forked from M-Labs/nac3
1
0
Fork 0

core/model: introduce `Model<'ctx>` abstraction

This commit is contained in:
lyken 2024-07-17 12:16:41 +08:00
parent f9dc6bf40c
commit ab663c3ec8
12 changed files with 1276 additions and 0 deletions

View File

@ -11,12 +11,18 @@ use inkwell::{
};
use nac3parser::ast::{Expr, Stmt, StrRef};
use super::model::SizeTModel;
pub trait CodeGenerator {
/// Return the module name for the code generator.
fn get_name(&self) -> &str;
fn get_size_type<'ctx>(&self, ctx: &'ctx Context) -> IntType<'ctx>;
fn get_sizet<'ctx>(&self, ctx: &'ctx Context) -> SizeTModel<'ctx> {
SizeTModel(self.get_size_type(ctx))
}
/// Generate function call and returns the function return value.
/// - obj: Optional object for method call.
/// - fun: Function signature and definition ID.

View File

@ -41,6 +41,7 @@ pub mod extern_fns;
mod generator;
pub mod irrt;
pub mod llvm_intrinsics;
pub mod model;
pub mod numpy;
pub mod stmt;

View File

@ -0,0 +1,204 @@
use core::fmt;
use std::marker::PhantomData;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType},
values::{BasicValue, IntValue, PointerValue},
};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::{ArraySlice, Pointer, PointerModel};
/*
TODO: UPDATE when the Model finally stablizes
Explanation on the abstraction:
In LLVM, there are TYPES and VALUES.
Inkwell gives us TYPES [`BasicTypeEnum<'ctx>`] and VALUES [`BasicValueEnum<'ctx>`],
but by themselves, they lack a lot of Rust compile-time known info.
e.g., You did `let ptr = builder.build_alloca(my_llvm_ndarray_struct_ty)`,
but `ptr` is just a `PointerValue<'ctx>`, almost everything about the
underlying `my_llvm_ndarray_struct_ty` is gone.
The `Model` abstraction is a wrapper around inkwell TYPES and VALUES but with
a richer interface.
`Model<'ctx>` is a wrapper around for an inkwell TYPE:
- `NIntModel<Byte>` is a i8.
- `NIntModel<Int32>` is a i32.
- `NIntModel<Int64>` is a i64.
- `IntModel` is a carrier for an inkwell `IntType<'ctx>`,
used when the type is dynamic/cannot be specified in Rust compile-time.
- `PointerModel<'ctx, E>` is a wrapper for `PointerType<'ctx>`,
where `E` is another `Model<'ctx>` that describes the element type of the pointer.
- `StructModel<'ctx, NDArray>` is a wrapper for `StructType<'ctx>`,
with additional information encoded within `NDArray`. (See `IsStruct<'ctx>`)
`Model<'ctx>::Value`/`ModelValue<'ctx>` is a wrapper around for an inkwell VALUE:
- `NInt<'ctx, T>` is a value of `NIntModel<'ctx, T>`,
where `T` could be `Byte`, `Int32`, or `Int64`.
- `Pointer<'ctx, E>` is a value of `PointerModel<'ctx, E>`.
Other interesting utilities:
- Given a `Model<'ctx>`, say, `let ndarray_model = StructModel<'ctx, NDArray>`,
you are do `ndarray_model.alloca(ctx, "my_ndarray")` to get a `Pointer<'ctx, Struct<'ctx, NDArray>>`,
notice that all LLVM type information are preserved.
- For a `let my_ndarray = Pointer<'ctx, StructModel<NDArray>>`, you can access a field by doing
`my_ndarray.gep(ctx, |f| f.itemsize).load() // or .store()`, and you can chain them
together for nested structures.
A brief summary on the `Model<'ctx>` and `ModelValue<'ctx>` traits:
- Model<'ctx>
// The associated ModelValue of this Model
- type Value: ModelValue<'ctx>
// Get the LLVM type of this Model
- fn get_llvm_type(&self)
// Check if the input type is equal to the LLVM type of this Model
// NOTE: this function is provideed through `CanCheckLLVMType<'ctx>`
- fn check_llvm_type(&self, ty) -> Result<(), String>
// Check if the input value's type is equal to the LLVM type of this Model.
//
// If so, wrap it with `Self::Value`.
- fn review_value<V: BasicType<'ctx>>(&self, val: V) -> Result<Self::Value, String>
- ModelValue<'ctx>
// get the LLVM value of this ModelValue
- fn get_llvm_value(&self) -> BasicValueEnum<'ctx>
*/
#[derive(Debug, Clone)]
