the entry of the class in the ast_list
|
||||
ast_list[class_def_id] = Some(ast);
|
||||
|
||||
// return
|
||||
Ok((class_name, DefinitionId(class_def_id), ty))
|
||||
// put the constructor into the def_list
|
||||
def_list.push(
|
||||
TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
|
||||
.into(),
|
||||
);
|
||||
ast_list.push(None);
|
||||
|
||||
// class, put its def_id into the to be analyzed set
|
||||
let mut to_be_analyzed = self.to_be_analyzed_class.write();
|
||||
to_be_analyzed.push(DefinitionId(class_def_id));
|
||||
|
||||
|
||||
Ok((class_name, DefinitionId(class_def_id)))
|
||||
}
|
||||
|
||||
ast::StmtKind::FunctionDef { name, .. } => {
|
||||
let fun_name = name.to_string();
|
||||
|
||||
// add to the unifier
|
||||
let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
|
||||
args: Default::default(),
|
||||
ret: self.primitives.none,
|
||||
vars: Default::default(),
|
||||
}));
|
||||
|
||||
// add to the definition list
|
||||
def_list.push(
|
||||
Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
|
||||
.into(),
|
||||
);
|
||||
ty_list.push(ty);
|
||||
ast_list.push(Some(ast));
|
||||
|
||||
// return
|
||||
Ok((fun_name, DefinitionId(def_list.len() - 1), ty))
|
||||
Ok((fun_name, DefinitionId(def_list.len() - 1)))
|
||||
}
|
||||
|
||||
_ => Err("only registrations of top level classes/functions are supprted".into()),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
||||
/// step 1, analyze the type vars associated with top level class
|
||||
fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
|
||||
let mut def_list = self.definition_list.write();
|
||||
let ty_list = self.ty_list.read();
|
||||
let ast_list = self.ast_list.read();
|
||||
let mut unifier = self.unifier.write();
|
||||
|
||||
for (def, ty, ast) in def_list
|
||||
for (class_def, class_ast) in def_list
|
||||
.iter_mut()
|
||||
.zip(ty_list.iter())
|
||||
.zip(ast_list.iter())
|
||||
.map(|((x, y), z)| (x, y, z))
|
||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
||||
{
|
||||
unimplemented!()
|
||||
}
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// this should be called after all top level classes are registered, and
|
||||
/// will actually fill in those fields of the previous dummy one
|
||||
pub fn analyze_top_level(&mut self) -> Result<(), String> {
|
||||
let mut def_list = self.definition_list.write();
|
||||
let ty_list = self.ty_list.read();
|
||||
let ast_list = self.ast_list.read();
|
||||
let mut unifier = self.unifier.write();
|
||||
|
||||
for (def, ty, ast) in def_list
|
||||
.iter_mut()
|
||||
.zip(ty_list.iter())
|
||||
.zip(ast_list.iter())
|
||||
.map(|((x, y), z)| (x, y, z))
|
||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
|
||||
{
|
||||
// only analyze those entries with ast, and class_method(whose ast in class def)
|
||||
match ast {
|
||||
Some(ast::Located{node: ast::StmtKind::ClassDef {
|
||||
bases,
|
||||
body,
|
||||
name: class_name,
|
||||
..
|
||||
}, .. }) => {
|
||||
// get the mutable reference of the entry in the
|
||||
// definition list, get the `TopLevelDef`
|
||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
||||
// only deal with class def here
|
||||
let (
|
||||
def_ancestors,
|
||||
def_fields,
|
||||
def_methods,
|
||||
def_type_vars,
|
||||
resolver,
|
||||
) = if let TopLevelDef::Class {
|
||||
object_id: _,
|
||||
ancestors,
|
||||
fields,
|
||||
methods,
|
||||
class_bases,
|
||||
class_def_type_vars,
|
||||
class_resolver
|
||||
) = {
|
||||
if let TopLevelDef::Class {
|
||||
type_vars,
|
||||
resolver: Some(resolver)
|
||||
} = def.get_mut() {
|
||||
(ancestors, fields, methods, type_vars, resolver.lock())
|
||||
} else { unreachable!() };
|
||||
|
||||
// try to get mutable reference of the entry in the
|
||||
// unification table, get the `TypeEnum`
|
||||
let type_enum = unifier.get_ty(*ty);
|
||||
let (
|
||||
enum_params,
|
||||
enum_fields
|
||||
) = if let TypeEnum::TObj {
|
||||
params,
|
||||
fields,
|
||||
resolver,
|
||||
..
