272 lines
8.5 KiB
Rust
272 lines
8.5 KiB
Rust
/// Reciprocal PLL.
|
|
///
|
|
/// Consumes noisy, quantized timestamps of a reference signal and reconstructs
|
|
/// the phase and frequency of the update() invocations with respect to (and in units of
|
|
/// 1 << 32 of) that reference.
|
|
/// In other words, `update()` rate ralative to reference frequency,
|
|
/// `u32::MAX` corresponding to both being equal.
|
|
#[derive(Copy, Clone, Default)]
|
|
pub struct RPLL {
|
|
dt2: u8, // 1 << dt2 is the counter rate to update() rate ratio
|
|
x: i32, // previous timestamp
|
|
ff: u32, // current frequency estimate from frequency loop
|
|
f: u32, // current frequency estimate from both frequency and phase loop
|
|
y: i32, // current phase estimate
|
|
}
|
|
|
|
impl RPLL {
|
|
/// Create a new RPLL instance.
|
|
///
|
|
/// Args:
|
|
/// * dt2: inverse update() rate. 1 << dt2 is the counter rate to update() rate ratio.
|
|
///
|
|
/// Returns:
|
|
/// Initialized RPLL instance.
|
|
pub fn new(dt2: u8) -> Self {
|
|
Self {
|
|
dt2,
|
|
..Default::default()
|
|
}
|
|
}
|
|
|
|
/// Advance the RPLL and optionally supply a new timestamp.
|
|
///
|
|
/// Args:
|
|
/// * input: Optional new timestamp (wrapping around at the i32 boundary).
|
|
/// There can be at most one timestamp per `update()` cycle (1 << dt2 counter cycles).
|
|
/// * shift_frequency: Frequency lock settling time. 1 << shift_frequency is
|
|
/// frequency lock settling time in counter periods. The settling time must be larger
|
|
/// than the signal period to lock to.
|
|
/// * shift_phase: Phase lock settling time. Usually one less than
|
|
/// `shift_frequency` (see there).
|
|
///
|
|
/// Returns:
|
|
/// A tuple containing the current phase (wrapping at the i32 boundary, pi) and
|
|
/// frequency.
|
|
pub fn update(
|
|
&mut self,
|
|
input: Option<i32>,
|
|
shift_frequency: u8,
|
|
shift_phase: u8,
|
|
) -> (i32, u32) {
|
|
debug_assert!(shift_frequency >= self.dt2);
|
|
debug_assert!(shift_phase >= self.dt2);
|
|
// Advance phase
|
|
self.y = self.y.wrapping_add(self.f as i32);
|
|
if let Some(x) = input {
|
|
// Reference period in counter cycles
|
|
let dx = x.wrapping_sub(self.x);
|
|
// Store timestamp for next time.
|
|
self.x = x;
|
|
// Phase using the current frequency estimate
|
|
let p_sig_64 = self.ff as u64 * dx as u64;
|
|
// Add half-up rounding bias and apply gain/attenuation
|
|
let p_sig = ((p_sig_64 + (1u32 << (shift_frequency - 1)) as u64)
|
|
>> shift_frequency) as u32;
|
|
// Reference phase (1 << dt2 full turns) with gain/attenuation applied
|
|
let p_ref = 1u32 << (32 + self.dt2 - shift_frequency);
|
|
// Update frequency lock
|
|
self.ff = self.ff.wrapping_add(p_ref.wrapping_sub(p_sig));
|
|
// Time in counter cycles between timestamp and "now"
|
|
let dt = (x.wrapping_neg() & ((1 << self.dt2) - 1)) as u32;
|
|
// Reference phase estimate "now"
|
|
let y_ref = (self.f >> self.dt2).wrapping_mul(dt) as i32;
|
|
// Phase error with gain
|
|
let dy = y_ref.wrapping_sub(self.y) >> (shift_phase - self.dt2);
|
|
// Current frequency estimate from frequency lock and phase error
|
|
self.f = self.ff.wrapping_add(dy as u32);
|
|
}
|
|
(self.y, self.f)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::RPLL;
|
|
use ndarray::prelude::*;
|
|
use rand::{prelude::*, rngs::StdRng};
|
|
use std::vec::Vec;
|
|
|
|
#[test]
|
|
fn make() {
|
|
let _ = RPLL::new(8);
|
|
}
|
|
|
|
struct Harness {
|
|
rpll: RPLL,
|
|
dt2: u8,
|
|
shift_frequency: u8,
|
|
shift_phase: u8,
|
|
noise: i32,
|
|
period: i32,
|
|
next: i32,
|
|
next_noisy: i32,
|
|
time: i32,
|
|
rng: StdRng,
|
|
}
|
|
|
|
impl Harness {
|
|
fn default() -> Self {
|
|
Self {
|
|
rpll: RPLL::new(8),
|
|
dt2: 8,
|
|
shift_frequency: 9,
|
|
shift_phase: 8,
