forked from M-Labs/nac3
core/ndstrides: move functions to numpy_new/util.rs
This commit is contained in:
parent
2747869a45
commit
d5880b119a
@ -18,6 +18,7 @@ use crate::{
|
||||
call_memcpy_generic,
|
||||
},
|
||||
need_sret, numpy,
|
||||
numpy_new::util::alloca_ndarray,
|
||||
stmt::{
|
||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||
gen_var,
|
||||
@ -42,10 +43,8 @@ use nac3parser::ast::{
|
||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Located, Location, Operator,
|
||||
StrRef, Unaryop,
|
||||
};
|
||||
use ndarray::{
|
||||
allocation::alloca_ndarray,
|
||||
indexing::{call_nac3_ndarray_index, RustNDIndex},
|
||||
};
|
||||
|
||||
use ndarray::indexing::{call_nac3_ndarray_index, RustNDIndex};
|
||||
|
||||
use super::{
|
||||
model::*,
|
||||
|
@ -1,83 +0,0 @@
|
||||
use crate::codegen::model::*;
|
||||
use crate::codegen::util::array_writer::ArrayWriter;
|
||||
use crate::codegen::{structure::ndarray::NpArray, CodeGenContext, CodeGenerator};
|
||||
|
||||
use super::basic::{
|
||||
call_nac3_ndarray_nbytes, call_nac3_ndarray_set_strides_by_shape,
|
||||
call_nac3_ndarray_util_assert_shape_no_negative,
|
||||
};
|
||||
|
||||
/**
|
||||
Allocate an ndarray on the stack given its `ndims`.
|
||||
|
||||
`shape` and `strides` will be automatically allocated on the stack.
|
||||
|
||||
The returned ndarray's content will be:
|
||||
- `data`: `nullptr`
|
||||
- `itemsize`: **uninitialized** value
|
||||
- `ndims`: initialized value, set to the input `ndims`
|
||||
- `shape`: initialized pointer to an allocated stack with **uninitialized** values
|
||||
- `strides`: initialized pointer to an allocated stack with **uninitialized** values
|
||||
*/
|
||||
pub fn alloca_ndarray<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: Int<'ctx, SizeT>,
|
||||
name: &str,
|
||||
) -> Result<Ptr<'ctx, StructModel<NpArray>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let ndarray_model = StructModel(NpArray);
|
||||
let ndarray_data_model = PtrModel(IntModel(Byte));
|
||||
|
||||
// Setup ndarray
|
||||
let ndarray_ptr = ndarray_model.alloca(tyctx, ctx, name);
|
||||
let shape = sizet_model.array_alloca(tyctx, ctx, ndims.value, "shape");
|
||||
let strides = sizet_model.array_alloca(tyctx, ctx, ndims.value, "strides");
|
||||
|
||||
ndarray_ptr.gep(ctx, |f| f.data).store(ctx, ndarray_data_model.nullptr(tyctx, ctx.ctx));
|
||||
ndarray_ptr.gep(ctx, |f| f.ndims).store(ctx, ndims);
|
||||
ndarray_ptr.gep(ctx, |f| f.shape).store(ctx, shape);
|
||||
ndarray_ptr.gep(ctx, |f| f.strides).store(ctx, strides);
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `shape` and asserts on.
|
||||
/// `shape`'s values and prohibit illegal inputs like negative dimensions.