|
||||
} = type_enum.borrow() {
|
||||
(params, fields)
|
||||
} else { unreachable!() };
|
||||
} = class_def.get_mut() {
|
||||
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||
bases,
|
||||
..
|
||||
}, .. }) = class_ast {
|
||||
(bases, type_vars, resolver)
|
||||
} else { unreachable!("must be both class") }
|
||||
} else { continue }
|
||||
};
|
||||
|
||||
// ancestors and typevars associate with the class are analyzed by looking
|
||||
// into the `bases` ast node
|
||||
// `Generic` should only occur once, use this flag
|
||||
let mut generic_occured = false;
|
||||
// TODO: haven't check this yet
|
||||
let mut occured_type_var: HashSet<Type> = Default::default();
|
||||
// TODO: haven't check this yet
|
||||
let mut occured_base: HashSet<DefinitionId> = Default::default();
|
||||
for b in bases {
|
||||
for b in class_bases {
|
||||
match &b.node {
|
||||
// analyze typevars bounded to the class,
|
||||
// only support things like `class A(Generic[T, V])`,
|
||||
|
@ -400,204 +325,207 @@ impl TopLevelComposer {
|
|||
generic_occured = true;
|
||||
true
|
||||
} else {
|
||||
return Err("Only single Generic[...] or Protocol[...] can be in bases".into())
|
||||
return Err("Only single Generic[...] can be in bases".into())
|
||||
}
|
||||
} else { false }
|
||||
} else { false }
|
||||
} => {
|
||||
match &slice.node {
|
||||
// `class Foo(Generic[T, V, P]):` multiple element inside the subscript
|
||||
ast::ExprKind::Tuple {elts, ..} => {
|
||||
let tys = elts
|
||||
// if `class A(Generic[T, V, G])`
|
||||
if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
|
||||
// parse the type vars
|
||||
let type_vars = elts
|
||||
.iter()
|
||||
// here parse_type_annotation should be fine,
|
||||
// since we only expect type vars, which is not relevant
|
||||
// to the top-level parsing
|
||||
.map(|x| resolver.parse_type_annotation(
|
||||
.map(|e|
|
||||
class_resolver
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.lock()
|
||||
.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
x))
|
||||
e)
|
||||
)
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
let ty_var_ids = tys
|
||||
// check if all are unique type vars
|
||||
let mut occured_type_var_id: HashSet<u32> = HashSet::new();
|
||||
let all_unique_type_var = type_vars
|
||||
.iter()
|
||||
.map(|t| {
|
||||
let tmp = unifier.get_ty(*t);
|
||||
// make sure it is type var
|
||||
if let TypeEnum::TVar {id, ..} = tmp.as_ref() {
|
||||
Ok(*id)
|
||||
.all(|x| {
|
||||
let ty = unifier.get_ty(*x);
|
||||
if let TypeEnum::TVar {id, ..} = ty.as_ref() {
|
||||
occured_type_var_id.insert(*id)
|
||||
} else { false }
|
||||
});
|
||||
|
||||
if !all_unique_type_var { return Err("expect unique type variables".into()) }
|
||||
|
||||
// add to TopLevelDef
|
||||
class_def_type_vars.extend(type_vars);
|
||||
|
||||
// `class A(Generic[T])`
|
||||
} else {
|
||||
Err("Expect type variabls here".to_string())
|
||||
}
|
||||
})
|
||||
.collect::<Result<Vec<_>, _>>()?;
|
||||
|
||||
// write to TypeEnum
|
||||
for (id, ty) in ty_var_ids.iter().zip(tys.iter()) {
|
||||
enum_params.borrow_mut().insert(*id, *ty);
|
||||
}
|
||||
|
||||
// write to TopLevelDef
|
||||
for ty in tys{
|
||||
def_type_vars.push(ty)
|
||||
}
|
||||
},
|
||||
|
||||
// `class Foo(Generic[T]):`, only single element
|
||||
_ => {
|
||||
let ty = resolver.parse_type_annotation(
|
||||
let ty =
|
||||
class_resolver
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.lock()
|
||||
.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
&slice
|
||||
)?;
|
||||
// check if it is type var
|
||||
let is_type_var = matches!(
|
||||
unifier.get_ty(ty).as_ref(),
|
||||
&TypeEnum::TVar { .. }
|
||||
);
|
||||
if !is_type_var { return Err("expect type variable here".into()) }
|
||||
|
||||
let ty_var_id = if let TypeEnum::TVar { id, .. } = unifier
|
||||
.get_ty(ty)
|
||||
.as_ref() { *id } else {
|
||||
return Err("Expect type variabls here".to_string())
|
||||
};
|
||||
|
||||
// write to TypeEnum
|
||||
enum_params.borrow_mut().insert(ty_var_id, ty);
|
||||
|
||||
// write to TopLevelDef
|
||||
def_type_vars.push(ty);
|
||||
},
|
||||
};
|
||||
// add to TopLevelDef
|
||||
class_def_type_vars.push(ty);
|
||||
}
|
||||
}
|
||||
|
||||
// analyze base classes, which is possible in
|
||||
// other cases, we parse for the base class
|
||||
// FIXME: calling parse_type_annotation here might cause some problem
|
||||
// when the base class is parametrized `BaseClass[int, bool]`, since the
|
||||
// analysis of type var of some class is not done yet.