|
|
noise: 0,
|
|
period: 333,
|
|
next: 111,
|
|
next_noisy: 111,
|
|
time: 0,
|
|
rng: StdRng::seed_from_u64(42),
|
|
}
|
|
}
|
|
|
|
fn run(&mut self, n: usize) -> (Vec<f32>, Vec<f32>) {
|
|
assert!(self.period >= 1 << self.dt2);
|
|
assert!(self.period < 1 << self.shift_frequency);
|
|
assert!(self.period < 1 << self.shift_phase + 1);
|
|
|
|
let mut y = Vec::<f32>::new();
|
|
let mut f = Vec::<f32>::new();
|
|
for _ in 0..n {
|
|
let timestamp = if self.time - self.next_noisy >= 0 {
|
|
assert!(self.time - self.next_noisy < 1 << self.dt2);
|
|
self.next = self.next.wrapping_add(self.period);
|
|
let timestamp = self.next_noisy;
|
|
let p_noise = self.rng.gen_range(-self.noise..=self.noise);
|
|
self.next_noisy = self.next.wrapping_add(p_noise);
|
|
Some(timestamp)
|
|
} else {
|
|
None
|
|
};
|
|
let (yi, fi) = self.rpll.update(
|
|
timestamp,
|
|
self.shift_frequency,
|
|
self.shift_phase,
|
|
);
|
|
|
|
let y_ref = (self.time.wrapping_sub(self.next) as i64
|
|
* (1i64 << 32)
|
|
/ self.period as i64) as i32;
|
|
// phase error
|
|
y.push(yi.wrapping_sub(y_ref) as f32 / 2f32.powi(32));
|
|
|
|
let p_ref = 1 << 32 + self.dt2;
|
|
let p_sig = fi as u64 * self.period as u64;
|
|
// relative frequency error
|
|
f.push(
|
|
p_sig.wrapping_sub(p_ref) as i64 as f32
|
|
/ 2f32.powi(32 + self.dt2 as i32),
|
|
);
|
|
|
|
// advance time
|
|
self.time = self.time.wrapping_add(1 << self.dt2);
|
|
}
|
|
(y, f)
|
|
}
|
|
|
|
fn measure(&mut self, n: usize, limits: [f32; 4]) {
|
|
let t_settle = (1 << self.shift_frequency - self.dt2 + 4)
|
|
+ (1 << self.shift_phase - self.dt2 + 4);
|
|
self.run(t_settle);
|
|
|
|
let (y, f) = self.run(n);
|
|
let y = Array::from(y);
|
|
let f = Array::from(f);
|
|
// println!("{:?} {:?}", f, y);
|
|
|
|
let fm = f.mean().unwrap();
|
|
let fs = f.std_axis(Axis(0), 0.).into_scalar();
|
|
let ym = y.mean().unwrap();
|
|
let ys = y.std_axis(Axis(0), 0.).into_scalar();
|
|
|
|
println!("f: {:.2e}±{:.2e}; y: {:.2e}±{:.2e}", fm, fs, ym, ys);
|
|
|
|
let m = [fm, fs, ym, ys];
|
|
|
|
print!("relative: ");
|
|
for i in 0..m.len() {
|
|
let rel = m[i].abs() / limits[i].abs();
|
|
print!("{:.2e} ", rel);
|
|
assert!(
|
|
rel <= 1.,
|
|
"idx {}, have |{:.2e}| > limit {:.2e}",
|
|
i,
|
|
m[i],
|
|
limits[i]
|
|
);
|
|
}
|
|
println!();
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn default() {
|
|
let mut h = Harness::default();
|
|
|
|
h.measure(1 << 16, [1e-11, 4e-8, 2e-8, 2e-8]);
|
|
}
|
|
|
|
#[test]
|
|
fn noisy() {
|
|
let mut h = Harness::default();
|
|
h.noise = 10;
|
|
h.shift_frequency = 23;
|
|
h.shift_phase = 22;
|
|
|
|
h.measure(1 << 16, [3e-9, 3e-6, 4e-4, 2e-4]);
|
|
}
|
|
|
|
#[test]
|
|
fn narrow_fast() {
|
|
let mut h = Harness::default();
|
|
h.period = 990;
|
|
h.next = 351;
|
|
h.next_noisy = h.next;
|
|
h.noise = 5;
|
|
h.shift_frequency = 23;
|
|
h.shift_phase = 22;
|
|
|
|
h.measure(1 << 16, [2e-9, 2e-6, 1e-3, 1e-4]);
|
|
}
|
|
|
|
#[test]
|
|
fn narrow_slow() {
|
|
let mut h = Harness::default();
|
|
h.period = 1818181;
|
|
h.next = 35281;
|
|
h.next_noisy = h.next;
|
|
h.noise = 1000;
|
|
h.shift_frequency = 23;
|
|
h.shift_phase = 22;
|
|
|
|
h.measure(1 << 16, [2e-5, 6e-4, 2e-4, 2e-4]);
|
|
}
|
|
|
|
#[test]
|
|
fn wide_fast() {
|
|
let mut h = Harness::default();
|
|
h.period = 990;
|
|
h.next = 351;
|
|
h.next_noisy = h.next;
|
|
h.noise = 5;
|
|
h.shift_frequency = 10;
|
|
h.shift_phase = 9;
|
|
|
|
h.measure(1 << 16, [5e-7, 3e-2, 2e-5, 2e-2]);
|
|
}
|
|
|
|
#[test]
|
|
fn wide_slow() {
|
|
let mut h = Harness::default();
|
|
h.period = 1818181;
|
|
h.next = 35281;
|
|
h.next_noisy = h.next;
|
|
h.noise = 1000;
|
|
h.shift_frequency = 21;
|
|
h.shift_phase = 20;
|
|
|
|
h.measure(1 << 16, [2e-4, 6e-3, 2e-4, 2e-3]);
|
|
}
|
|
}
|