pub struct ModelError(pub String);
// NOTE: Should have been within [`Model<'ctx>`],
// but rust object safety requirements made it necessary to
// split the trait.
pub trait CanCheckLLVMType<'ctx> {
/// See [`Model::check_llvm_type`]
fn check_llvm_type_impl(
&self,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError>;
}
pub trait Model<'ctx>: fmt::Debug + Clone + Copy + CanCheckLLVMType<'ctx> + Sized + Eq {
/// The corresponding LLVM [`BasicValue<'ctx>`] of this Model.
type Value: BasicValue<'ctx>;
/// The corresponding LLVM [`BasicType<'ctx>`] of this Model.
type Type: BasicType<'ctx>;
/// Get the LLVM type of this [`Model<'ctx>`]
fn get_type(&self, ctx: &'ctx Context) -> Self::Type;
/// Check if the input type is equal to the LLVM type of this Model.
///
/// If it doesn't match, an [`Err`] with a human-readable message is
/// thrown explaining *how* it was different. Meant for debugging.
fn check_type<T: BasicType<'ctx>>(&self, ctx: &'ctx Context, ty: T) -> Result<(), ModelError> {
self.check_llvm_type_impl(ctx, ty.as_basic_type_enum())
}
/// Check if an LLVM value's type is equal to the LLVM type of this [`Model`].
/// If so, wrap it with [`Instance`].
fn review_value<V: BasicValue<'ctx>>(
&self,
ctx: &'ctx Context,
value: V,
) -> Result<Instance<'ctx, Self>, ModelError>;
/// Directly create an [`Instance`] of this [`Model`].
///
/// It is assumed that the LLVM type of `value` has been checked.
///
/// It is recommended that you use [`Model::review_value`] instead in order to
/// catch bugs.
fn believe_value(&self, value: Self::Value) -> Instance<'ctx, Self> {
Instance { model: *self, value, _phantom: PhantomData }
}
/// Build an instruction to allocate a value with the LLVM type of this [`Model<'ctx>`].
fn alloca(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Pointer<'ctx, Self> {
let ptr_model = PointerModel(*self);
let ptr = ctx.builder.build_alloca(self.get_type(ctx.ctx), name).unwrap();
ptr_model.believe_value(ptr)
}
/// Build an instruction to allocate an array of the LLVM type of this [`Model<'ctx>`].
fn array_alloca<N>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
num_elements: Instance<'ctx, N>,
name: &str,
) -> ArraySlice<'ctx, N, Self>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
let ptr_model = PointerModel(*self);
let ptr = ctx
.builder
.build_array_alloca(
self.get_type(ctx.ctx).as_basic_type_enum(),
num_elements.value,
name,
)
.unwrap();
let pointer = ptr_model.believe_value(ptr);
ArraySlice { pointer, num_elements }
}
/// Do [`CodeGenerator::gen_var_alloc`] with the LLVM type of this [`Model<'ctx>`].
fn var_alloc<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
name: Option<&str>,
) -> Result<Pointer<'ctx, Self>, String> {
let ptr_model = PointerModel(*self);
let ptr =
generator.gen_var_alloc(ctx, self.get_type(ctx.ctx).as_basic_type_enum(), name)?;
Ok(ptr_model.believe_value(ptr))
}
/// Do [`CodeGenerator::gen_array_var_alloc`] with the LLVM type of this [`Model<'ctx>`].
fn array_var_alloc<G: CodeGenerator + ?Sized, N>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
num_elements: Instance<'ctx, N>,
name: Option<&'ctx str>,
) -> Result<ArraySlice<'ctx, N, Self>, String>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
let ptr_model = PointerModel(*self);
// TODO: Remove ProxyType ArraySlice
let ptr = ptr_model.believe_value(PointerValue::from(generator.gen_array_var_alloc(
ctx,
self.get_type(ctx.ctx).as_basic_type_enum(),
num_elements.value,
name,
)?));
Ok(ArraySlice { num_elements, pointer: ptr })
}
}
/// An LLVM value of a type of a [`Model<'ctx>`].
///
/// It is guaranteed that [`Instance::value`]'s LLVM type
/// has been *checked* to match [`Instance::model`].
#[derive(Debug, Clone, Copy)]
pub struct Instance<'ctx, M: Model<'ctx>> {
pub model: M,
pub value: M::Value,
_phantom: PhantomData<&'ctx ()>,
}