|
||||
pub fn init_ndarray_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
shape_writer: &ArrayWriter<'ctx, G, SizeT, IntModel<SizeT>>,
|
||||
) -> Result<(), String> {
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
let shape = pndarray.gep(ctx, |f| f.shape).load(tyctx, ctx, "shape");
|
||||
(shape_writer.write)(generator, ctx, shape)?;
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape_writer.len, shape);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||
///
|
||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||
///
|
||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||
pub fn init_ndarray_data_by_alloca<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
) {
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
let ndarray_data_model = IntModel(Byte);
|
||||
|
||||
let nbytes = call_nac3_ndarray_nbytes(generator, ctx, pndarray);
|
||||
let data = ndarray_data_model.array_alloca(tyctx, ctx, nbytes.value, "data");
|
||||
pndarray.gep(ctx, |f| f.data).store(ctx, data);
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, pndarray);
|
||||
}
|
@ -1,4 +1,3 @@
|
||||
pub mod allocation;
|
||||
pub mod basic;
|
||||
pub mod indexing;
|
||||
pub mod reshape;
|
||||
|
@ -1,49 +0,0 @@
|
||||
use crate::codegen::{
|
||||
irrt::ndarray::basic::{call_nac3_ndarray_get_nth_pelement, call_nac3_ndarray_size},
|
||||
model::*,
|
||||
stmt::BreakContinueHooks,
|
||||
structure::ndarray::NpArray,
|
||||
util::control::gen_model_for,
|
||||
CodeGenContext, CodeGenerator,
|
||||
};
|
||||
|
||||
/// Iterate through all elements in an ndarray.
|
||||
///
|
||||
/// `body` is given the index of an element and an opaque pointer (as an `uint8_t*`, you might want to cast it) to the element.
|
||||
///
|
||||
/// Short-circuiting is possible with the given [`BreakContinueHooks`].
|
||||
pub fn gen_foreach_ndarray_elements<'ctx, G, F>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: Fn(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, '_>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
Int<'ctx, SizeT>,
|
||||
Ptr<'ctx, IntModel<Byte>>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
// TODO: Make this more efficient - use a special NDArray iterator?
|
||||
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let size = call_nac3_ndarray_size(generator, ctx, pndarray);
|
||||
|
||||
gen_model_for(
|
||||
generator,
|
||||
ctx,
|
||||
sizet_model.const_0(tyctx, ctx.ctx),
|
||||
size,
|
||||
sizet_model.const_1(tyctx, ctx.ctx),
|
||||
|generator, ctx, hooks, index| {
|
||||
let pelement = call_nac3_ndarray_get_nth_pelement(generator, ctx, pndarray, index);
|
||||
body(generator, ctx, hooks, index, pelement)
|
||||
},
|
||||
)
|
||||
}
|
@ -7,10 +7,8 @@ use nac3parser::ast::StrRef;
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::ndarray::allocation::{
|
||||
alloca_ndarray, init_ndarray_data_by_alloca, init_ndarray_shape,
|
||||
},
|
||||
model::*,
|
||||
numpy_new::util::{alloca_ndarray, init_ndarray_data_by_alloca, init_ndarray_shape},
|
||||
structure::ndarray::NpArray,
|
||||
util::shape::make_shape_writer,
|
||||
CodeGenContext, CodeGenerator,
|
||||
@ -20,7 +18,7 @@ use crate::{
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
use super::control::gen_foreach_ndarray_elements;
|
||||
use super::util::gen_foreach_ndarray_elements;
|
||||
|
||||
/// Helper function to create an ndarray with uninitialized values
|
||||
///
|
||||
|
@ -1,3 +1,3 @@
|
||||
pub mod control;
|
||||
pub mod factory;
|
||||
pub mod util;
|
||||
pub mod view;
|
||||
|
184
nac3core/src/codegen/numpy_new/util.rs
Normal file
184
nac3core/src/codegen/numpy_new/util.rs
Normal file
@ -0,0 +1,184 @@
|
||||
use inkwell::{types::BasicType, values::BasicValueEnum};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::ndarray::basic::{
|
||||
call_nac3_ndarray_get_nth_pelement, call_nac3_ndarray_nbytes,
|
||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
||||
call_nac3_ndarray_util_assert_shape_no_negative,
|
||||
},
|
||||
model::*,
|
||||
stmt::BreakContinueHooks,
|
||||
structure::ndarray::NpArray,
|
||||
util::{array_writer::ArrayWriter, control::gen_model_for},
|
||||
CodeGenContext, CodeGenerator,
|
||||
},
|
||||
toplevel::numpy::unpack_ndarray_var_tys,
|
||||
typecheck::typedef::{Type, TypeEnum},
|
||||
};
|
||||
|
||||
/**
|
||||
Allocate an ndarray on the stack given its `ndims`.
|
||||
|
||||
`shape` and `strides` will be automatically allocated on the stack.
|
||||
|
||||
The returned ndarray's content will be:
|
||||
- `data`: `nullptr`
|
||||
- `itemsize`: **uninitialized** value
|
||||
- `ndims`: initialized value, set to the input `ndims`
|
||||
- `shape`: initialized pointer to an allocated stack with **uninitialized** values
|
||||
- `strides`: initialized pointer to an allocated stack with **uninitialized** values
|
||||
*/
|
||||
pub fn alloca_ndarray<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndims: Int<'ctx, SizeT>,
|
||||
name: &str,
|
||||
) -> Result<Ptr<'ctx, StructModel<NpArray>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let ndarray_model = StructModel(NpArray);
|
||||
let ndarray_data_model = PtrModel(IntModel(Byte));
|
||||
|
||||
// Setup ndarray
|
||||
let ndarray_ptr = ndarray_model.alloca(tyctx, ctx, name);
|
||||
let shape = sizet_model.array_alloca(tyctx, ctx, ndims.value, "shape");
|
||||
let strides = sizet_model.array_alloca(tyctx, ctx, ndims.value, "strides");
|
||||
|
||||
ndarray_ptr.gep(ctx, |f| f.data).store(ctx, ndarray_data_model.nullptr(tyctx, ctx.ctx));
|
||||
ndarray_ptr.gep(ctx, |f| f.ndims).store(ctx, ndims);
|
||||
ndarray_ptr.gep(ctx, |f| f.shape).store(ctx, shape);
|
||||
ndarray_ptr.gep(ctx, |f| f.strides).store(ctx, strides);
|
||||
|
||||
Ok(ndarray_ptr)
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `shape` and asserts on.
|
||||
/// `shape`'s values and prohibit illegal inputs like negative dimensions.
|
||||
pub fn init_ndarray_shape<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
shape_writer: &ArrayWriter<'ctx, G, SizeT, IntModel<SizeT>>,
|
||||
) -> Result<(), String> {
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
let shape = pndarray.gep(ctx, |f| f.shape).load(tyctx, ctx, "shape");
|
||||
(shape_writer.write)(generator, ctx, shape)?;
|
||||
call_nac3_ndarray_util_assert_shape_no_negative(generator, ctx, shape_writer.len, shape);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Initialize an ndarray's `data` by allocating a buffer on the stack.
|
||||
/// The allocated data buffer is considered to be *owned* by the ndarray.
|
||||
///
|
||||
/// `strides` of the ndarray will also be updated with `set_strides_by_shape`.
|
||||
///
|
||||
/// `shape` and `itemsize` of the ndarray ***must*** be initialized first.
|
||||
pub fn init_ndarray_data_by_alloca<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
) {
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
let ndarray_data_model = IntModel(Byte);
|
||||
|
||||
let nbytes = call_nac3_ndarray_nbytes(generator, ctx, pndarray);
|
||||
let data = ndarray_data_model.array_alloca(tyctx, ctx, nbytes.value, "data");
|
||||
pndarray.gep(ctx, |f| f.data).store(ctx, data);
|
||||
call_nac3_ndarray_set_strides_by_shape(generator, ctx, pndarray);
|
||||
}
|
||||
|
||||
/// Convert `input` to an ndarray - behaves similarly to `np.asarray`.
|
||||
///
|
||||
/// Returns the ndarray interpretation of `input` and **the element type** of the ndarray.
|
||||
///
|
||||
/// Here are the exact details:
|
||||
/// - If `input` is an ndarray, the function returns back the **same** ndarray and the `dtype`
|
||||
/// of the ndarray.
|
||||
/// - If `input` is not an ndarray, the function creates an ndarray with a single element `input`,
|
||||
/// and returns the created ndarray and `input_ty`. Note that the created ndarray's `ndims` will
|
||||
/// be `0` (an *unsized* ndarray).
|
||||
pub fn as_ndarray<'ctx, G: CodeGenerator + ?Sized>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
input: BasicValueEnum<'ctx>,
|
||||
input_ty: Type,
|
||||
) -> Result<(Ptr<'ctx, StructModel<NpArray>>, Type), String> {
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let pbyte_model = PtrModel(IntModel(Byte));
|
||||
let pndarray_model = PtrModel(StructModel(NpArray));
|
||||
|
||||
let input_ty_enum = ctx.unifier.get_ty(input_ty);
|
||||
match &*input_ty_enum {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.ndarray.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
let pndarray = pndarray_model.check_value(tyctx, ctx.ctx, input).unwrap();
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, input_ty);
|
||||
Ok((pndarray, elem_ty))
|
||||
}
|
||||
_ => {
|
||||
let ndims = sizet_model.const_0(tyctx, ctx.ctx);
|
||||
let pndarray = alloca_ndarray(generator, ctx, ndims, "ndarray")?;
|
||||
|
||||
// We have to put `input` onto the stack to get a data pointer.
|
||||
let data = ctx.builder.build_alloca(input.get_type(), "as_ndarray_scalar").unwrap();
|
||||
ctx.builder.build_store(data, input).unwrap();
|
||||
|
||||
let data = pbyte_model.transmute(tyctx, ctx, data, "data");
|
||||
pndarray.gep(ctx, |f| f.data).store(ctx, data);
|
||||
|
||||
let itemsize = input.get_type().size_of().unwrap();
|
||||
let itemsize = sizet_model.check_value(tyctx, ctx.ctx, itemsize).unwrap();
|
||||
pndarray.gep(ctx, |f| f.itemsize).store(ctx, itemsize);
|
||||
|
||||
Ok((pndarray, input_ty))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterate through all elements in an ndarray.
|
||||
///
|
||||
/// `body` is given the index of an element and an opaque pointer (as an `uint8_t*`, you might want to cast it) to the element.
|
||||
///
|
||||
/// Short-circuiting is possible with the given [`BreakContinueHooks`].
|
||||
pub fn gen_foreach_ndarray_elements<'ctx, G, F>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
pndarray: Ptr<'ctx, StructModel<NpArray>>,
|
||||
body: F,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
F: Fn(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, '_>,
|
||||
BreakContinueHooks<'ctx>,
|
||||
Int<'ctx, SizeT>,
|
||||
Ptr<'ctx, IntModel<Byte>>,
|
||||
) -> Result<(), String>,
|
||||
{
|
||||
// TODO: Make this more efficient - use a special NDArray iterator?
|
||||
|
||||
let tyctx = generator.type_context(ctx.ctx);
|
||||
|
||||
let sizet_model = IntModel(SizeT);
|
||||
let size = call_nac3_ndarray_size(generator, ctx, pndarray);
|
||||
|
||||
gen_model_for(
|
||||
generator,
|
||||
ctx,
|
||||
sizet_model.const_0(tyctx, ctx.ctx),
|
||||
size,
|
||||
sizet_model.const_1(tyctx, ctx.ctx),
|
||||
|generator, ctx, hooks, index| {
|
||||
let pelement = call_nac3_ndarray_get_nth_pelement(generator, ctx, pndarray, index);
|
||||
body(generator, ctx, hooks, index, pelement)
|
||||
},
|
||||
)
|
||||
}
|
@ -4,7 +4,6 @@ use nac3parser::ast::StrRef;
|
||||
use crate::{
|
||||
codegen::{
|
||||
irrt::ndarray::{
|
||||
allocation::{alloca_ndarray, init_ndarray_shape},
|
||||
basic::{
|
||||
call_nac3_ndarray_is_c_contiguous, call_nac3_ndarray_nbytes,
|
||||
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size,
|
||||
@ -12,6 +11,7 @@ use crate::{
|
||||
reshape::call_nac3_ndarray_resolve_and_check_new_shape,
|
||||
},
|
||||
model::*,
|
||||
numpy_new::util::{alloca_ndarray, init_ndarray_shape},
|
||||
structure::ndarray::NpArray,
|
||||
util::{array_writer::ArrayWriter, shape::make_shape_writer},
|
||||
CodeGenContext, CodeGenerator,
|
||||
|
Loading…
Reference in New Issue
Block a user