pounder_test/src/net/data_stream.rs

280 lines
7.9 KiB
Rust

use core::borrow::BorrowMut;
use heapless::spsc::{Consumer, Producer, Queue};
use miniconf::MiniconfAtomic;
use serde::Deserialize;
use smoltcp_nal::embedded_nal::{IpAddr, Ipv4Addr, SocketAddr, UdpClientStack};
use super::NetworkReference;
use crate::hardware::design_parameters::SAMPLE_BUFFER_SIZE;
// The number of data blocks that we will buffer in the queue.
const BLOCK_BUFFER_SIZE: usize = 30;
const SUBSAMPLE_RATE: usize = 1;
#[derive(Copy, Clone, Debug, MiniconfAtomic, Deserialize)]
pub struct StreamTarget {
pub ip: [u8; 4],
pub port: u16,
}
impl Default for StreamTarget {
fn default() -> Self {
Self {
ip: [0; 4],
port: 0,
}
}
}
impl Into<SocketAddr> for StreamTarget {
fn into(self) -> SocketAddr {
SocketAddr::new(
IpAddr::V4(Ipv4Addr::new(
self.ip[0], self.ip[1], self.ip[2], self.ip[3],
)),
self.port,
)
}
}
pub fn setup_streaming(
stack: NetworkReference,
) -> (BlockGenerator, DataStream) {
let queue = cortex_m::singleton!(: Queue<AdcDacData, BLOCK_BUFFER_SIZE> = Queue::new()).unwrap();
let (producer, consumer) = queue.split();
let generator = BlockGenerator::new(producer);
let stream = DataStream::new(stack, consumer);
(generator, stream)
}
#[derive(Debug, Copy, Clone)]
pub struct AdcDacData {
block_id: u16,
adcs: [[u16; SAMPLE_BUFFER_SIZE]; 2],
dacs: [[u16; SAMPLE_BUFFER_SIZE]; 2],
}
pub struct BlockGenerator {
queue: Producer<'static, AdcDacData, BLOCK_BUFFER_SIZE>,
current_id: u16,
}
impl BlockGenerator {
pub fn new(
queue: Producer<'static, AdcDacData, BLOCK_BUFFER_SIZE>,
) -> Self {
Self {
queue,
current_id: 0,
}
}
pub fn send(
&mut self,
adcs: &[&mut [u16; SAMPLE_BUFFER_SIZE]; 2],
dacs: &[&mut [u16; SAMPLE_BUFFER_SIZE]; 2],
) {
let block = AdcDacData {
block_id: self.current_id,
adcs: [*adcs[0], *adcs[1]],
dacs: [*dacs[0], *dacs[1]],
};
self.current_id = self.current_id.wrapping_add(1);
self.queue.enqueue(block).ok();
}
}
pub struct DataStream {
stack: NetworkReference,
socket: Option<<NetworkReference as UdpClientStack>::UdpSocket>,
queue: Consumer<'static, AdcDacData, BLOCK_BUFFER_SIZE>,
remote: Option<SocketAddr>,
buffer: [u8; 1024],
}
// Datapacket format:
//
// Header:
// [0..2]: Start block ID (u16)
// [2..3]: Num Blocks present (u8) <N>
// [3..4]: Batch Size (u8) <BS>
//
// Following the header, batches are added sequentially. Each batch takes the form of:
// [<BS>*0..<BS>*2]: ADC0
// [<BS>*2..<BS>*4]: ADC1
// [<BS>*4..<BS>*6]: DAC0
// [<BS>*6..<BS>*8]: DAC1
struct DataPacket<'a> {
buf: &'a mut [u8],
subsample_rate: usize,
start_id: Option<u16>,
num_blocks: u8,
write_index: usize,
}
impl<'a> DataPacket<'a> {
pub fn new(buf: &'a mut [u8], subsample_rate: usize) -> Self {
Self {
buf,
start_id: None,
num_blocks: 0,
subsample_rate,
write_index: 4,
}
}
pub fn add_batch(&mut self, batch: &AdcDacData) -> Result<(), ()> {
// Check that the block is sequential.
if let Some(id) = &self.start_id {
if batch.block_id != id.wrapping_add(self.num_blocks.into()) {
return Err(());
}
} else {
// Otherwise, this is the first block. Record the strt ID.
self.start_id = Some(batch.block_id);
}
// Check that there is space for the block.
let block_size_bytes = SAMPLE_BUFFER_SIZE / self.subsample_rate * 4 * 2;
if self.buf.len() - self.get_packet_size() < block_size_bytes {
return Err(());
}
// Copy the samples into the buffer.
for device in &[batch.adcs, batch.dacs] {
for channel in device {
for sample in channel.iter().step_by(self.subsample_rate) {
self.buf[self.write_index..self.write_index + 2]
.copy_from_slice(&sample.to_be_bytes());
self.write_index += 2;
}
}
}
Ok(())
}
fn get_packet_size(&self) -> usize {
let header_length = 4;
let block_sample_size = SAMPLE_BUFFER_SIZE / self.subsample_rate;
let block_size_bytes = block_sample_size * 2 * 4;
block_size_bytes * self.num_blocks as usize + header_length
}
pub fn finish(self) -> usize {
let block_sample_size = SAMPLE_BUFFER_SIZE / self.subsample_rate;
// Write the header into the block.
self.buf[0..2].copy_from_slice(&self.start_id.unwrap().to_be_bytes());
self.buf[2] = self.num_blocks;
self.buf[3] = block_sample_size as u8;
// Return the length of the packet to transmit.
self.get_packet_size()
}
}
impl DataStream {
pub fn new(
stack: NetworkReference,
consumer: Consumer<'static, AdcDacData, BLOCK_BUFFER_SIZE>,
) -> Self {
Self {
stack,
socket: None,
remote: None,
queue: consumer,
buffer: [0; 1024],
}
}
fn close(&mut self) {
// Note(unwrap): We guarantee that the socket is available above.
let socket = self.socket.take().unwrap();
self.stack.close(socket).unwrap();
log::info!("Stream Disconnecting");
}
fn open(&mut self, remote: SocketAddr) -> Result<(), ()> {
if self.socket.is_some() {
self.close();
}
// If the remote address is unspecified, just close the existing socket.
if remote.ip().is_unspecified() {
if self.socket.is_some() {
self.close();
}
return Err(());
}
let mut socket = self.stack.socket().map_err(|err| match err {
<NetworkReference as UdpClientStack>::Error::NoIpAddress => (),
_ => (),
})?;
self.stack.connect(&mut socket, remote).unwrap();
// Note(unwrap): The socket will be empty before we replace it.
self.socket.replace(socket);
Ok(())
}
pub fn set_remote(&mut self, remote: SocketAddr) {
// If the remote is identical to what we already have, do nothing.
if let Some(current_remote) = self.remote {
if current_remote == remote {
return;
}
}
// Open the new remote connection.
self.open(remote).ok();
self.remote = Some(remote);
}
pub fn process(&mut self) {
// If there's no socket available, try to connect to our remote.
if self.socket.is_none() && self.remote.is_some() {
// If we still can't open the remote, continue.
if self.open(self.remote.unwrap()).is_err() {
// Clear the queue out.
while self.queue.ready() {
self.queue.dequeue();
}
return;
}
}
if self.queue.ready() {
// Dequeue data from the queue into a larger block structure.
let mut packet = DataPacket::new(&mut self.buffer, SUBSAMPLE_RATE);
while self.queue.ready() {
// Note(unwrap): We check above that the queue is ready before calling this.
if packet.add_batch(self.queue.peek().unwrap()).is_err() {
// If we cannot add another batch, break out of the loop and send the packet.
break;
}
// Remove the batch that we just added.
self.queue.dequeue();
}
// Transmit the data block.
let mut handle = self.socket.borrow_mut().unwrap();
let size = packet.finish();
self.stack.send(&mut handle, &self.buffer[..size]).ok();
}
}
}