View File

@ -0,0 +1,161 @@
use core::fmt;
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValue, IntValue},
};
use super::{
core::*,
int_util::{check_int_llvm_type, int_constant, review_int_llvm_value},
Int, IntModel,
};
/// A marker trait to mark a singleton struct that describes a particular fixed integer type.
/// See [`Bool`], [`Byte`], [`Int32`], etc.
///
/// The [`Default`] trait is to enable auto-instantiations.
pub trait NIntKind: fmt::Debug + Clone + Copy + Default + PartialEq + Eq {
/// Get the [`IntType<'ctx>`] of this [`NIntKind`].
fn get_int_type(ctx: &Context) -> IntType<'_>;
/// Get the [`IntType<'ctx>`] of this [`NIntKind`].
///
/// Compared to using [`NIntKind::get_int_type`], this
/// function does not require [`Context`].
fn get_bit_width() -> u32;
}
/// A [`Model`] representing an [`IntType<'ctx>`] of a specified bit width.
///
/// Also see [`IntModel`], which is less constrained than [`NIntModel`],
/// but enables one to handle dynamic [`IntType<'ctx>`] at runtime.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct NIntModel<T: NIntKind>(pub T);
pub type NInt<'ctx, T> = Instance<'ctx, NIntModel<T>>;
impl<'ctx, T: NIntKind> CanCheckLLVMType<'ctx> for NIntModel<T> {
fn check_llvm_type_impl(
&self,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
check_int_llvm_type(ty, T::get_int_type(ctx))
}
}
impl<'ctx, T: NIntKind> Model<'ctx> for NIntModel<T> {
type Type = IntType<'ctx>;
type Value = IntValue<'ctx>;
fn get_type(&self, ctx: &'ctx Context) -> Self::Type {
T::get_int_type(ctx)
}
fn review_value<V: BasicValue<'ctx>>(
&self,
ctx: &'ctx Context,
value: V,
) -> Result<NInt<'ctx, T>, ModelError> {
let value = review_int_llvm_value(value.as_basic_value_enum(), T::get_int_type(ctx))?;
Ok(self.believe_value(value))
}
}
impl<T: NIntKind> NIntModel<T> {
/// "Demote" this [`NIntModel<T>`] to an [`IntModel`].
///
/// Information about the [`NIntKind`] will be lost.
pub fn to_int_model(self, ctx: &Context) -> IntModel<'_> {
IntModel(T::get_int_type(ctx))
}
/// Create an unsigned constant of this [`NIntModel`].
pub fn constant<'ctx>(&self, ctx: &'ctx Context, value: u64) -> NInt<'ctx, T> {
int_constant(ctx, *self, value)
}
}
impl<'ctx, T: NIntKind> NInt<'ctx, T> {
/// "Demote" this [`NInt<T>`] to an [`Int`].
///
/// Information about the [`NIntKind`] will be lost.
pub fn to_int(self, ctx: &'ctx Context) -> Int<'ctx> {
let int_model = self.model.to_int_model(ctx);
int_model.believe_value(self.value)
}
}
// Some pre-defined fixed integer types
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Bool;
pub type BoolModel = NIntModel<Bool>;
impl NIntKind for Bool {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.bool_type()
}
fn get_bit_width() -> u32 {
1
}
}
// Extra utilities for [`Bool`]
impl NIntModel<Bool> {
/// Create a constant `false`
#[must_use]
pub fn const_false<'ctx>(&self, ctx: &'ctx Context) -> NInt<'ctx, Bool> {
self.constant(ctx, 0)
}
/// Create a constant `true`
#[must_use]
pub fn const_true<'ctx>(&self, ctx: &'ctx Context) -> NInt<'ctx, Bool> {
self.constant(ctx, 1)
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Byte;
pub type ByteModel = NIntModel<Byte>;
impl NIntKind for Byte {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i8_type()
}
fn get_bit_width() -> u32 {
8
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Int32;
pub type Int32Model = NIntModel<Int32>;
impl NIntKind for Int32 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i32_type()
}
fn get_bit_width() -> u32 {
32
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Int64;
pub type Int64Model = NIntModel<Int64>;
impl NIntKind for Int64 {
fn get_int_type(ctx: &Context) -> IntType<'_> {
ctx.i64_type()
}
fn get_bit_width() -> u32 {
64
}
}

View File

@ -0,0 +1,65 @@
use inkwell::{
types::{BasicMetadataTypeEnum, BasicType},
values::{AnyValue, BasicMetadataValueEnum, BasicValue, BasicValueEnum},
};
use crate::codegen::{model::*, CodeGenContext};
// TODO: Variadic argument?
pub struct FunctionBuilder<'ctx, 'a> {
ctx: &'a CodeGenContext<'ctx, 'a>,
fn_name: &'a str,
arguments: Vec<(BasicMetadataTypeEnum<'ctx>, BasicMetadataValueEnum<'ctx>)>,
}
impl<'ctx, 'a> FunctionBuilder<'ctx, 'a> {
pub fn begin(ctx: &'a CodeGenContext<'ctx, 'a>, fn_name: &'a str) -> Self {
FunctionBuilder { ctx, fn_name, arguments: Vec::new() }
}
// NOTE: `_name` is for self-documentation
#[must_use]
pub fn arg<M: Model<'ctx>>(mut self, _name: &'static str, arg: Instance<'ctx, M>) -> Self {
self.arguments.push((
arg.model.get_type(self.ctx.ctx).as_basic_type_enum().into(),
arg.value.as_basic_value_enum().into(),
));
self
}
pub fn returning<M: Model<'ctx>>(
self,
name: &'static str,
return_model: M,
) -> Instance<'ctx, M> {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
// Get the LLVM function, create (by declaring) the function if it doesn't exist in `ctx.module`.
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let fn_type = return_model.get_type(self.ctx.ctx).fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
// Build call
let ret = self.ctx.builder.build_call(function, &param_vals, name).unwrap();
// Check the return value/type
let Ok(ret) = BasicValueEnum::try_from(ret.as_any_value_enum()) else {
panic!("Return type is not a BasicValue");
};
return_model.review_value(self.ctx.ctx, ret).unwrap()
}
// TODO: Code duplication, but otherwise returning<S: Optic<'ctx>> cannot resolve S if return_optic = None
pub fn returning_void(self) {
let (param_tys, param_vals): (Vec<_>, Vec<_>) = self.arguments.into_iter().unzip();
let function = self.ctx.module.get_function(self.fn_name).unwrap_or_else(|| {
let return_type = self.ctx.ctx.void_type();
let fn_type = return_type.fn_type(&param_tys, false);
self.ctx.module.add_function(self.fn_name, fn_type, None)
});
self.ctx.builder.build_call(function, &param_vals, "").unwrap();
}
}