|
||||
// we can first only look at the name, and later check the
|
||||
// parameter when others are done
|
||||
// Or
|
||||
// first get all the class' type var analyzed, and then
|
||||
// analyze the base class
|
||||
_ => {
|
||||
let ty = resolver.parse_type_annotation(
|
||||
// if others, do nothing in this function
|
||||
_ => continue
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// step 2, base classes. Need to separate step1 and step2 for this reason:
|
||||
/// `class B(Generic[T, V]);
|
||||
/// class A(B[int, bool])`
|
||||
/// if the type var associated with class `B` has not been handled properly,
|
||||
/// the parse of type annotation of `B[int, bool]` will fail
|
||||
fn analyze_top_level_class_bases(&mut self) -> Result<(), String> {
|
||||
let mut def_list = self.definition_list.write();
|
||||
let ast_list = self.ast_list.read();
|
||||
let mut unifier = self.unifier.write();
|
||||
|
||||
for (class_def, class_ast) in def_list
|
||||
.iter_mut()
|
||||
.zip(ast_list.iter())
|
||||
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Option<ast::Stmt<()>>)>>() {
|
||||
let (
|
||||
class_bases,
|
||||
class_ancestors,
|
||||
class_resolver
|
||||
) = {
|
||||
if let TopLevelDef::Class {
|
||||
ancestors,
|
||||
resolver,
|
||||
..
|
||||
} = class_def.get_mut() {
|
||||
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||
bases,
|
||||
..
|
||||
}, .. }) = class_ast {
|
||||
(bases, ancestors, resolver)
|
||||
} else { unreachable!("must be both class") }
|
||||
} else { continue }
|
||||
};
|
||||
for b in class_bases {
|
||||
// type vars have already been handled, so skip on `Generic[...]`
|
||||
if let ast::ExprKind::Subscript {value, ..} = &b.node {
|
||||
if let ast::ExprKind::Name {id, ..} = &value.node {
|
||||
if id == "Generic" { continue }
|
||||
}
|
||||
}
|
||||
// get the def id of the base class
|
||||
let base_ty = class_resolver.as_ref().unwrap().lock().parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
b
|
||||
)?;
|
||||
|
||||
let obj_def_id = if let TypeEnum::TObj { obj_id, .. } = unifier
|
||||
.get_ty(ty)
|
||||
.as_ref() {
|
||||
let base_id =
|
||||
if let TypeEnum::TObj {obj_id, ..} = unifier.get_ty(base_ty).as_ref() {
|
||||
*obj_id
|
||||
} else {
|
||||
return Err("Expect concrete classes/types here".into())
|
||||
} else { return Err("expect concrete class/type to be base class".into()) };
|
||||
|
||||
// write to the class ancestors
|
||||
class_ancestors.push(base_id);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
// write to TopLevelDef
|
||||
def_ancestors.push(obj_def_id);
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// class method and field are analyzed by
|
||||
// looking into the class body ast node
|
||||
// NOTE: should consider parents' method and fields(check re-def and add),
|
||||
// but we do it later we go over these again after we finish analyze the
|
||||
// fields/methods as declared in the ast
|
||||
// method with same name should not occur twice, so use this
|
||||
let defined_method: HashSet<String> = Default::default();
|
||||
for stmt in body {
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
name: func_name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
/// step 3, class_fields
|
||||
fn analyze_top_level_class_fields_methods(&mut self) -> Result<(), String> {
|
||||
let mut def_list = self.definition_list.write();
|
||||
let ast_list = self.ast_list.read();
|
||||
let mut unifier = self.unifier.write();
|
||||
let class_method_to_def_id = self.class_method_to_def_id.read();
|
||||
let mut to_be_analyzed_class = self.to_be_analyzed_class.write();
|
||||
|
||||
while !to_be_analyzed_class.is_empty() {
|
||||
let ind = to_be_analyzed_class.remove(0).0;
|
||||
|
||||
let (class_def, class_ast) = (
|
||||
&mut def_list[ind], &ast_list[ind]
|
||||
);
|
||||
let (
|
||||
class_name,
|
||||
class_fields,
|
||||
class_methods,
|
||||
class_resolver,
|
||||
class_body
|
||||
) = {
|
||||
if let TopLevelDef::Class {
|
||||
resolver,
|
||||
fields,
|
||||
methods,
|
||||
..
