forked from M-Labs/nac3
1
0
Fork 0

Merge remote-tracking branch 'origin/hm-inference_anto' into hm-inference

This commit is contained in:
pca006132 2021-08-13 16:28:04 +08:00
commit 784111fdbe
1 changed files with 382 additions and 227 deletions

View File

@ -1,9 +1,11 @@
use std::borrow::Borrow; use std::borrow::{Borrow, BorrowMut};
use std::collections::HashSet;
use std::{collections::HashMap, sync::Arc}; use std::{collections::HashMap, sync::Arc};
use super::typecheck::type_inferencer::PrimitiveStore; use super::typecheck::type_inferencer::PrimitiveStore;
use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier}; use super::typecheck::typedef::{SharedUnifier, Type, TypeEnum, Unifier};
use crate::symbol_resolver::SymbolResolver; use crate::symbol_resolver::SymbolResolver;
use crate::typecheck::typedef::{FunSignature, FuncArg};
use parking_lot::{Mutex, RwLock}; use parking_lot::{Mutex, RwLock};
use rustpython_parser::ast::{self, Stmt}; use rustpython_parser::ast::{self, Stmt};
@ -23,7 +25,7 @@ pub enum TopLevelDef {
// ancestor classes, including itself. // ancestor classes, including itself.
ancestors: Vec<DefinitionId>, ancestors: Vec<DefinitionId>,
// symbol resolver of the module defined the class, none if it is built-in type // symbol resolver of the module defined the class, none if it is built-in type
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
}, },
Function { Function {
// prefix for symbol, should be unique globally, and not ending with numbers // prefix for symbol, should be unique globally, and not ending with numbers
@ -43,7 +45,7 @@ pub enum TopLevelDef {
/// rigid type variables that would be substituted when the function is instantiated. /// rigid type variables that would be substituted when the function is instantiated.
instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>, instance_to_stmt: HashMap<String, (Stmt<Option<Type>>, usize)>,
// symbol resolver of the module defined the class // symbol resolver of the module defined the class
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
}, },
Initializer { Initializer {
class_id: DefinitionId, class_id: DefinitionId,
@ -55,30 +57,30 @@ pub struct TopLevelContext {
pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>, pub unifiers: Arc<RwLock<Vec<(SharedUnifier, PrimitiveStore)>>>,
} }
// like adding some info on top of the TopLevelDef for
// later parsing the class bases, method, and function sigatures
pub struct TopLevelDefInfo {
// the definition entry
def: TopLevelDef,
// the entry in the top_level unifier
ty: Type,
// the ast submitted by applications, primitives and
// class methods will have None value here
ast: Option<ast::Stmt<()>>,
}
pub struct TopLevelComposer { pub struct TopLevelComposer {
// list of top level definitions and their info // list of top level definitions, same as top level context
pub definition_list: RwLock<Vec<TopLevelDefInfo>>, pub definition_list: Arc<RwLock<Vec<RwLock<TopLevelDef>>>>,
// list of top level Type, the index is same as the field `definition_list`
pub ty_list: RwLock<Vec<Type>>,
// list of top level ast, the index is same as the field `definition_list` and `ty_list`
pub ast_list: RwLock<Vec<Option<ast::Stmt<()>>>>,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: RwLock<Unifier>,
// primitive store // primitive store
pub primitives: PrimitiveStore, pub primitives: PrimitiveStore,
// start as a primitive unifier, will add more top_level defs inside
pub unifier: Unifier,
// mangled class method name to def_id // mangled class method name to def_id
pub class_method_to_def_id: HashMap<String, DefinitionId>, pub class_method_to_def_id: RwLock<HashMap<String, DefinitionId>>,
} }
impl TopLevelComposer { impl TopLevelComposer {
pub fn to_top_level_context(&self) -> TopLevelContext {
TopLevelContext {
definitions: self.definition_list.clone(),
// FIXME: all the big unifier or?