View File

@ -0,0 +1,92 @@
use inkwell::{
context::Context,
types::{BasicTypeEnum, IntType},
values::{BasicValue, IntValue},
};
use super::{
core::*,
int_util::{check_int_llvm_type, int_constant, review_int_llvm_value},
};
/// A model representing an [`IntType<'ctx>`].
///
/// Also see [`NIntModel`][`super::NIntModel`], which is more constrained than [`IntModel`]
/// but provides more type-safe mechanisms and even auto-derivation of [`BasicTypeEnum<'ctx>`]
/// for creating LLVM structures.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct IntModel<'ctx>(pub IntType<'ctx>);
pub type Int<'ctx> = Instance<'ctx, IntModel<'ctx>>;
impl<'ctx> CanCheckLLVMType<'ctx> for IntModel<'ctx> {
fn check_llvm_type_impl(
&self,
_ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
check_int_llvm_type(ty, self.0)
}
}
impl<'ctx> Model<'ctx> for IntModel<'ctx> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type(&self, _ctx: &'ctx Context) -> Self::Type {
self.0
}
fn review_value<V: BasicValue<'ctx>>(
&self,
_ctx: &'ctx Context,
value: V,
) -> Result<Int<'ctx>, ModelError> {
let value = review_int_llvm_value(value.as_basic_value_enum(), self.0)?;
Ok(self.believe_value(value))
}
}
impl<'ctx> IntModel<'ctx> {
/// Create a constant value that inhabits this [`IntModel<'ctx>`].
#[must_use]
pub fn constant(&self, ctx: &'ctx Context, value: u64) -> Int<'ctx> {
int_constant(ctx, *self, value)
}
}
/// A model representing an [`IntType<'ctx>`] that happens to be defined as `size_t`.
///
/// This is specifically created to guide developers to write `size_t`-dependent code.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct SizeTModel<'ctx>(pub IntType<'ctx>);
pub type SizeT<'ctx> = Instance<'ctx, SizeTModel<'ctx>>;
impl<'ctx> CanCheckLLVMType<'ctx> for SizeTModel<'ctx> {
fn check_llvm_type_impl(
&self,
_ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
check_int_llvm_type(ty, self.0)
}
}
impl<'ctx> Model<'ctx> for SizeTModel<'ctx> {
type Value = IntValue<'ctx>;
type Type = IntType<'ctx>;
fn get_type(&self, _ctx: &'ctx Context) -> Self::Type {
self.0
}
fn review_value<V: BasicValue<'ctx>>(
&self,
_ctx: &'ctx Context,
value: V,
) -> Result<SizeT<'ctx>, ModelError> {
let value = review_int_llvm_value(value.as_basic_value_enum(), self.0)?;
Ok(self.believe_value(value))
}
}

View File

@ -0,0 +1,87 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, IntType},
values::{BasicValueEnum, IntValue},
};
use crate::codegen::CodeGenContext;
use super::{Instance, Model, ModelError};
/// Helper function to check if `scrutinee` is the same as `expected_int_type`
pub fn check_int_llvm_type<'ctx>(
ty: BasicTypeEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<(), ModelError> {
// Check if llvm_type is int type
let BasicTypeEnum::IntType(ty) = ty else {
return Err(ModelError(format!("Expecting an int type but got {ty:?}")));
};
// Check bit width
if ty.get_bit_width() != expected_int_type.get_bit_width() {
return Err(ModelError(format!(
"Expecting an int type of {}-bit(s) but got int type {}-bit(s)",
expected_int_type.get_bit_width(),
ty.get_bit_width()
)));
}
Ok(())
}
/// Helper function to cast `scrutinee` is into an [`IntValue<'ctx>`].
/// The LLVM type of `scrutinee` will be checked with [`check_int_llvm_type`].
pub fn review_int_llvm_value<'ctx>(
value: BasicValueEnum<'ctx>,
expected_int_type: IntType<'ctx>,
) -> Result<IntValue<'ctx>, ModelError> {
// Check if value is of int type, error if that is anything else
check_int_llvm_type(value.get_type().as_basic_type_enum(), expected_int_type)?;
// Ok, it is must be an int
Ok(value.into_int_value())
}
pub fn int_constant<'ctx, M>(ctx: &'ctx Context, model: M, value: u64) -> Instance<'ctx, M>
where
M: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
let value = model.get_type(ctx).const_int(value, false);
model.believe_value(value)
}
impl<'ctx, M> Instance<'ctx, M>
where
M: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
pub fn s_extend_or_bit_cast<N>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
to_model: N,
name: &str,
) -> Instance<'ctx, N>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
let value = ctx
.builder
.build_int_s_extend_or_bit_cast(self.value, to_model.get_type(ctx.ctx), name)
.unwrap();
to_model.believe_value(value)
}
pub fn truncate<N>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
to_model: N,
name: &str,
) -> Instance<'ctx, N>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
{
let value =
ctx.builder.build_int_truncate(self.value, to_model.get_type(ctx.ctx), name).unwrap();
to_model.believe_value(value)
}
}

View File

@ -0,0 +1,18 @@
pub mod core;
pub mod fixed_int;
pub mod function_builder;
pub mod int;
mod int_util;
pub mod opaque;
pub mod pointer;
pub mod slice;
pub mod structure;
pub use core::*;
pub use fixed_int::*;
pub use function_builder::*;
pub use int::*;
pub use opaque::*;
pub use pointer::*;
pub use slice::*;
pub use structure::*;

View File

@ -0,0 +1,50 @@
use inkwell::{
context::Context,
types::BasicTypeEnum,
values::{BasicValue, BasicValueEnum},
};
use super::*;
/// A [`Model`] that holds an arbitrary [`BasicTypeEnum`].
///
/// Use this and [`Opaque`] when you are dealing with a [`BasicTypeEnum<'ctx>`]
/// at runtime and there is no way to abstract your implementation
/// with [`Model`].
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct OpaqueModel<'ctx>(pub BasicTypeEnum<'ctx>);
impl<'ctx> CanCheckLLVMType<'ctx> for OpaqueModel<'ctx> {
fn check_llvm_type_impl(
&self,
_ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
if ty == self.0 {
Ok(())
} else {
Err(ModelError(format!("Expecting {}, but got {}", self.0, ty)))
}
}
}
impl<'ctx> Model<'ctx> for OpaqueModel<'ctx> {
type Value = BasicValueEnum<'ctx>;
type Type = BasicTypeEnum<'ctx>;
fn get_type(&self, _ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
self.0
}
fn review_value<V: BasicValue<'ctx>>(
&self,
ctx: &'ctx Context,
value: V,
) -> Result<Opaque<'ctx>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(ctx, value.get_type())?;
Ok(self.believe_value(value))
}
}
pub type Opaque<'ctx> = Instance<'ctx, OpaqueModel<'ctx>>;

View File

@ -0,0 +1,114 @@
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, PointerType},
values::{BasicValue, PointerValue},
AddressSpace,
};
use crate::codegen::CodeGenContext;
use super::{core::*, OpaqueModel};
/// A [`Model<'ctx>`] representing an LLVM [`PointerType<'ctx>`]
/// with *full* information on the element u
///
/// [`self.0`] contains [`Model<'ctx>`] that represents the
/// LLVM type of element of the [`PointerType<'ctx>`] is pointing at
/// (like `PointerType<'ctx>::get_element_type()`, but abstracted as a [`Model<'ctx>`]).
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct PointerModel<E>(pub E);
pub type Pointer<'ctx, E> = Instance<'ctx, PointerModel<E>>;
impl<'ctx, E: Model<'ctx>> CanCheckLLVMType<'ctx> for PointerModel<E> {
fn check_llvm_type_impl(
&self,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
// Check if scrutinee is even a PointerValue
let BasicTypeEnum::PointerType(ty) = ty else {
return Err(ModelError(format!("Expecting a pointer value, but got {ty:?}")));
};
// Check the type of what the pointer is pointing at
// TODO: This will be deprecated by inkwell > llvm14 because `get_element_type()` will be gone
let Ok(element_ty) = BasicTypeEnum::try_from(ty.get_element_type()) else {
return Err(ModelError(format!(
"Expecting pointer to point to an inkwell BasicValue, but got {ty:?}"
)));
};
self.0.check_type(ctx, element_ty) // TODO: Include backtrace?
}
}
impl<'ctx, E: Model<'ctx>> Model<'ctx> for PointerModel<E> {
type Value = PointerValue<'ctx>;
type Type = PointerType<'ctx>;
fn get_type(&self, ctx: &'ctx Context) -> Self::Type {
self.0.get_type(ctx).ptr_type(AddressSpace::default())
}
fn review_value<V: BasicValue<'ctx>>(
&self,
ctx: &'ctx Context,
value: V,
) -> Result<Pointer<'ctx, E>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(ctx, value.get_type())?;
Ok(self.believe_value(value.into_pointer_value()))
}
}
impl<'ctx, E: Model<'ctx>> PointerModel<E> {
/// Create a null [`Pointer`] of this [`PointerModel`]
pub fn nullptr(&self, ctx: &'ctx Context) -> Pointer<'ctx, E> {
let nullptr = self.get_type(ctx).const_null();
self.believe_value(nullptr)
}
}
impl<'ctx, E: Model<'ctx>> Pointer<'ctx, E> {
/// Build an instruction to store a value into this pointer
pub fn store(&self, ctx: &CodeGenContext<'ctx, '_>, instance: Instance<'ctx, E>) {
assert_eq!(
self.model.0, instance.model,
"Attempting to store an Instance of a different type"
);
ctx.builder.build_store(self.value, instance.value).unwrap();
}
/// Build an instruction to load a value from this pointer
pub fn load(&self, ctx: &CodeGenContext<'ctx, '_>, name: &str) -> Instance<'ctx, E> {
let value = ctx.builder.build_load(self.value, name).unwrap();
self.model.0.review_value(ctx.ctx, value).unwrap() // If unwrap() panics, there is a logic error in your code.
}
/// "Demote" the [`Model`] of the thing this pointer is pointing to.
pub fn cast_to_opaque(self, ctx: &'ctx Context) -> Pointer<'ctx, OpaqueModel<'ctx>> {
let ptr_model = PointerModel(OpaqueModel(self.model.get_type(ctx).as_basic_type_enum()));
ptr_model.believe_value(self.value)
}
/// Cast the [`Model`] of the thing this pointer is pointing to
/// and uses inkwell's [`Builder::build_pointer_cast`] to cast the LLVM pointer type.
pub fn cast_to<K: Model<'ctx>>(
self,
ctx: &CodeGenContext<'ctx, '_>,
element: K,
name: &str,
) -> Pointer<'ctx, K> {
let casted_ptr_model = PointerModel(element);
let casted_ptr = ctx
.builder
.build_pointer_cast(
self.value,
element.get_type(ctx.ctx).ptr_type(AddressSpace::default()),
name,
)
.unwrap();
casted_ptr_model.believe_value(casted_ptr)
}
}

View File

@ -0,0 +1,94 @@
use inkwell::{types::IntType, values::IntValue};
use crate::codegen::{CodeGenContext, CodeGenerator};
use super::{int_util::int_constant, Instance, Model, Pointer};
/// An LLVM "slice" - literally just a pointer and a length value.
/// The pointer points to a location with `num_elements` **contiguously** placed
/// values of [`E`][`Model<ctx>`] in memory.
///
/// NOTE: This is NOT a [`Model`]! This is simply a helper
/// structure to aggregate a length value and a pointer together.
pub struct ArraySlice<'ctx, N, E>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
E: Model<'ctx>,
{
pub pointer: Pointer<'ctx, E>,
pub num_elements: Instance<'ctx, N>,
}
impl<'ctx, N, E> ArraySlice<'ctx, N, E>
where
N: Model<'ctx, Value = IntValue<'ctx>, Type = IntType<'ctx>>,
E: Model<'ctx>,
{
/// Get the [Model][`super::Model`] of the element type of this [`ArraySlice`]
pub fn get_element_model(&self) -> E {
self.pointer.model.0
}
/// Get the `idx`-nth element of this [`ArraySlice`],
/// but doesn't do an assertion to see if `idx` is
/// out of bounds or not.
///
/// Also see [`ArraySlice::ix`].
pub fn ix_unchecked(
&self,
ctx: &CodeGenContext<'ctx, '_>,
idx: Instance<'ctx, N>,
name: &str,
) -> Pointer<'ctx, E> {
assert_eq!(idx.model, self.num_elements.model);
let element_ptr = unsafe {
ctx.builder.build_in_bounds_gep(self.pointer.value, &[idx.value], name).unwrap()
};
self.pointer.model.review_value(ctx.ctx, element_ptr).unwrap()
}
/// Call [`ArraySlice::ix_unchecked`], but
/// checks if `idx` is in bounds, otherwise
/// a runtime `IndexError` will be thrown.
pub fn ix<G: CodeGenerator + ?Sized>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
idx: Instance<'ctx, N>,
name: &str,
) -> Pointer<'ctx, E> {
assert_eq!(idx.model, self.num_elements.model);
let int_type = self.num_elements.model;
// Assert `0 <= idx < length` and throw an Exception if `idx` is out of bounds
let lower_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLE,
int_constant(ctx.ctx, int_type, 0).value,
idx.value,
"lower_bounded",
)
.unwrap();
let upper_bounded = ctx
.builder
.build_int_compare(
inkwell::IntPredicate::SLT,
idx.value,
self.num_elements.value,
"upper_bounded",
)
.unwrap();
let bounded = ctx.builder.build_and(lower_bounded, upper_bounded, "bounded").unwrap();
ctx.make_assert(
generator,
bounded,
"0:IndexError",
"nac3core LLVM codegen attempting to access out of bounds array index {0}. Must satisfy 0 <= index < {2}",
[ Some(idx.value), Some(self.num_elements.value), None],
ctx.current_loc
);
self.ix_unchecked(ctx, idx, name)
}
}

View File

@ -0,0 +1,384 @@
use core::fmt;
use inkwell::{
context::Context,
types::{BasicType, BasicTypeEnum, StructType},
values::{BasicValue, StructValue},
};
use itertools::{izip, Itertools};
use crate::codegen::CodeGenContext;
use super::{core::CanCheckLLVMType, Instance, Model, ModelError, Pointer, PointerModel};
/// An LLVM struct's "field".
#[derive(Debug, Clone, Copy)]
pub struct Field<E> {
/// The GEP index of this field.
pub gep_index: u64,
/// The name of this field. Generally named
/// to how the field is named in ARTIQ or IRRT.
///
/// NOTE: This is only used for debugging.
pub name: &'static str,
/// The [`Model`] of this field.
pub model: E,
}
// A helper struct for [`FieldBuilder`]
struct FieldLLVM<'ctx> {
gep_index: u64,
name: &'ctx str,
// Only CanCheckLLVMType is needed, dont use `Model<'ctx>`
llvm_type_model: Box<dyn CanCheckLLVMType<'ctx> + 'ctx>,
llvm_type: BasicTypeEnum<'ctx>,
}
/// A helper struct to create [`Field`]-s in [`StructKind::build_fields`].
///
/// See [`StructKind`] for more details and see how [`FieldBuilder`] is put
/// into action.
pub struct FieldBuilder<'ctx> {
/// The [`Context`] this [`FieldBuilder`] is under.
///
/// Can be used in [`StructKind::build_fields`].
/// See [`StructKind`] for more details and see how [`FieldBuilder`] is put
/// into action.
pub ctx: &'ctx Context,
/// An incrementing counter for GEP indices when
/// doing [`FieldBuilder::add_field`] or [`FieldBuilder::add_field_auto`].
gep_index_counter: u64,
/// Name of the `struct` this [`FieldBuilder`] is currently
/// building.
///
/// NOTE: This is only used for debugging.
struct_name: &'ctx str,
/// The fields added so far.
fields: Vec<FieldLLVM<'ctx>>,
}
impl<'ctx> FieldBuilder<'ctx> {
#[must_use]
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
FieldBuilder { ctx, gep_index_counter: 0, struct_name, fields: Vec::new() }
}
fn next_gep_index(&mut self) -> u64 {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
index
}
/// Add a new field.
///
/// - `name`: The name of the field. See [`Field::name`].
/// - `element`: The [`Model`] of the type of the field. See [`Field::element`].
pub fn add_field<E: Model<'ctx> + 'ctx>(&mut self, name: &'static str, element: E) -> Field<E> {
let gep_index = self.next_gep_index();
self.fields.push(FieldLLVM {
gep_index,
name,
llvm_type: element.get_type(self.ctx).as_basic_type_enum(),
llvm_type_model: Box::new(element),
});
Field { gep_index, name, model: element }
}
/// Like [`FieldBuilder::add_field`] but `element` can be **automatically derived**
/// if it has the `Default` instance.
///
/// Certain [`Model`] has a [`Default`] trait - [`Model`]s that are just singletons,
/// By deriving the [`Default`] trait on those [`Model`]s, Rust could automatically
/// construct the [`Model`] with [`Default::default`].
///
/// This function is equivalent to
/// ```ignore
/// self.add_field(name, E::default())
/// ```
pub fn add_field_auto<E: Model<'ctx> + Default + 'ctx>(
&mut self,
name: &'static str,
) -> Field<E> {
self.add_field(name, E::default())
}
}
/// A marker trait to mark singleton struct that
/// describes a particular LLVM structure.
///
/// It is a powerful inkwell abstraction that can reduce
/// a lot of inkwell boilerplate when dealing with LLVM structs,
/// `getelementptr`, `load`-ing and `store`-ing fields.
///
/// ### Usage
pub trait StructKind<'ctx>: fmt::Debug + Clone + Copy + PartialEq + Eq {
/// The type of the Rust `struct` that holds all the fields of this LLVM struct.
type Fields;
// TODO:
/// The name of this [`StructKind`].
///
/// The name should be the name of in
/// IRRT's `struct` or ARTIQ's definition.
fn struct_name(&self) -> &'static str;
/// Define the [`Field`]s of this [`StructKind`]
///
///
/// ### Syntax
///
/// Suppose you want to define the following C++ `struct`s in `nac3core`:
/// ```cpp
/// template <typename SizeT>
/// struct Str {
/// uint8_t* content; // NOTE: could be `void *`
/// SizeT length;
/// }
///
/// template <typename SizeT>
/// struct Exception {
/// uint32_t id;
/// Str message;
/// uint64_t param0;
/// uint64_t param1;
/// uint64_t param2;
/// }
/// ```
///
/// You write this in nac3core:
/// ```ignore
/// struct Str<'ctx> {
/// sizet: IntModel<'ctx>,
/// }
///
/// struct StrFields<'ctx> {
/// content: Field<PointerModel<ByteModel>>, // equivalent to `NIntModel<Byte>`.
/// length: Field<IntModel<'ctx>>, // `SizeT` is only known in runtime - `CodeGenerator::get_size_type()`. /// }
/// }
///
/// impl StructKind<'ctx> for Str<'ctx> {
/// fn struct_name() {
/// "Str"
/// }
///
/// fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
/// // THE order of `builder.add_field*` is IMPORTANT!!!
/// // so the GEP indices would be correct.
/// StrFields {
/// content: builder.add_field_auto("content"), // `PointerModel<ByteModel>` has `Default` trait.
/// length: builder.add_field("length", IntModel(self.sizet)), // `PointerModel<ByteModel>` has `Default` trait.
/// }
/// }
/// }
///
/// struct Exception<'ctx> {
/// sizet: IntModel<'ctx>,
/// }
///
/// struct ExceptionFields<'ctx> {
/// id: Field<NIntModel<Int32>>,
/// message: Field<StructModel<Str>>,
/// param0: Field<NIntModel<Int64>>,
/// param1: Field<NIntModel<Int64>>,
/// param2: Field<NIntModel<Int64>>,
/// }
///
/// impl StructKind<'ctx> for Exception<'ctx> {
/// fn struct_name() {
/// "Exception"
/// }
///
/// fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields {
/// // THE order of `builder.add_field*` is IMPORTANT!!!
/// // so the GEP indices would be correct.
/// ExceptionFields {
/// id: builder.add_field_auto("content"), // `NIntModel<Int32>` has `Default` trait.
/// message: builder.add_field("message", StructModel(Str { sizet: self.sizet })),
/// param0: builder.add_field_auto("param0"), // has `Default` trait
/// param1: builder.add_field_auto("param1"), // has `Default` trait
/// param2: builder.add_field_auto("param2"), // has `Default` trait
/// }
/// }
/// }
/// ```
///
/// Then to `alloca` an `Exception`, do this:
/// ```ignore
/// let generator: dyn CodeGenerator<'ctx>;
/// let ctx: &CodeGenContext<'ctx, '_>;
/// let sizet = generator.get_size_type();
/// let exn_model = StructModel(Exception { sizet });
/// let exn = exn_model.alloca(ctx, "my_exception"); // Every [`Model<'ctx>`] has an `.alloca()` function.
/// // exn: Pointer<'ctx, StructModel<Exception>>
/// ```
///
/// NOTE: In fact, it is possible to define `Str` and `Exception` like this:
/// ```ignore
/// struct Str<SizeT: NIntModel> {
/// _phantom: PhantomData<SizeT>,
/// }
///
/// struct Exception<T: NIntModel> {
/// _phantom: PhantomData<SizeT>,
/// }
/// ```
/// But issues arise by you don't know the nac3core
/// `CodeGenerator`'s `get_size_type()` before hand.
fn build_fields(&self, builder: &mut FieldBuilder<'ctx>) -> Self::Fields;
}
/// A [`Model<'ctx>`] that represents an LLVM struct.
///
/// `self.0` contains a [`StructKind<'ctx>`] that gives the details of the LLVM struct.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct StructModel<S>(pub S);
pub type Struct<'ctx, S> = Instance<'ctx, StructModel<S>>;
impl<'ctx, S: StructKind<'ctx>> CanCheckLLVMType<'ctx> for StructModel<S> {
fn check_llvm_type_impl(
&self,
ctx: &'ctx Context,
ty: BasicTypeEnum<'ctx>,
) -> Result<(), ModelError> {
// Check if scrutinee is even a struct type
let BasicTypeEnum::StructType(ty) = ty else {
return Err(ModelError(format!("Expecting a struct type, but got {ty:?}")));
};
// Ok. now check the struct type thoroughly
self.check_struct_type(ctx, ty)
}
}
impl<'ctx, S: StructKind<'ctx>> Model<'ctx> for StructModel<S> {
type Value = StructValue<'ctx>;
type Type = StructType<'ctx>;
fn get_type(&self, ctx: &'ctx Context) -> Self::Type {
self.get_struct_type(ctx)
}
fn review_value<V: BasicValue<'ctx>>(
&self,
ctx: &'ctx Context,
value: V,
) -> Result<Struct<'ctx, S>, ModelError> {
let value = value.as_basic_value_enum();
self.check_type(ctx, value.get_type())?;
Ok(self.believe_value(value.into_struct_value()))
}
}
impl<'ctx, S: StructKind<'ctx>> StructModel<S> {
/// Get the [`S::Fields`] of this [`StructModel`].
pub fn get_fields(&self, ctx: &'ctx Context) -> S::Fields {
let mut builder = FieldBuilder::new(ctx, self.0.struct_name());
self.0.build_fields(&mut builder)
}
/// Get the LLVM struct type this [`IsStruct<'ctx>`] is representing.
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
let mut builder = FieldBuilder::new(ctx, self.0.struct_name());
self.0.build_fields(&mut builder); // Self::Fields is discarded
let field_types = builder.fields.iter().map(|f| f.llvm_type).collect_vec();
ctx.struct_type(&field_types, false)
}
/// Check if `scrutinee` matches the [`StructType<'ctx>`] this [`IsStruct<'ctx>`] is representing.
pub fn check_struct_type(
&self,
ctx: &'ctx Context,
scrutinee: StructType<'ctx>,
) -> Result<(), ModelError> {
// Details about scrutinee
let scrutinee_field_types = scrutinee.get_field_types();
// Details about the defined specifications of this struct
// We will access them through builder
let mut builder = FieldBuilder::new(ctx, self.0.struct_name());
self.0.build_fields(&mut builder);
// Check # of fields
if builder.fields.len() != scrutinee_field_types.len() {
return Err(ModelError(format!(
"Expecting struct to have {} field(s), but scrutinee has {} field(s)",
builder.fields.len(),
scrutinee_field_types.len()
)));
}
// Check the types of each field
// TODO: Traceback?
for (f, scrutinee_field_type) in izip!(builder.fields, scrutinee_field_types) {
f.llvm_type_model
.check_llvm_type_impl(ctx, scrutinee_field_type.as_basic_type_enum())?;
}
Ok(())
}
}
impl<'ctx, S: StructKind<'ctx>> Pointer<'ctx, StructModel<S>> {
/// Build an instruction that does `getelementptr` on an LLVM structure referenced by this pointer.
///
/// This provides a nice syntax to chain up `getelementptr` in an intuitive and type-safe way:
///
/// ```ignore
/// let ctx: &CodeGenContext<'ctx, '_>;
/// let ndarray: Pointer<'ctx, StructModel<NpArray<'ctx>>>;
/// ndarray.gep(ctx, |f| f.ndims).store();
/// ```
///
/// You might even write chains `gep`, i.e.,
/// ```ignore
/// let exn_ptr: Pointer<'ctx, StructModel<Exception>>;
/// let value: Int<'ctx>; // Suppose it has the correct inkwell `IntType<'ctx>`.
///
/// // To do `exn.message.length = value`:
/// let exn_message_ptr = exn_ptr.gep(ctx, |f| f.message);
/// let exn_message_length_ptr = exn_message_ptr.gep(ctx, |f| f.length);
/// exn_message_length_ptr.store(ctx, my_value);
///
/// // or simply:
/// exn_ptr
/// .gep(ctx, |f| f.message)
/// .gep(ctx, |f| f.length)
/// .store(ctx, my_value) // Equivalent to `my_struct.thing1.value = my_value`
/// ```
pub fn gep<E, GetFieldFn>(
&self,
ctx: &CodeGenContext<'ctx, '_>,
get_field: GetFieldFn,
) -> Pointer<'ctx, E>
where
E: Model<'ctx>,
GetFieldFn: FnOnce(S::Fields) -> Field<E>,
{
let fields = self.model.0.get_fields(ctx.ctx);
let field = get_field(fields);
// TODO: I think I'm not supposed to *just* use i32 for GEP like that
let llvm_i32 = ctx.ctx.i32_type();
let ptr_model = PointerModel(field.model);
let ptr = unsafe {
ctx.builder
.build_in_bounds_gep(
self.value,
&[llvm_i32.const_zero(), llvm_i32.const_int(field.gep_index, false)],
field.name,
)
.unwrap()
};
ptr_model.believe_value(ptr)
}
}