|
||||
} = &stmt.node {
|
||||
// build type enum, need FunSignature {args, vars, ret}
|
||||
// args. Now only args with no default TODO: other kinds of args
|
||||
let func_args = args.args
|
||||
.iter()
|
||||
.map(|x| -> Result<FuncArg, String> {
|
||||
Ok(FuncArg {
|
||||
name: x.node.arg.clone(),
|
||||
ty: resolver.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
x
|
||||
.node
|
||||
.annotation
|
||||
.as_ref()
|
||||
.ok_or_else(|| "type annotations required for function parameters".to_string())?
|
||||
)?,
|
||||
default_value: None
|
||||
})
|
||||
})
|
||||
.collect::<Result<Vec<FuncArg>, _>>()?;
|
||||
// vars. find TypeVars used in the argument type annotation
|
||||
let func_vars = func_args
|
||||
.iter()
|
||||
.filter_map(|FuncArg { ty, .. } | {
|
||||
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
|
||||
Some((*id, *ty))
|
||||
} else { None }
|
||||
})
|
||||
.collect::<HashMap<u32, Type>>();
|
||||
// return type
|
||||
let func_ret = resolver
|
||||
.parse_type_annotation(
|
||||
&self.to_top_level_context(),
|
||||
unifier.borrow_mut(),
|
||||
&self.primitives,
|
||||
returns
|
||||
.as_ref()
|
||||
.ok_or_else(|| "return type annotations required here".to_string())?
|
||||
.as_ref(),
|
||||
)?;
|
||||
// build the TypeEnum
|
||||
let func_type_sig = FunSignature {
|
||||
args: func_args,
|
||||
vars: func_vars,
|
||||
ret: func_ret
|
||||
};
|
||||
|
||||
// write to the TypeEnum and Def_list (by replacing the ty with the new Type created above)
|
||||
let func_name_mangled = Self::name_mangling(class_name.clone(), func_name);
|
||||
let def_id = self.class_method_to_def_id.read()[&func_name_mangled];
|
||||
unimplemented!();
|
||||
|
||||
|
||||
if func_name == "__init__" {
|
||||
// special for constructor, need to look into the fields
|
||||
// TODO: look into the function body and see
|
||||
}
|
||||
} else {
|
||||
// do nothing. we do not care about things like this?
|
||||
// class A:
|
||||
// a = 3
|
||||
// b = [2, 3]
|
||||
}
|
||||
}
|
||||
},
|
||||
|
||||
// top level function definition
|
||||
Some(ast::Located{node: ast::StmtKind::FunctionDef {
|
||||
} = class_def.get_mut() {
|
||||
if let Some(ast::Located {node: ast::StmtKind::ClassDef {
|
||||
name,
|
||||
args,
|
||||
body,
|
||||
returns,
|
||||
..
|
||||
}, .. }) => {
|
||||
// TODO:
|
||||
unimplemented!()
|
||||
}, .. }) = class_ast {
|
||||
(name, fields, methods, resolver, body)
|
||||
} else { unreachable!("must be both class") }
|
||||
} else { continue }
|
||||
};
|
||||
for b in class_body {
|
||||
if let ast::StmtKind::FunctionDef {
|
||||
args: func_args,
|
||||
body: func_body,
|
||||
name: func_name,
|
||||
returns: func_returns,
|
||||
..
|
||||
} = &b.node {
|
||||
// unwrap should not fail
|
||||
let method_def_id =
|
||||
class_method_to_def_id
|
||||
.get(&Self::name_mangling(
|
||||
class_name.into(),
|
||||
func_name)
|
||||
).unwrap();
|
||||
|
||||
let a = &def_list[method_def_id.0];
|
||||
} else {
|
||||
// what should we do with `class A: a = 3`?
|
||||
continue
|
||||
}
|
||||
|
||||
// only expect class def and function def ast
|
||||
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
|
||||
}
|
||||
|
||||
fn analyze_top_level_inheritance(&mut self) -> Result<(), String> {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn analyze_top_level_field_instantiation(&mut self) -> Result<(), String> {
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue