1
0
forked from M-Labs/kirdy
kirdy-firmware/pykirdy/pid_autotune.py

317 lines
11 KiB
Python
Raw Normal View History

import math
import logging
from collections import deque, namedtuple
from enum import Enum
import socket
import json
import time
import signal
2024-03-18 13:26:23 +08:00
from driver.kirdy_async import Kirdy
import asyncio
# Based on hirshmann pid-autotune libiary
# See https://github.com/hirschmann/pid-autotune
# Which is in turn based on a fork of Arduino PID AutoTune Library
# See https://github.com/t0mpr1c3/Arduino-PID-AutoTune-Library
class PIDAutotuneState(Enum):
STATE_OFF = 'off'
STATE_RELAY_STEP_UP = 'relay step up'
STATE_RELAY_STEP_DOWN = 'relay step down'
STATE_SUCCEEDED = 'succeeded'
STATE_FAILED = 'failed'
class PIDAutotune:
PIDParams = namedtuple('PIDParams', ['Kp', 'Ki', 'Kd'])
PEAK_AMPLITUDE_TOLERANCE = 0.05
_tuning_rules = {
"ziegler-nichols": [0.6, 1.2, 0.075],
"tyreus-luyben": [0.4545, 0.2066, 0.07214],
"ciancone-marlin": [0.303, 0.1364, 0.0481],
"pessen-integral": [0.7, 1.75, 0.105],
"some-overshoot": [0.333, 0.667, 0.111],
"no-overshoot": [0.2, 0.4, 0.0667]
}
def __init__(self, setpoint, out_step=10, lookback=60,
noiseband=0.5, sampletime=1.2):
if setpoint is None:
raise ValueError('setpoint must be specified')
self._inputs = deque(maxlen=round(lookback / sampletime))
self._setpoint = setpoint
self._outputstep = out_step
self._noiseband = noiseband
self._out_min = -out_step
self._out_max = out_step
self._state = PIDAutotuneState.STATE_OFF
self._peak_timestamps = deque(maxlen=5)
self._peaks = deque(maxlen=5)
self._output = 0
self._last_run_timestamp = 0
self._peak_type = 0
self._peak_count = 0
self._initial_output = 0
self._induced_amplitude = 0
self._Ku = 0
self._Pu = 0
def state(self):
"""Get the current state."""
return self._state
def output(self):
"""Get the last output value."""
return self._output
def tuning_rules(self):
"""Get a list of all available tuning rules."""
return self._tuning_rules.keys()
def get_pid_parameters(self, tuning_rule='ziegler-nichols'):
"""Get PID parameters.
Args:
tuning_rule (str): Sets the rule which should be used to calculate
the parameters.
"""
divisors = self._tuning_rules[tuning_rule]
kp = self._Ku * divisors[0]
ki = divisors[1] * self._Ku / self._Pu
kd = divisors[2] * self._Ku * self._Pu
return PIDAutotune.PIDParams(kp, ki, kd)
def run(self, input_val, time_input):
"""To autotune a system, this method must be called periodically.
Args:
input_val (float): The temperature input value.
time_input (float): Current time in seconds.
Returns:
`true` if tuning is finished, otherwise `false`.
"""
now = time_input * 1000
if (self._state == PIDAutotuneState.STATE_OFF
or self._state == PIDAutotuneState.STATE_SUCCEEDED
or self._state == PIDAutotuneState.STATE_FAILED):
self._state = PIDAutotuneState.STATE_RELAY_STEP_UP
self._last_run_timestamp = now
# check input and change relay state if necessary
if (self._state == PIDAutotuneState.STATE_RELAY_STEP_UP
and input_val > self._setpoint + self._noiseband):
self._state = PIDAutotuneState.STATE_RELAY_STEP_DOWN
logging.debug('switched state: {0}'.format(self._state))
logging.debug('input: {0}'.format(input_val))
elif (self._state == PIDAutotuneState.STATE_RELAY_STEP_DOWN
and input_val < self._setpoint - self._noiseband):
self._state = PIDAutotuneState.STATE_RELAY_STEP_UP
logging.debug('switched state: {0}'.format(self._state))
logging.debug('input: {0}'.format(input_val))
# set output
if (self._state == PIDAutotuneState.STATE_RELAY_STEP_UP):
self._output = self._initial_output - self._outputstep
elif self._state == PIDAutotuneState.STATE_RELAY_STEP_DOWN:
self._output = self._initial_output + self._outputstep
# respect output limits
self._output = min(self._output, self._out_max)
self._output = max(self._output, self._out_min)
# identify peaks
is_max = True
is_min = True
for val in self._inputs:
is_max = is_max and (input_val >= val)
is_min = is_min and (input_val <= val)
self._inputs.append(input_val)
# we don't trust the maxes or mins until the input array is full
if len(self._inputs) < self._inputs.maxlen:
return False
# increment peak count and record peak time for maxima and minima
inflection = False
# peak types:
# -1: minimum
# +1: maximum
if is_max:
if self._peak_type == -1:
inflection = True
self._peak_type = 1
elif is_min:
if self._peak_type == 1:
inflection = True
self._peak_type = -1
# update peak times and values
if inflection:
self._peak_count += 1
self._peaks.append(input_val)
self._peak_timestamps.append(now)
logging.debug('found peak: {0}'.format(input_val))
logging.debug('peak count: {0}'.format(self._peak_count))
# check for convergence of induced oscillation
# convergence of amplitude assessed on last 4 peaks (1.5 cycles)
self._induced_amplitude = 0
if inflection and (self._peak_count > 4):
abs_max = self._peaks[-2]
abs_min = self._peaks[-2]
for i in range(0, len(self._peaks) - 2):
self._induced_amplitude += abs(self._peaks[i]
- self._peaks[i+1])
abs_max = max(self._peaks[i], abs_max)
abs_min = min(self._peaks[i], abs_min)
self._induced_amplitude /= 6.0
# check convergence criterion for amplitude of induced oscillation
amplitude_dev = ((0.5 * (abs_max - abs_min)
- self._induced_amplitude)
/ self._induced_amplitude)
logging.debug('amplitude: {0}'.format(self._induced_amplitude))
logging.debug('amplitude deviation: {0}'.format(amplitude_dev))
if amplitude_dev < PIDAutotune.PEAK_AMPLITUDE_TOLERANCE:
self._state = PIDAutotuneState.STATE_SUCCEEDED
# if the autotune has not already converged
# terminate after 10 cycles
if self._peak_count >= 20:
self._output = 0
self._state = PIDAutotuneState.STATE_FAILED
return True
if self._state == PIDAutotuneState.STATE_SUCCEEDED:
self._output = 0
logging.debug('peak finding successful')
# calculate ultimate gain
self._Ku = 4.0 * self._outputstep / \
(self._induced_amplitude * math.pi)
print('Ku: {0}'.format(self._Ku))
# calculate ultimate period in seconds
period1 = self._peak_timestamps[3] - self._peak_timestamps[1]
period2 = self._peak_timestamps[4] - self._peak_timestamps[2]
self._Pu = 0.5 * (period1 + period2) / 1000.0
print('Pu: {0}'.format(self._Pu))
for rule in self._tuning_rules:
params = self.get_pid_parameters(rule)
print('rule: {0}'.format(rule))
print('Kp: {0}'.format(params.Kp))
print('Ki: {0}'.format(params.Ki))
print('Kd: {0}'.format(params.Kd))
return True
return False
2024-03-18 13:26:23 +08:00
async def main():
"""
PID AutoTune Tools for Kirdy
The obtained temperature works best at the target temperature specified.
Before running PID AutoTune, please
1. Secure the laser diode onto the LD adapter and copper heat sink
2. Make sure Kirdy has warmed up and reached thermal equilibrium state
In case of PID Autotune Failure, you can
1. Run the PID Autotune again
2. Or increase the lookback period
3. Or increase the sampling rate
"""
# Target temperature of the autotune routine, celsius
target_temperature = 20
# Value by which output will be increased/decreased from zero, amps
output_step = 1
# Reference period for local minima/maxima, seconds
2024-03-18 13:26:23 +08:00
lookback = 2.0
# Determines by how much the input value must
# overshoot/undershoot the setpoint, celsius
noiseband = 1.5
2024-03-18 13:26:23 +08:00
kirdy = Kirdy()
await kirdy.start_session(host='192.168.1.128', port=1337, timeout=0.25)
2024-03-18 13:26:23 +08:00
await kirdy.laser.set_power_on(False)
await kirdy.laser.set_i(0)
2024-03-18 13:26:23 +08:00
await kirdy.thermostat.set_power_on(False)
await kirdy.thermostat.set_constant_current_control_mode()
await kirdy.thermostat.set_tec_i_out(0)
await kirdy.thermostat.clear_alarm()
class SignalHandler:
KEEP_PROCESSING = True
def __init__(self):
signal.signal(signal.SIGINT, self.exit_gracefully)
signal.signal(signal.SIGTERM, self.exit_gracefully)
2024-03-18 13:26:23 +08:00
def exit_gracefully(self, signum, frame):
self.KEEP_PROCESSING = False
signal_handler = SignalHandler()
2024-03-18 13:26:23 +08:00
await kirdy.device.set_active_report_mode(False)
2024-03-18 13:26:23 +08:00
# Configure the Thermistor Parameters
await kirdy.thermostat.set_sh_beta(3900)
await kirdy.thermostat.set_sh_r0(10.0 * 1000)
await kirdy.thermostat.set_sh_t0(25)
2024-03-18 13:26:23 +08:00
# Set a large enough temperature range so that it won't trigger overtemperature protection
await kirdy.thermostat.set_temp_mon_upper_limit(target_temperature + 20)
await kirdy.thermostat.set_temp_mon_lower_limit(target_temperature - 20)
await kirdy.thermostat.set_tec_max_cooling_i(output_step)
await kirdy.thermostat.set_tec_max_heating_i(output_step)
2024-03-18 13:26:23 +08:00
# The Polling Rate of Temperature Adc is equal to the PID Update Interval
await kirdy.thermostat.config_temp_adc_filter("Sinc5Sinc1With50hz60HzRejection", "F16SPS")
settings = await kirdy.device.get_settings_summary()
sampling_rate = settings["thermostat"]["temp_adc_settings"]["rate"]
print("Settings: {0}".format(settings))
tuner = PIDAutotune(target_temperature, output_step,
lookback, noiseband, 1/sampling_rate)
await kirdy.thermostat.set_power_on(True)
while True and signal_handler.KEEP_PROCESSING:
status_report = await kirdy.device.get_status_report()
2024-03-18 13:26:23 +08:00
temperature = status_report["thermostat"]["temperature"]
2024-02-28 13:33:51 +08:00
ts = status_report['ts']
2024-03-18 13:26:23 +08:00
print("Ts: {0} Current Temperature: {1} degree".format(ts, temperature))
if (tuner.run(temperature, ts / 1000.0)):
2024-03-18 13:26:23 +08:00
print(tuner._state)
break
tuner_out = tuner.output()
2024-03-18 13:26:23 +08:00
await kirdy.thermostat.set_tec_i_out(float(tuner_out))
2024-03-18 13:26:23 +08:00
await kirdy.thermostat.set_tec_i_out(0)
await kirdy.thermostat.set_power_on(False)
await kirdy.end_session()
if __name__ == "__main__":
2024-03-18 13:26:23 +08:00
asyncio.run(main())