forked from M-Labs/nac3
core: Split numpy into codegen and toplevel
This commit is contained in:
parent
fd44ee6887
commit
1b77e62901
|
@ -45,6 +45,7 @@ pub mod expr;
|
|||
mod generator;
|
||||
pub mod irrt;
|
||||
pub mod llvm_intrinsics;
|
||||
pub mod numpy;
|
||||
pub mod stmt;
|
||||
|
||||
#[cfg(test)]
|
||||
|
|
|
@ -0,0 +1,907 @@
|
|||
use inkwell::{
|
||||
IntPredicate,
|
||||
types::BasicType,
|
||||
values::{AggregateValueEnum, ArrayValue, BasicValueEnum, IntValue, PointerValue}
|
||||
};
|
||||
use nac3parser::ast::StrRef;
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ListValue, NDArrayValue},
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
irrt::{
|
||||
call_ndarray_calc_nd_indices,
|
||||
call_ndarray_calc_size,
|
||||
},
|
||||
llvm_intrinsics::call_memcpy_generic,
|
||||
stmt::gen_for_callback
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{
|
||||
DefinitionId,
|
||||
numpy::{make_ndarray_ty, unpack_ndarray_tvars},
|
||||
},
|
||||
typecheck::typedef::{FunSignature, Type},
|
||||
};
|
||||
|
||||
/// Creates an `NDArray` instance from a dynamic shape.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The shape of the `NDArray`.
|
||||
/// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`.
|
||||
/// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`.
|
||||
fn create_ndarray_dyn_shape<'ctx, 'a, V, LenFn, DataFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
elem_ty: Type,
|
||||
shape: &V,
|
||||
shape_len_fn: LenFn,
|
||||
shape_data_fn: DataFn,
|
||||
) -> Result<NDArrayValue<'ctx>, String>
|
||||
where
|
||||
LenFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V) -> Result<IntValue<'ctx>, String>,
|
||||
DataFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V, IntValue<'ctx>) -> Result<IntValue<'ctx>, String>,
|
||||
{
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
||||
assert!(llvm_ndarray_data_t.is_sized());
|
||||
|
||||
// Assert that all dimensions are non-negative
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
||||
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
let shape_dim_gez = ctx.builder
|
||||
.build_int_compare(IntPredicate::SGE, shape_dim, shape_dim.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
shape_dim_gez,
|
||||
"0:ValueError",
|
||||
"negative dimensions not supported",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None,
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
||||
|
||||
let num_dims = shape_len_fn(generator, ctx, shape)?;
|
||||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
// Copy the dimension sizes from shape to ndarray.dims
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
||||
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
let shape_dim = ctx.builder
|
||||
.build_int_z_extend(shape_dim, llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray_pdim = ndarray.dim_sizes().ptr_offset(ctx, generator, i, None);
|
||||
|
||||
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// Creates an `NDArray` instance from a constant shape.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The shape of the `NDArray`, represented as an LLVM [`ArrayValue`].
|
||||
fn create_ndarray_const_shape<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ArrayValue<'ctx>
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
||||
assert!(llvm_ndarray_data_t.is_sized());
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let shape_dim = ctx.builder
|
||||
.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let shape_dim_gez = ctx.builder
|
||||
.build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
shape_dim_gez,
|
||||
"0:ValueError",
|
||||
"negative dimensions not supported",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
let ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None,
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
||||
|
||||
let num_dims = llvm_usize.const_int(shape.get_type().len() as u64, false);
|
||||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let ndarray_dim = ndarray
|
||||
.dim_sizes()
|
||||
.ptr_offset(ctx, generator, llvm_usize.const_int(i as u64, true), None);
|
||||
let shape_dim = ctx.builder.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
|
||||
}
|
||||
|
||||
let ndarray_dims = ndarray.dim_sizes().as_ptr_value(ctx);
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray_dims,
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
fn ndarray_zero_value<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "")
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
fn ndarray_one_value<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1")
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for constructing an `NDArray`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_empty_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&shape,
|
||||
|_, ctx, shape| {
|
||||
Ok(shape.load_size(ctx, None))
|
||||
},
|
||||
|generator, ctx, shape, idx| {
|
||||
Ok(shape.data().get(ctx, generator, idx, None).into_int_value())
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
|
||||
/// its input.
|
||||
fn ndarray_fill_flattened<'ctx, 'a, ValueFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
value_fn: ValueFn,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, ndarray_num_elems, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let elem = unsafe {
|
||||
ndarray.data().ptr_to_data_flattened_unchecked(ctx, i, None)
|
||||
};
|
||||
|
||||
let value = value_fn(generator, ctx, i)?;
|
||||
ctx.builder.build_store(elem, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices
|
||||
/// as its input.
|
||||
fn ndarray_fill_indexed<'ctx, ValueFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
value_fn: ValueFn,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, '_>, PointerValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, idx| {
|
||||
let indices = call_ndarray_calc_nd_indices(
|
||||
generator,
|
||||
ctx,
|
||||
idx,
|
||||
ndarray,
|
||||
);
|
||||
|
||||
value_fn(generator, ctx, indices)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.zeros`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_zeros_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let supported_types = [
|
||||
ctx.primitives.int32,
|
||||
ctx.primitives.int64,
|
||||
ctx.primitives.uint32,
|
||||
ctx.primitives.uint64,
|
||||
ctx.primitives.float,
|
||||
ctx.primitives.bool,
|
||||
ctx.primitives.str,
|
||||
];
|
||||
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
||||
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = ndarray_zero_value(generator, ctx, elem_ty);
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.ones`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_ones_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let supported_types = [
|
||||
ctx.primitives.int32,
|
||||
ctx.primitives.int64,
|
||||
ctx.primitives.uint32,
|
||||
ctx.primitives.uint64,
|
||||
ctx.primitives.float,
|
||||
ctx.primitives.bool,
|
||||
ctx.primitives.str,
|
||||
];
|
||||
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
||||
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = ndarray_one_value(generator, ctx, elem_ty);
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.full`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_full_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = if fill_value.is_pointer_value() {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?;
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
copy,
|
||||
fill_value.into_pointer_value(),
|
||||
fill_value.get_type().size_of().map(Into::into).unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
copy.into()
|
||||
} else if fill_value.is_int_value() || fill_value.is_float_value() {
|
||||
fill_value
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
fn call_ndarray_eye_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
nrows: IntValue<'ctx>,
|
||||
ncols: IntValue<'ctx>,
|
||||
offset: IntValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_usize_2 = llvm_usize.array_type(2);
|
||||
|
||||
let shape_addr = generator.gen_var_alloc(ctx, llvm_usize_2.into(), None)?;
|
||||
|
||||
let shape = ctx.builder.build_load(shape_addr, "")
|
||||
.map(BasicValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, nrows, 0, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, ncols, 1, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, shape)?;
|
||||
|
||||
ndarray_fill_indexed(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, indices| {
|
||||
let row = ctx.build_gep_and_load(
|
||||
indices,
|
||||
&[llvm_usize.const_int(0, false)],
|
||||
None,
|
||||
).into_int_value();
|
||||
let col = ctx.build_gep_and_load(
|
||||
indices,
|
||||
&[llvm_usize.const_int(1, false)],
|
||||
None,
|
||||
).into_int_value();
|
||||
|
||||
let col_with_offset = ctx.builder
|
||||
.build_int_add(
|
||||
col,
|
||||
ctx.builder.build_int_s_extend_or_bit_cast(offset, llvm_usize, "").unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let is_on_diag = ctx.builder
|
||||
.build_int_compare(IntPredicate::EQ, row, col_with_offset, "")
|
||||
.unwrap();
|
||||
|
||||
let zero = ndarray_zero_value(generator, ctx, elem_ty);
|
||||
let one = ndarray_one_value(generator, ctx, elem_ty);
|
||||
|
||||
let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap();
|
||||
|
||||
Ok(value)
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.copy`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
fn ndarray_copy_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
this: NDArrayValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let ndarray = create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&this,
|
||||
|_, ctx, shape| {
|
||||
Ok(shape.load_ndims(ctx))
|
||||
},
|
||||
|generator, ctx, shape, idx| {
|
||||
Ok(shape.dim_sizes().get(ctx, generator, idx, None))
|
||||
},
|
||||
)?;
|
||||
|
||||
let len = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
let sizeof_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let len_bytes = ctx.builder
|
||||
.build_int_mul(
|
||||
len,
|
||||
sizeof_ty.size_of().unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.data().as_ptr_value(ctx),
|
||||
this.data().as_ptr_value(ctx),
|
||||
len_bytes,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.zeros`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_zeros_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.ones`.
|
||||
pub fn gen_ndarray_ones<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_ones_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.full`.
|
||||
pub fn gen_ndarray_full<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
let fill_value_ty = fun.0.args[1].ty;
|
||||
let fill_value_arg = args[1].1.clone()
|
||||
.to_basic_value_enum(context, generator, fill_value_ty)?;
|
||||
|
||||
call_ndarray_full_impl(
|
||||
generator,
|
||||
context,
|
||||
fill_value_ty,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
fill_value_arg,
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.eye`.
|
||||
pub fn gen_ndarray_eye<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let nrows_ty = fun.0.args[0].ty;
|
||||
let nrows_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, nrows_ty)?;
|
||||
|
||||
let ncols_ty = fun.0.args[1].ty;
|
||||
let ncols_arg = args.iter()
|
||||
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
|
||||
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, ncols_ty))
|
||||
.unwrap_or_else(|| {
|
||||
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
|
||||
})?;
|
||||
|
||||
let offset_ty = fun.0.args[2].ty;
|
||||
let offset_arg = args.iter()
|
||||
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
||||
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, offset_ty))
|
||||
.unwrap_or_else(|| {
|
||||
Ok(context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[2].default_value.as_ref().unwrap(),
|
||||
offset_ty
|
||||
))
|
||||
})?;
|
||||
|
||||
call_ndarray_eye_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
nrows_arg.into_int_value(),
|
||||
ncols_arg.into_int_value(),
|
||||
offset_arg.into_int_value(),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.identity`.
|
||||
pub fn gen_ndarray_identity<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let n_ty = fun.0.args[0].ty;
|
||||
let n_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, n_ty)?;
|
||||
|
||||
call_ndarray_eye_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
n_arg.into_int_value(),
|
||||
n_arg.into_int_value(),
|
||||
llvm_usize.const_zero(),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.copy`.
|
||||
pub fn gen_ndarray_copy<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
_fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_some());
|
||||
assert!(args.is_empty());
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let (this_elem_ty, _) = unpack_ndarray_tvars(&mut context.unifier, this_ty);
|
||||
let this_arg = obj
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.1
|
||||
.clone()
|
||||
.to_basic_value_enum(context, generator, this_ty)?;
|
||||
|
||||
ndarray_copy_impl(
|
||||
generator,
|
||||
context,
|
||||
this_elem_ty,
|
||||
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.fill`.
|
||||
pub fn gen_ndarray_fill<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<(), String> {
|
||||
assert!(obj.is_some());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let this_arg = obj.as_ref().unwrap().1.clone()
|
||||
.to_basic_value_enum(context, generator, this_ty)?
|
||||
.into_pointer_value();
|
||||
let value_ty = fun.0.args[0].ty;
|
||||
let value_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, value_ty)?;
|
||||
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
context,
|
||||
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|
||||
|generator, ctx, _| {
|
||||
let value = if value_arg.is_pointer_value() {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?;
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
copy,
|
||||
value_arg.into_pointer_value(),
|
||||
value_arg.get_type().size_of().map(Into::into).unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
copy.into()
|
||||
} else if value_arg.is_int_value() || value_arg.is_float_value() {
|
||||
value_arg
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
|
@ -5,11 +5,14 @@ use crate::{
|
|||
expr::destructure_range,
|
||||
irrt::*,
|
||||
llvm_intrinsics::*,
|
||||
numpy::*,
|
||||
stmt::exn_constructor,
|
||||
},
|
||||
symbol_resolver::SymbolValue,
|
||||
toplevel::helper::PRIMITIVE_DEF_IDS,
|
||||
toplevel::numpy::*,
|
||||
toplevel::{
|
||||
helper::PRIMITIVE_DEF_IDS,
|
||||
numpy::make_ndarray_ty,
|
||||
},
|
||||
typecheck::typedef::VarMap,
|
||||
};
|
||||
use inkwell::{
|
||||
|
|
|
@ -1,24 +1,9 @@
|
|||
use inkwell::{IntPredicate, types::BasicType, values::{BasicValueEnum, PointerValue}};
|
||||
use inkwell::values::{AggregateValueEnum, ArrayValue, IntValue};
|
||||
use itertools::Itertools;
|
||||
use nac3parser::ast::StrRef;
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{ListValue, NDArrayValue},
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
irrt::{
|
||||
call_ndarray_calc_nd_indices,
|
||||
call_ndarray_calc_size,
|
||||
},
|
||||
llvm_intrinsics::call_memcpy_generic,
|
||||
stmt::gen_for_callback
|
||||
},
|
||||
symbol_resolver::ValueEnum,
|
||||
toplevel::{DefinitionId, helper::PRIMITIVE_DEF_IDS},
|
||||
toplevel::helper::PRIMITIVE_DEF_IDS,
|
||||
typecheck::{
|
||||
type_inferencer::PrimitiveStore,
|
||||
typedef::{FunSignature, Type, TypeEnum, Unifier, VarMap},
|
||||
typedef::{Type, TypeEnum, Unifier, VarMap},
|
||||
},
|
||||
};
|
||||
|
||||
|
@ -76,885 +61,3 @@ pub fn unpack_ndarray_tvars(
|
|||
.collect_tuple()
|
||||
.unwrap()
|
||||
}
|
||||
|
||||
/// Creates an `NDArray` instance from a dynamic shape.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The shape of the `NDArray`.
|
||||
/// * `shape_len_fn` - A function that retrieves the number of dimensions from `shape`.
|
||||
/// * `shape_data_fn` - A function that retrieves the size of a dimension from `shape`.
|
||||
fn create_ndarray_dyn_shape<'ctx, 'a, V, LenFn, DataFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
elem_ty: Type,
|
||||
shape: &V,
|
||||
shape_len_fn: LenFn,
|
||||
shape_data_fn: DataFn,
|
||||
) -> Result<NDArrayValue<'ctx>, String>
|
||||
where
|
||||
LenFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V) -> Result<IntValue<'ctx>, String>,
|
||||
DataFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, &V, IntValue<'ctx>) -> Result<IntValue<'ctx>, String>,
|
||||
{
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
||||
assert!(llvm_ndarray_data_t.is_sized());
|
||||
|
||||
// Assert that all dimensions are non-negative
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
||||
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
let shape_dim_gez = ctx.builder
|
||||
.build_int_compare(IntPredicate::SGE, shape_dim, shape_dim.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
shape_dim_gez,
|
||||
"0:ValueError",
|
||||
"negative dimensions not supported",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None,
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
||||
|
||||
let num_dims = shape_len_fn(generator, ctx, shape)?;
|
||||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
// Copy the dimension sizes from shape to ndarray.dims
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_len = shape_len_fn(generator, ctx, shape)?;
|
||||
debug_assert!(shape_len.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, shape_len, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let shape_dim = shape_data_fn(generator, ctx, shape, i)?;
|
||||
debug_assert!(shape_dim.get_type().get_bit_width() <= llvm_usize.get_bit_width());
|
||||
let shape_dim = ctx.builder
|
||||
.build_int_z_extend(shape_dim, llvm_usize, "")
|
||||
.unwrap();
|
||||
|
||||
let ndarray_pdim = ndarray.dim_sizes().ptr_offset(ctx, generator, i, None);
|
||||
|
||||
ctx.builder.build_store(ndarray_pdim, shape_dim).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)?;
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// Creates an `NDArray` instance from a constant shape.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The shape of the `NDArray`, represented as an LLVM [`ArrayValue`].
|
||||
fn create_ndarray_const_shape<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ArrayValue<'ctx>
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let ndarray_ty = make_ndarray_ty(&mut ctx.unifier, &ctx.primitives, Some(elem_ty), None);
|
||||
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let llvm_pndarray_t = ctx.get_llvm_type(generator, ndarray_ty).into_pointer_type();
|
||||
let llvm_ndarray_t = llvm_pndarray_t.get_element_type().into_struct_type();
|
||||
let llvm_ndarray_data_t = ctx.get_llvm_type(generator, elem_ty).as_basic_type_enum();
|
||||
assert!(llvm_ndarray_data_t.is_sized());
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let shape_dim = ctx.builder
|
||||
.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
let shape_dim_gez = ctx.builder
|
||||
.build_int_compare(IntPredicate::SGE, shape_dim, llvm_usize.const_zero(), "")
|
||||
.unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
shape_dim_gez,
|
||||
"0:ValueError",
|
||||
"negative dimensions not supported",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
let ndarray = generator.gen_var_alloc(
|
||||
ctx,
|
||||
llvm_ndarray_t.into(),
|
||||
None,
|
||||
)?;
|
||||
let ndarray = NDArrayValue::from_ptr_val(ndarray, llvm_usize, None);
|
||||
|
||||
let num_dims = llvm_usize.const_int(shape.get_type().len() as u64, false);
|
||||
ndarray.store_ndims(ctx, generator, num_dims);
|
||||
|
||||
let ndarray_num_dims = ndarray.load_ndims(ctx);
|
||||
ndarray.create_dim_sizes(ctx, llvm_usize, ndarray_num_dims);
|
||||
|
||||
for i in 0..shape.get_type().len() {
|
||||
let ndarray_dim = ndarray
|
||||
.dim_sizes()
|
||||
.ptr_offset(ctx, generator, llvm_usize.const_int(i as u64, true), None);
|
||||
let shape_dim = ctx.builder.build_extract_value(shape, i, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
ctx.builder.build_store(ndarray_dim, shape_dim).unwrap();
|
||||
}
|
||||
|
||||
let ndarray_dims = ndarray.dim_sizes().as_ptr_value(ctx);
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray_dims,
|
||||
);
|
||||
ndarray.create_data(ctx, llvm_ndarray_data_t, ndarray_num_elems);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
fn ndarray_zero_value<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
ctx.ctx.i32_type().const_zero().into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
ctx.ctx.i64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_zero().into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "")
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
fn ndarray_one_value<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
if [ctx.primitives.int32, ctx.primitives.uint32].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int32);
|
||||
ctx.ctx.i32_type().const_int(1, is_signed).into()
|
||||
} else if [ctx.primitives.int64, ctx.primitives.uint64].iter().any(|ty| ctx.unifier.unioned(elem_ty, *ty)) {
|
||||
let is_signed = ctx.unifier.unioned(elem_ty, ctx.primitives.int64);
|
||||
ctx.ctx.i64_type().const_int(1, is_signed).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.float) {
|
||||
ctx.ctx.f64_type().const_float(1.0).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.bool) {
|
||||
ctx.ctx.bool_type().const_int(1, false).into()
|
||||
} else if ctx.unifier.unioned(elem_ty, ctx.primitives.str) {
|
||||
ctx.gen_string(generator, "1")
|
||||
} else {
|
||||
unreachable!()
|
||||
}
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for constructing an `NDArray`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_empty_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&shape,
|
||||
|_, ctx, shape| {
|
||||
Ok(shape.load_size(ctx, None))
|
||||
},
|
||||
|generator, ctx, shape, idx| {
|
||||
Ok(shape.data().get(ctx, generator, idx, None).into_int_value())
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with its flattened index as
|
||||
/// its input.
|
||||
fn ndarray_fill_flattened<'ctx, 'a, ValueFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, 'a>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
value_fn: ValueFn,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, 'a>, IntValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let ndarray_num_elems = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
|
||||
gen_for_callback(
|
||||
generator,
|
||||
ctx,
|
||||
|generator, ctx| {
|
||||
let i = generator.gen_var_alloc(ctx, llvm_usize.into(), None)?;
|
||||
ctx.builder.build_store(i, llvm_usize.const_zero()).unwrap();
|
||||
|
||||
Ok(i)
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
|
||||
Ok(ctx.builder.build_int_compare(IntPredicate::ULT, i, ndarray_num_elems, "").unwrap())
|
||||
},
|
||||
|generator, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let elem = unsafe {
|
||||
ndarray.data().ptr_to_data_flattened_unchecked(ctx, i, None)
|
||||
};
|
||||
|
||||
let value = value_fn(generator, ctx, i)?;
|
||||
ctx.builder.build_store(elem, value).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
|_, ctx, i_addr| {
|
||||
let i = ctx.builder
|
||||
.build_load(i_addr, "")
|
||||
.map(BasicValueEnum::into_int_value)
|
||||
.unwrap();
|
||||
let i = ctx.builder.build_int_add(i, llvm_usize.const_int(1, true), "").unwrap();
|
||||
ctx.builder.build_store(i_addr, i).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for populating the entire `NDArray` using a lambda with the dimension-indices
|
||||
/// as its input.
|
||||
fn ndarray_fill_indexed<'ctx, ValueFn>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NDArrayValue<'ctx>,
|
||||
value_fn: ValueFn,
|
||||
) -> Result<(), String>
|
||||
where
|
||||
ValueFn: Fn(&mut dyn CodeGenerator, &mut CodeGenContext<'ctx, '_>, PointerValue<'ctx>) -> Result<BasicValueEnum<'ctx>, String>,
|
||||
{
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, idx| {
|
||||
let indices = call_ndarray_calc_nd_indices(
|
||||
generator,
|
||||
ctx,
|
||||
idx,
|
||||
ndarray,
|
||||
);
|
||||
|
||||
value_fn(generator, ctx, indices)
|
||||
}
|
||||
)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.zeros`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_zeros_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let supported_types = [
|
||||
ctx.primitives.int32,
|
||||
ctx.primitives.int64,
|
||||
ctx.primitives.uint32,
|
||||
ctx.primitives.uint64,
|
||||
ctx.primitives.float,
|
||||
ctx.primitives.bool,
|
||||
ctx.primitives.str,
|
||||
];
|
||||
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
||||
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = ndarray_zero_value(generator, ctx, elem_ty);
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.ones`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_ones_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let supported_types = [
|
||||
ctx.primitives.int32,
|
||||
ctx.primitives.int64,
|
||||
ctx.primitives.uint32,
|
||||
ctx.primitives.uint64,
|
||||
ctx.primitives.float,
|
||||
ctx.primitives.bool,
|
||||
ctx.primitives.str,
|
||||
];
|
||||
assert!(supported_types.iter().any(|supported_ty| ctx.unifier.unioned(*supported_ty, elem_ty)));
|
||||
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = ndarray_one_value(generator, ctx, elem_ty);
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.full`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
fn call_ndarray_full_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: ListValue<'ctx>,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape)?;
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, _| {
|
||||
let value = if fill_value.is_pointer_value() {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let copy = generator.gen_var_alloc(ctx, fill_value.get_type(), None)?;
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
copy,
|
||||
fill_value.into_pointer_value(),
|
||||
fill_value.get_type().size_of().map(Into::into).unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
copy.into()
|
||||
} else if fill_value.is_int_value() || fill_value.is_float_value() {
|
||||
fill_value
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.eye`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
fn call_ndarray_eye_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
nrows: IntValue<'ctx>,
|
||||
ncols: IntValue<'ctx>,
|
||||
offset: IntValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
let llvm_usize_2 = llvm_usize.array_type(2);
|
||||
|
||||
let shape_addr = generator.gen_var_alloc(ctx, llvm_usize_2.into(), None)?;
|
||||
|
||||
let shape = ctx.builder.build_load(shape_addr, "")
|
||||
.map(BasicValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let nrows = ctx.builder.build_int_z_extend_or_bit_cast(nrows, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, nrows, 0, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ncols = ctx.builder.build_int_z_extend_or_bit_cast(ncols, llvm_usize, "").unwrap();
|
||||
let shape = ctx.builder
|
||||
.build_insert_value(shape, ncols, 1, "")
|
||||
.map(AggregateValueEnum::into_array_value)
|
||||
.unwrap();
|
||||
|
||||
let ndarray = create_ndarray_const_shape(generator, ctx, elem_ty, shape)?;
|
||||
|
||||
ndarray_fill_indexed(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
|generator, ctx, indices| {
|
||||
let row = ctx.build_gep_and_load(
|
||||
indices,
|
||||
&[llvm_usize.const_int(0, false)],
|
||||
None,
|
||||
).into_int_value();
|
||||
let col = ctx.build_gep_and_load(
|
||||
indices,
|
||||
&[llvm_usize.const_int(1, false)],
|
||||
None,
|
||||
).into_int_value();
|
||||
|
||||
let col_with_offset = ctx.builder
|
||||
.build_int_add(
|
||||
col,
|
||||
ctx.builder.build_int_s_extend_or_bit_cast(offset, llvm_usize, "").unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
let is_on_diag = ctx.builder
|
||||
.build_int_compare(IntPredicate::EQ, row, col_with_offset, "")
|
||||
.unwrap();
|
||||
|
||||
let zero = ndarray_zero_value(generator, ctx, elem_ty);
|
||||
let one = ndarray_one_value(generator, ctx, elem_ty);
|
||||
|
||||
let value = ctx.builder.build_select(is_on_diag, one, zero, "").unwrap();
|
||||
|
||||
Ok(value)
|
||||
},
|
||||
)?;
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for `ndarray.copy`.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
fn ndarray_copy_impl<'ctx>(
|
||||
generator: &mut dyn CodeGenerator,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
this: NDArrayValue<'ctx>,
|
||||
) -> Result<NDArrayValue<'ctx>, String> {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let ndarray = create_ndarray_dyn_shape(
|
||||
generator,
|
||||
ctx,
|
||||
elem_ty,
|
||||
&this,
|
||||
|_, ctx, shape| {
|
||||
Ok(shape.load_ndims(ctx))
|
||||
},
|
||||
|generator, ctx, shape, idx| {
|
||||
Ok(shape.dim_sizes().get(ctx, generator, idx, None))
|
||||
},
|
||||
)?;
|
||||
|
||||
let len = call_ndarray_calc_size(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.load_ndims(ctx),
|
||||
ndarray.dim_sizes().as_ptr_value(ctx),
|
||||
);
|
||||
let sizeof_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
let len_bytes = ctx.builder
|
||||
.build_int_mul(
|
||||
len,
|
||||
sizeof_ty.size_of().unwrap(),
|
||||
"",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
ndarray.data().as_ptr_value(ctx),
|
||||
this.data().as_ptr_value(ctx),
|
||||
len_bytes,
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.zeros`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_zeros_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.ones`.
|
||||
pub fn gen_ndarray_ones<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
call_ndarray_ones_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.full`.
|
||||
pub fn gen_ndarray_full<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 2);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, shape_ty)?;
|
||||
let fill_value_ty = fun.0.args[1].ty;
|
||||
let fill_value_arg = args[1].1.clone()
|
||||
.to_basic_value_enum(context, generator, fill_value_ty)?;
|
||||
|
||||
call_ndarray_full_impl(
|
||||
generator,
|
||||
context,
|
||||
fill_value_ty,
|
||||
ListValue::from_ptr_val(shape_arg.into_pointer_value(), llvm_usize, None),
|
||||
fill_value_arg,
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.eye`.
