pounder_test/dsp/src/rpll.rs

72 lines
2.7 KiB
Rust

/// Reciprocal PLL.
///
/// Consumes noisy, quantized timestamps of a reference signal and reconstructs
/// the phase and frequency of the update() invocations with respect to (and in units of
/// 1 << 32 of) that reference.
#[derive(Copy, Clone, Default)]
pub struct RPLL {
dt2: u8, // 1 << dt2 is the counter rate to update() rate ratio
t: i32, // current counter time
x: i32, // previous timestamp
ff: i32, // current frequency estimate from the frequency loop
f: i32, // current frequency estimate from both frequency and phase loop
y: i32, // current phase estimate
}
impl RPLL {
/// Create a new RPLL instance.
///
/// Args:
/// * dt2: inverse update() rate. 1 << dt2 is the counter rate to update() rate ratio.
/// * t: Counter time. Counter value at the first update() call. Typically 0.
///
/// Returns:
/// Initialized RPLL instance.
pub fn new(dt2: u8, t: i32) -> RPLL {
let mut pll = RPLL::default();
pll.dt2 = dt2;
pll.t = t;
pll
}
/// Advance the RPLL and optionally supply a new timestamp.
///
/// Args:
/// * input: Optional new timestamp (wrapping around at the i32 boundary).
/// * shift_frequency: Frequency lock settling time. 1 << shift_frequency is
/// frequency lock settling time in counter periods. The settling time must be larger
/// than the signal period to lock to.
/// * shift_phase: Phase lock settling time. Usually the same as
/// `shift_frequency` (see there).
///
/// Returns:
/// A tuple containing the current phase (wrapping at the i32 boundary, pi) and
/// frequency (wrapping at the i32 boundary, Nyquist) estimate.
pub fn update(
&mut self,
input: Option<i32>,
shift_frequency: u8,
shift_phase: u8,
) -> (i32, i32) {
debug_assert!(shift_frequency > 0);
debug_assert!(shift_phase > 0);
debug_assert!(32 + self.dt2 >= shift_frequency);
self.y = self.y.wrapping_add(self.f as i32);
if let Some(x) = input {
self.ff = self.ff.wrapping_add((1i32 << 32 + self.dt2 - shift_frequency)
- ((self.ff as i64).wrapping_mul(x.wrapping_sub(self.x) as i64)
+ (1i64 << shift_frequency - 1) // half-up rounding bias
>> shift_frequency) as i32);
self.f = self.ff.wrapping_add(
((self.f as i64).wrapping_mul(self.t.wrapping_sub(x) as i64)
.wrapping_sub((self.y as i64) << self.dt2)
// + (1i64 << shift_phase - 1)
>> shift_phase) as i32,
);
self.x = x;
}
self.t = self.t.wrapping_add(1 << self.dt2);
(self.y, self.f)
}
}