unifiers: Default::default(),
}
}
fn name_mangling(mut class_name: String, method_name: &str) -> String { fn name_mangling(mut class_name: String, method_name: &str) -> String {
class_name.push_str(method_name); class_name.push_str(method_name);
class_name class_name
@ -120,53 +122,49 @@ impl TopLevelComposer {
/// resolver can later figure out primitive type definitions when passed a primitive type name /// resolver can later figure out primitive type definitions when passed a primitive type name
pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) { pub fn new() -> (Vec<(String, DefinitionId, Type)>, Self) {
let primitives = Self::make_primitives(); let primitives = Self::make_primitives();
// the def list including the entries of primitive info
let definition_list: Vec<TopLevelDefInfo> = vec![ let top_level_def_list = vec![
TopLevelDefInfo { RwLock::new(Self::make_top_level_class_def(0, None)),
def: Self::make_top_level_class_def(0, None), RwLock::new(Self::make_top_level_class_def(1, None)),
ast: None, RwLock::new(Self::make_top_level_class_def(2, None)),
ty: primitives.0.int32, RwLock::new(Self::make_top_level_class_def(3, None)),
}, RwLock::new(Self::make_top_level_class_def(4, None)),
TopLevelDefInfo {
def: Self::make_top_level_class_def(1, None),
ast: None,
ty: primitives.0.int64,
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(2, None),
ast: None,
ty: primitives.0.float,
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(3, None),
ast: None,
ty: primitives.0.bool,
},
TopLevelDefInfo {
def: Self::make_top_level_class_def(4, None),
ast: None,
ty: primitives.0.none,
},
]; ];
let ast_list: Vec<Option<ast::Stmt<()>>> = vec![None, None, None, None, None];
let ty_list: Vec<Type> = vec![
primitives.0.int32,
primitives.0.int64,
primitives.0.float,
primitives.0.bool,
primitives.0.none,
];
let composer = TopLevelComposer { let composer = TopLevelComposer {
definition_list: definition_list.into(), definition_list: RwLock::new(top_level_def_list).into(),
ty_list: RwLock::new(ty_list),
ast_list: RwLock::new(ast_list),
primitives: primitives.0, primitives: primitives.0,
unifier: primitives.1, unifier: primitives.1.into(),
class_method_to_def_id: Default::default(), class_method_to_def_id: Default::default(),
}; };
(vec![ (
("int32".into(), DefinitionId(0), composer.primitives.int32), vec![
("int64".into(), DefinitionId(1), composer.primitives.int64), ("int32".into(), DefinitionId(0), composer.primitives.int32),
("float".into(), DefinitionId(2), composer.primitives.float), ("int64".into(), DefinitionId(1), composer.primitives.int64),
("bool".into(), DefinitionId(3), composer.primitives.bool), ("float".into(), DefinitionId(2), composer.primitives.float),
("none".into(), DefinitionId(4), composer.primitives.none), ("bool".into(), DefinitionId(3), composer.primitives.bool),
], composer) ("none".into(), DefinitionId(4), composer.primitives.none),
],
composer,
)
} }
/// already include the definition_id of itself inside the ancestors vector /// already include the definition_id of itself inside the ancestors vector
pub fn make_top_level_class_def( pub fn make_top_level_class_def(
index: usize, index: usize,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef { ) -> TopLevelDef {
TopLevelDef::Class { TopLevelDef::Class {
object_id: DefinitionId(index), object_id: DefinitionId(index),
@ -181,7 +179,7 @@ impl TopLevelComposer {
pub fn make_top_level_function_def( pub fn make_top_level_function_def(
name: String, name: String,
ty: Type, ty: Type,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> TopLevelDef { ) -> TopLevelDef {
TopLevelDef::Function { TopLevelDef::Function {
name, name,
@ -195,30 +193,37 @@ impl TopLevelComposer {
pub fn register_top_level( pub fn register_top_level(
&mut self, &mut self,
ast: ast::Stmt<()>, ast: ast::Stmt<()>,
resolver: Option<Arc<Mutex<dyn SymbolResolver + Send>>>, resolver: Option<Arc<Mutex<dyn SymbolResolver + Send + Sync>>>,
) -> Result<(String, DefinitionId, Type), String> { ) -> Result<(String, DefinitionId, Type), String> {
// get write access to the lists
let (mut def_list, mut ty_list, mut ast_list) =
(self.definition_list.write(), self.ty_list.write(), self.ast_list.write());
// will be deleted after tested
assert_eq!(ty_list.len(), def_list.len());
assert_eq!(def_list.len(), ast_list.len());
match &ast.node { match &ast.node {
ast::StmtKind::ClassDef { name, body, .. } => { ast::StmtKind::ClassDef { name, body, .. } => {
let class_name = name.to_string(); let class_name = name.to_string();
let mut def_list = self.definition_list.write();
let class_def_id = def_list.len(); let class_def_id = def_list.len();
// add the class to the unifier // add the class to the unifier
let ty = self.unifier.add_ty(TypeEnum::TObj { let ty = self.unifier.write().add_ty(TypeEnum::TObj {
obj_id: DefinitionId(class_def_id), obj_id: DefinitionId(class_def_id),
fields: Default::default(), fields: Default::default(),
params: Default::default(), params: Default::default(),
}); });
// add the class to the definition list // add the class to the definition lists
def_list.push(TopLevelDefInfo { def_list
def: Self::make_top_level_class_def(class_def_id, resolver.clone()), .push(Self::make_top_level_class_def(class_def_id, resolver.clone()).into());
// NOTE: Temporarily none here since function body need to be read later ty_list.push(ty);
ast: None, // since later when registering class method, ast will still be used,
ty, // here push None temporarly, later will push the ast
}); ast_list.push(None);
// parse class def body and register class methods into the def list // parse class def body and register class methods into the def list.
// module's symbol resolver would not know the name of the class methods, // module's symbol resolver would not know the name of the class methods,
// thus cannot return their definition_id? so we have to manage it ourselves // thus cannot return their definition_id? so we have to manage it ourselves
// by using the field `class_method_to_def_id` // by using the field `class_method_to_def_id`
@ -228,69 +233,69 @@ impl TopLevelComposer {
let def_id = def_list.len(); let def_id = def_list.len();
// add to unifier // add to unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc( let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
crate::typecheck::typedef::FunSignature { args: Default::default(),
args: Default::default(), ret: self.primitives.none,
ret: self.primitives.none, vars: Default::default(),
vars: Default::default(), }));
},
));
// add to the definition list // add to the definition list
def_list.push(TopLevelDefInfo { def_list.push(
def: Self::make_top_level_function_def(fun_name.clone(), ty, resolver.clone()), Self::make_top_level_function_def(
ty, fun_name.clone(),
// since it is inside the class def body statments, the ast is None ty,
ast: None, resolver.clone(),
}); )
.into(),
);
ty_list.push(ty);
// the ast of class method is in the class, push None in to the list here
ast_list.push(None);
// class method, do not let the symbol manager manage it, use our own map // class method, do not let the symbol manager manage it, use our own map
self.class_method_to_def_id.insert(fun_name, DefinitionId(def_id)); self.class_method_to_def_id.write().insert(fun_name, DefinitionId(def_id));
// if it is the contructor, special handling is needed. In the above // if it is the contructor, special handling is needed. In the above
// handling, we still add __init__ function to the class method // handling, we still add __init__ function to the class method
if name == "__init__" { if name == "__init__" {
// FIXME: how can this later be fetched? // NOTE: how can this later be fetched?
def_list.push(TopLevelDefInfo { def_list.push(
def: TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }, TopLevelDef::Initializer { class_id: DefinitionId(class_def_id) }
// arbitary picked one for the constructor .into(),
ty: self.primitives.none, );
// it is inside the class def body statments, so None // arbitarily push one to make sure the index is correct
ast: None, ty_list.push(self.primitives.none);
}) ast_list.push(None);
} }
} }
} }
// move the ast to the entry of the class in the def_list // move the ast to the entry of the class in the ast_list
def_list.get_mut(class_def_id).unwrap().ast = Some(ast); ast_list[class_def_id] = Some(ast);
// return // return
Ok((class_name, DefinitionId(class_def_id), ty)) Ok((class_name, DefinitionId(class_def_id), ty))
}, }
ast::StmtKind::FunctionDef { name, .. } => { ast::StmtKind::FunctionDef { name, .. } => {
let fun_name = name.to_string(); let fun_name = name.to_string();
// add to the unifier // add to the unifier
let ty = self.unifier.add_ty(TypeEnum::TFunc(crate::typecheck::typedef::FunSignature { let ty = self.unifier.write().add_ty(TypeEnum::TFunc(FunSignature {
args: Default::default(), args: Default::default(),
ret: self.primitives.none, ret: self.primitives.none,
vars: Default::default(), vars: Default::default(),
})); }));
// add to the definition list // add to the definition list
let mut def_list = self.definition_list.write(); def_list.push(
def_list.push(TopLevelDefInfo { Self::make_top_level_function_def(name.into(), self.primitives.none, resolver)
def: Self::make_top_level_function_def( .into(),
name.into(), );
self.primitives.none, ty_list.push(ty);
resolver, ast_list.push(Some(ast));
),
ast: Some(ast),
ty,
});
// return
Ok((fun_name, DefinitionId(def_list.len() - 1), ty)) Ok((fun_name, DefinitionId(def_list.len() - 1), ty))
} }
@ -298,149 +303,299 @@ impl TopLevelComposer {
} }
} }
/// this should be called after all top level classes are registered, and will actually fill in those fields of the previous dummy one pub fn analyze_top_level_class_type_var(&mut self) -> Result<(), String> {
let mut def_list = self.definition_list.write();
let ty_list = self.ty_list.read();
let ast_list = self.ast_list.read();
let mut unifier = self.unifier.write();
for (def, ty, ast) in def_list
.iter_mut()
.zip(ty_list.iter())
.zip(ast_list.iter())
.map(|((x, y), z)| (x, y, z))
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
{
unimplemented!()
}
unimplemented!()
}
/// this should be called after all top level classes are registered, and
/// will actually fill in those fields of the previous dummy one
pub fn analyze_top_level(&mut self) -> Result<(), String> { pub fn analyze_top_level(&mut self) -> Result<(), String> {
for d in self.definition_list.write().iter_mut() { let mut def_list = self.definition_list.write();
// only analyze those with ast, and class_method(ast in class def) let ty_list = self.ty_list.read();
if let Some(ast) = &d.ast { let ast_list = self.ast_list.read();
match &ast.node { let mut unifier = self.unifier.write();
ast::StmtKind::ClassDef {
bases, for (def, ty, ast) in def_list
body, .iter_mut()
.zip(ty_list.iter())
.zip(ast_list.iter())
.map(|((x, y), z)| (x, y, z))
.collect::<Vec<(&mut RwLock<TopLevelDef>, &Type, &Option<ast::Stmt<()>>)>>()
{
// only analyze those entries with ast, and class_method(whose ast in class def)
match ast {
Some(ast::Located{node: ast::StmtKind::ClassDef {
bases,
body,
name: class_name,
..
}, .. }) => {
// get the mutable reference of the entry in the
// definition list, get the `TopLevelDef`
let (
def_ancestors,
def_fields,
def_methods,
def_type_vars,
resolver,
) = if let TopLevelDef::Class {
object_id: _,
ancestors,
fields,
methods,
type_vars,
resolver: Some(resolver)
} = def.get_mut() {
(ancestors, fields, methods, type_vars, resolver.lock())
} else { unreachable!() };
// try to get mutable reference of the entry in the
// unification table, get the `TypeEnum`
let type_enum = unifier.get_ty(*ty);
let (
enum_params,
enum_fields
) = if let TypeEnum::TObj {
params,
fields,
.. ..
} => { } = type_enum.borrow() {
// get the mutable reference of the entry in the definition list, get the `TopLevelDef` (params, fields)
let ( } else { unreachable!() };
ancestors,
fields,
methods,
type_vars,
resolver,
) = if let TopLevelDef::Class {
object_id: _,
ancestors,
fields,
methods,
type_vars,
resolver: Some(resolver)
} = &mut d.def {
(ancestors, fields, methods, type_vars, resolver.lock())
} else { unreachable!() };
// try to get mutable reference of the entry in the unification table, get the `TypeEnum` // ancestors and typevars associate with the class are analyzed by looking
let (params, // into the `bases` ast node
fields // `Generic` should only occur once, use this flag
) = if let TypeEnum::TObj { let mut generic_occured = false;
// FIXME: this params is immutable, and what // TODO: haven't check this yet
// should the key be, get the original typevar's var_id? let mut occured_type_var: HashSet<Type> = Default::default();
params, // TODO: haven't check this yet
fields, let mut occured_base: HashSet<DefinitionId> = Default::default();
.. for b in bases {
} = self.unifier.get_ty(d.ty).borrow() { match &b.node {
(params, fields) // analyze typevars bounded to the class,
} else { unreachable!() }; // only support things like `class A(Generic[T, V])`,
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported
// ancestors and typevars associate with the class are analyzed by looking // i.e. only simple names are allowed in the subscript
// into the `bases` ast node // should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params
for b in bases { ast::ExprKind::Subscript {value, slice, ..} if {
match &b.node { // can only be `Generic[...]` and this can only appear once
// typevars bounded to the class, only support things like `class A(Generic[T, V])`, if let ast::ExprKind::Name { id, .. } = &value.node {
// things like `class A(Generic[T, V, ImportedModule.T])` is not supported if id == "Generic" {
// i.e. only simple names are allowed in the subscript if !generic_occured {
// should update the TopLevelDef::Class.typevars and the TypeEnum::TObj.params generic_occured = true;
ast::ExprKind::Subscript {value, slice, ..} if { true
if let ast::ExprKind::Name {id, ..} = &value.node { } else {
id == "Generic" return Err("Only single Generic[...] or Protocol[...] can be in bases".into())
}
} else { false } } else { false }
} => { } else { false }
match &slice.node { } => {
// `class Foo(Generic[T, V, P]):` match &slice.node {
ast::ExprKind::Tuple {elts, ..} => { // `class Foo(Generic[T, V, P]):` multiple element inside the subscript
for e in elts { ast::ExprKind::Tuple {elts, ..} => {
// resolver.parse_type_annotation(self.definition_list.) // FIXME: let tys = elts
} .iter()
}, // here parse_type_annotation should be fine,
// since we only expect type vars, which is not relevant
// to the top-level parsing
.map(|x| resolver.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
x))
.collect::<Result<Vec<_>, _>>()?;
// `class Foo(Generic[T]):` let ty_var_ids = tys
ast::ExprKind::Name {id, ..} => { .iter()
// the def_list .map(|t| {
// type_vars.push(resolver.get_symbol_type(id).ok_or_else(|| "unknown type variable".to_string())?); FIXME: let tmp = unifier.get_ty(*t);
// make sure it is type var
if let TypeEnum::TVar {id, ..} = tmp.as_ref() {
Ok(*id)
} else {
Err("Expect type variabls here".to_string())
}
})
.collect::<Result<Vec<_>, _>>()?;
// the TypeEnum of the class // write to TypeEnum
// FIXME: the `params` destructed above is not mutable, even if this is mutable, what should the key be? for (id, ty) in ty_var_ids.iter().zip(tys.iter()) {
unimplemented!() enum_params.borrow_mut().insert(*id, *ty);
}, }
_ => return Err("not supported, only simple names are allowed in the subscript".into()) // write to TopLevelDef
for ty in tys{
def_type_vars.push(ty)
}
},
// `class Foo(Generic[T]):`, only single element
_ => {
let ty = resolver.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
&slice
)?;
let ty_var_id = if let TypeEnum::TVar { id, .. } = unifier
.get_ty(ty)
.as_ref() { *id } else {
return Err("Expect type variabls here".to_string())
};
// write to TypeEnum
enum_params.borrow_mut().insert(ty_var_id, ty);
// write to TopLevelDef
def_type_vars.push(ty);
},
};
}
// analyze base classes, which is possible in
// other cases, we parse for the base class
// FIXME: calling parse_type_annotation here might cause some problem
// when the base class is parametrized `BaseClass[int, bool]`, since the
// analysis of type var of some class is not done yet.
// we can first only look at the name, and later check the
// parameter when others are done
// Or
// first get all the class' type var analyzed, and then
// analyze the base class
_ => {
let ty = resolver.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
b
)?;
let obj_def_id = if let TypeEnum::TObj { obj_id, .. } = unifier
.get_ty(ty)
.as_ref() {
*obj_id
} else {
return Err("Expect concrete classes/types here".into())
}; };
},
/* // base class, name directly available inside the // write to TopLevelDef
// module, can use this module's symbol resolver def_ancestors.push(obj_def_id);
ast::ExprKind::Name {id, ..} => {
// let def_id = resolver.get_identifier_def(id); FIXME:
// the definition list
// ancestors.push(def_id);
},
// base class, things can be like `class A(BaseModule.Base)`, here we have to get the
// symbol resolver of the module `BaseModule`?
ast::ExprKind::Attribute {value, attr, ..} => {
if let ast::ExprKind::Name {id, ..} = &value.node {
// if let Some(base_module_resolver) = resolver.get_module_resolver(id) {
// let def_id = base_module_resolver.get_identifier_def(attr);
// // the definition list
// ancestors.push(def_id);
// } else { return Err("unkown imported module".into()) } FIXME:
} else { return Err("unkown imported module".into()) }
},
// `class Foo(ImportedModule.A[int, bool])`, A is a class with associated type variables
ast::ExprKind::Subscript {value, slice, ..} => {
unimplemented!()
}, */
// base class is possible in other cases, we parse for thr base class
_ => return Err("not supported".into())
} }
} }
}
// class method and field are analyzed by // class method and field are analyzed by
// looking into the class body ast node // looking into the class body ast node
for stmt in body { // NOTE: should consider parents' method and fields(check re-def and add),
if let ast::StmtKind::FunctionDef { // but we do it later we go over these again after we finish analyze the
name, // fields/methods as declared in the ast
args, // method with same name should not occur twice, so use this
body, let defined_method: HashSet<String> = Default::default();
returns, for stmt in body {
.. if let ast::StmtKind::FunctionDef {
} = &stmt.node { name: func_name,
args,
body,
returns,
..
} = &stmt.node {
// build type enum, need FunSignature {args, vars, ret}
// args. Now only args with no default TODO: other kinds of args
let func_args = args.args
.iter()
.map(|x| -> Result<FuncArg, String> {
Ok(FuncArg {
name: x.node.arg.clone(),
ty: resolver.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
x
.node
.annotation
.as_ref()
.ok_or_else(|| "type annotations required for function parameters".to_string())?
)?,
default_value: None
})
})
.collect::<Result<Vec<FuncArg>, _>>()?;
// vars. find TypeVars used in the argument type annotation
let func_vars = func_args
.iter()
.filter_map(|FuncArg { ty, .. } | {
if let TypeEnum::TVar { id, .. } = unifier.get_ty(*ty).as_ref() {
Some((*id, *ty))
} else { None }
})
.collect::<HashMap<u32, Type>>();
// return type
let func_ret = resolver
.parse_type_annotation(
&self.to_top_level_context(),
unifier.borrow_mut(),
&self.primitives,
returns
.as_ref()
.ok_or_else(|| "return type annotations required here".to_string())?
.as_ref(),
)?;
// build the TypeEnum
let func_type_sig = FunSignature {
args: func_args,
vars: func_vars,
ret: func_ret
};
} else { } // write to the TypeEnum and Def_list (by replacing the ty with the new Type created above)
let func_name_mangled = Self::name_mangling(class_name.clone(), func_name);
let def_id = self.class_method_to_def_id.read()[&func_name_mangled];
unimplemented!();
if func_name == "__init__" {
// special for constructor, need to look into the fields
// TODO: look into the function body and see
}
} else {
// do nothing. we do not care about things like this? // do nothing. we do not care about things like this?
// class A: // class A:
// a = 3 // a = 3
// b = [2, 3] // b = [2, 3]
} }
},
// top level function definition
ast::StmtKind::FunctionDef {
name,
args,
body,
returns,
..
} => {
unimplemented!()
} }
},
node => { // top level function definition
return Err("only expect function and class definitions to be submitted here to be analyzed".into()) Some(ast::Located{node: ast::StmtKind::FunctionDef {
} name,
args,
body,
returns,
..
}, .. }) => {
// TODO:
unimplemented!()
} }
// only expect class def and function def ast
_ => return Err("only expect function and class definitions to be submitted here to be analyzed".into())
} }
} }
Ok(()) Ok(())