|
||||
pub fn gen_ndarray_eye<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert!(matches!(args.len(), 1..=3));
|
||||
|
||||
let nrows_ty = fun.0.args[0].ty;
|
||||
let nrows_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, nrows_ty)?;
|
||||
|
||||
let ncols_ty = fun.0.args[1].ty;
|
||||
let ncols_arg = args.iter()
|
||||
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[1].name))
|
||||
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, ncols_ty))
|
||||
.unwrap_or_else(|| {
|
||||
args[0].1.clone().to_basic_value_enum(context, generator, nrows_ty)
|
||||
})?;
|
||||
|
||||
let offset_ty = fun.0.args[2].ty;
|
||||
let offset_arg = args.iter()
|
||||
.find(|arg| arg.0.is_some_and(|name| name == fun.0.args[2].name))
|
||||
.map(|arg| arg.1.clone().to_basic_value_enum(context, generator, offset_ty))
|
||||
.unwrap_or_else(|| {
|
||||
Ok(context.gen_symbol_val(
|
||||
generator,
|
||||
fun.0.args[2].default_value.as_ref().unwrap(),
|
||||
offset_ty
|
||||
))
|
||||
})?;
|
||||
|
||||
call_ndarray_eye_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
nrows_arg.into_int_value(),
|
||||
ncols_arg.into_int_value(),
|
||||
offset_arg.into_int_value(),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.identity`.
|
||||
pub fn gen_ndarray_identity<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let n_ty = fun.0.args[0].ty;
|
||||
let n_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, n_ty)?;
|
||||
|
||||
call_ndarray_eye_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
n_arg.into_int_value(),
|
||||
n_arg.into_int_value(),
|
||||
llvm_usize.const_zero(),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.copy`.
|
||||
pub fn gen_ndarray_copy<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
_fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_some());
|
||||
assert!(args.is_empty());
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let (this_elem_ty, _) = unpack_ndarray_tvars(&mut context.unifier, this_ty);
|
||||
let this_arg = obj
|
||||
.as_ref()
|
||||
.unwrap()
|
||||
.1
|
||||
.clone()
|
||||
.to_basic_value_enum(context, generator, this_ty)?;
|
||||
|
||||
ndarray_copy_impl(
|
||||
generator,
|
||||
context,
|
||||
this_elem_ty,
|
||||
NDArrayValue::from_ptr_val(this_arg.into_pointer_value(), llvm_usize, None),
|
||||
).map(NDArrayValue::into)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `ndarray.fill`.
|
||||
pub fn gen_ndarray_fill<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<(), String> {
|
||||
assert!(obj.is_some());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
let llvm_usize = generator.get_size_type(context.ctx);
|
||||
|
||||
let this_ty = obj.as_ref().unwrap().0;
|
||||
let this_arg = obj.as_ref().unwrap().1.clone()
|
||||
.to_basic_value_enum(context, generator, this_ty)?
|
||||
.into_pointer_value();
|
||||
let value_ty = fun.0.args[0].ty;
|
||||
let value_arg = args[0].1.clone()
|
||||
.to_basic_value_enum(context, generator, value_ty)?;
|
||||
|
||||
ndarray_fill_flattened(
|
||||
generator,
|
||||
context,
|
||||
NDArrayValue::from_ptr_val(this_arg, llvm_usize, None),
|
||||
|generator, ctx, _| {
|
||||
let value = if value_arg.is_pointer_value() {
|
||||
let llvm_i1 = ctx.ctx.bool_type();
|
||||
|
||||
let copy = generator.gen_var_alloc(ctx, value_arg.get_type(), None)?;
|
||||
|
||||
call_memcpy_generic(
|
||||
ctx,
|
||||
copy,
|
||||
value_arg.into_pointer_value(),
|
||||
value_arg.get_type().size_of().map(Into::into).unwrap(),
|
||||
llvm_i1.const_zero(),
|
||||
);
|
||||
|
||||
copy.into()
|
||||
} else if value_arg.is_int_value() || value_arg.is_float_value() {
|
||||
value_arg
|
||||
} else {
|
||||
unreachable!()
|
||||
};
|
||||
|
||||
Ok(value)
|
||||
}
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue