pounder_test/src/bin/lockin-external.rs

363 lines
13 KiB
Rust

#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
use stm32h7xx_hal as hal;
#[macro_use]
extern crate log;
use rtic::cyccnt::{Instant, U32Ext};
use heapless::{consts::*, String};
use stabilizer::{
hardware, server, ADC_SAMPLE_TICKS_LOG2, SAMPLE_BUFFER_SIZE_LOG2,
};
use dsp::{iir, iir_int, lockin::Lockin, rpll::RPLL, Accu};
use hardware::{
Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1,
};
const SCALE: f32 = i16::MAX as _;
const TCP_RX_BUFFER_SIZE: usize = 8192;
const TCP_TX_BUFFER_SIZE: usize = 8192;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
net_interface: hardware::Ethernet,
// Format: iir_state[ch][cascade-no][coeff]
#[init([[iir::Vec5([0.; 5]); IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
#[init([[iir::IIR::new(1./(1 << 16) as f32, -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])]
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
timestamper: InputStamper,
pll: RPLL,
lockin: Lockin,
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
let pll = RPLL::new(ADC_SAMPLE_TICKS_LOG2 + SAMPLE_BUFFER_SIZE_LOG2);
let lockin = Lockin::new(
iir_int::Vec5::lowpass(1e-3, 0.707, 2.), // TODO: expose
);
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start recording digital input timestamps.
stabilizer.timestamp_timer.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
// Enable the timestamper.
stabilizer.timestamper.start();
init::LateResources {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
net_interface: stabilizer.net.interface,
timestamper: stabilizer.timestamper,
pll,
lockin,
}
}
/// Main DSP processing routine.
///
/// See `dual-iir` for general notes on processing time and timing.
///
/// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
/// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
/// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch, lockin, timestamper, pll], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
let iir_ch = c.resources.iir_ch;
let iir_state = c.resources.iir_state;
let lockin = c.resources.lockin;
let timestamp = c
.resources
.timestamper
.latest_timestamp()
.unwrap_or_else(|t| t) // Ignore timer capture overflows.
.map(|t| t as i32);
let (pll_phase, pll_frequency) = c.resources.pll.update(
timestamp,
22, // frequency settling time (log2 counter cycles), TODO: expose
22, // phase settling time, TODO: expose
);
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
let harmonic: i32 = -1; // TODO: expose
// Demodulation LO phase offset
let phase_offset: i32 = 0; // TODO: expose
let sample_frequency = ((pll_frequency
// .wrapping_add(1 << SAMPLE_BUFFER_SIZE_LOG2 - 1) // half-up rounding bias
>> SAMPLE_BUFFER_SIZE_LOG2) as i32)
.wrapping_mul(harmonic);
let sample_phase =
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
let output = adc_samples[0]
.iter()
.zip(Accu::new(sample_phase, sample_frequency))
// Convert to signed, MSB align the ADC sample.
.map(|(&sample, phase)| {
lockin.update((sample as i16 as i32) << 16, phase)
})
.last()
.unwrap();
// convert i/q to power/phase,
let power_phase = true; // TODO: expose
let mut output = if power_phase {
// Convert from IQ to power and phase.
[output.abs_sqr() as _, output.arg() as _]
} else {
[output.0 as _, output.1 as _]
};
// Filter power and phase through IIR filters.
// Note: Normalization to be done in filters. Phase will wrap happily.
for j in 0..iir_state[0].len() {
for k in 0..output.len() {
output[k] =
iir_ch[k][j].update(&mut iir_state[k][j], output[k]);
}
}
// Note(unsafe): range clipping to i16 is ensured by IIR filters above.
// Convert to DAC data.
for i in 0..dac_samples[0].len() {
unsafe {
dac_samples[0][i] =
output[0].to_int_unchecked::<i16>() as u16 ^ 0x8000;
dac_samples[1][i] =
output[1].to_int_unchecked::<i16>() as u16 ^ 0x8000;
}
}
}
#[idle(resources=[net_interface, iir_state, iir_ch, afes])]
fn idle(mut c: idle::Context) -> ! {
let mut socket_set_entries: [_; 8] = Default::default();
let mut sockets =
smoltcp::socket::SocketSet::new(&mut socket_set_entries[..]);
let mut rx_storage = [0; TCP_RX_BUFFER_SIZE];
let mut tx_storage = [0; TCP_TX_BUFFER_SIZE];
let tcp_handle = {
let tcp_rx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut rx_storage[..]);
let tcp_tx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut tx_storage[..]);
let tcp_socket =
smoltcp::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
sockets.add(tcp_socket)
};
let mut server = server::Server::new();
let mut time = 0u32;
let mut next_ms = Instant::now();
// TODO: Replace with reference to CPU clock from CCDR.
next_ms += 400_000.cycles();
loop {
let tick = Instant::now() > next_ms;
if tick {
next_ms += 400_000.cycles();
time += 1;
}
{
let socket =
&mut *sockets.get::<smoltcp::socket::TcpSocket>(tcp_handle);
if socket.state() == smoltcp::socket::TcpState::CloseWait {
socket.close();
} else if !(socket.is_open() || socket.is_listening()) {
socket
.listen(1235)
.unwrap_or_else(|e| warn!("TCP listen error: {:?}", e));
} else {
server.poll(socket, |req| {
info!("Got request: {:?}", req);
stabilizer::route_request!(req,
readable_attributes: [
"stabilizer/iir/state": (|| {
let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][0].0[0],
y0: iir_state[0][0].0[2],
x1: iir_state[1][0].0[0],
y1: iir_state[1][0].0[2],
});
Ok::<server::Status, ()>(state)
}),
// "_b" means cascades 2nd IIR
"stabilizer/iir_b/state": (|| { let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][IIR_CASCADE_LENGTH-1].0[0],
y0: iir_state[0][IIR_CASCADE_LENGTH-1].0[2],
x1: iir_state[1][IIR_CASCADE_LENGTH-1].0[0],
y1: iir_state[1][IIR_CASCADE_LENGTH-1].0[2],
});
Ok::<server::Status, ()>(state)
}),
"stabilizer/afe0/gain": (|| c.resources.afes.0.get_gain()),
"stabilizer/afe1/gain": (|| c.resources.afes.1.get_gain())
],
modifiable_attributes: [
"stabilizer/iir0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir1/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b1/state": server::IirRequest,(|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/afe0/gain": hardware::AfeGain, (|gain| {
c.resources.afes.0.set_gain(gain);
Ok::<(), ()>(())
}),
"stabilizer/afe1/gain": hardware::AfeGain, (|gain| {
c.resources.afes.1.set_gain(gain);
Ok::<(), ()>(())
})
]
)
});
}
}
let sleep = match c.resources.net_interface.poll(
&mut sockets,
smoltcp::time::Instant::from_millis(time as i64),
) {
Ok(changed) => !changed,
Err(smoltcp::Error::Unrecognized) => true,
Err(e) => {
info!("iface poll error: {:?}", e);
true
}
};
if sleep {
cortex_m::asm::wfi();
}
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};