5e2c2c8f30
367: dma: don't swap buffers r=jordens a=jordens * This uses a new closure-based method to the DMA HAL implementation which gives access to the inactive buffer directly. * It removes changing addresses, the third buffer for DBM, the inactive address poisoning, and allows the cancellation of the redundant repeat memory barriers and compiler fences. * This is now around 20 instructions per buffer down from about 100 cycles before. * Also introduces a new `SampleBuffer` type alias. * The required unpacking of the resources structure is a bit annoying but could probably abstraced away. * Reduced pounder capture rate to the batch rate using the prescaler. * Removes the Pounder Timestamper DMA (close #260) TODO: * [x] Tested that dual-iir still works * [x] Tested that DMA overflows are signaled as panics (batch size 1 at full rate) * [x] Adapt `lockin` * [x] Tested on FLS without pounder timestamp DMA. Co-authored-by: Robert Jördens <rj@quartiq.de> |
||
---|---|---|
.cargo | ||
.github | ||
ad9959 | ||
doc | ||
dsp | ||
hitl | ||
src | ||
.gitignore | ||
.rustfmt.toml | ||
build.rs | ||
Cargo.lock | ||
Cargo.toml | ||
cargosha256-dual-iir.nix | ||
CHANGELOG.md | ||
Embed.toml | ||
LICENSE | ||
memory.x | ||
miniconf.py | ||
openocd.gdb | ||
README.md | ||
requirements.txt | ||
stabilizer_pid.png | ||
stabilizer_pid.svg | ||
stabilizer.cfg |
Stabilizer Firmware
Hardware
Applications
This firmware offers a library of hardware and software functionality targeting the use of the Stabilizer hardware in various digital signal processing applications commonly occurring in Quantum Technology. It provides abstractions over the fast analog inputs and outputs, time stamping, Pounder DDS interfaces and a collection of tailored and optimized digital signal processing algorithms (IIR, FIR, Lockin, PLL, reciprocal PLL, Unwrapper, Lowpass, Cosine-Sine, Atan2). An application can compose and configure these hardware and software components to implement different use cases. Several applications are provides by default:
Dual-IIR
- dual channel
- SPI ADC
- SPI DAC
- up to 800 kHz rate, timed sampling
- down to 2 µs latency
- f32 IIR math
- generic biquad (second order) IIR filter
- anti-windup
- derivative kick avoidance
Lockin
- Up to 800 kHz sampling
- Up to 400 kHz modulation frequency
- Reciprocal PLL for external reference
- Internal reference
- Adjustable PLL and locking time constants
- Adjustable phase offset and harmonic index
- Different output modes (in-phase, quadrature, magnitude, log2 power, phase, frequency)
Minimal bootstrapping documentation
- Clone or download this
- Get rustup
- Minimum supported Rust version (MSRV) is 1.52.0
- Install target support:
rustup target add thumbv7em-none-eabihf
- Install
probe-run
:cargo install probe-run
cargo run --release --bin dual-iir
- When using debug (non
--release
) mode, increase the sample interval significantly. The added error checking code and missing optimizations may lead to the code missing deadlines and panicing.
Alternative flashing tools
Cargo-embed
- Install
cargo-embed
:cargo install cargo-embed
- Program the device:
cargo embed --bin dual-iir --release
GDB/OpenOCD
- Get a recent openocd, a JTAG adapter ("st-link" or some clone) and everything connected and permissions setup. Most Nucleo boards have a detachable ST-Link v2 and are cheap.[^swd]
- Get a multiarch
gdb
(or a cross arm gdb and edit.cargo/config
accordingly) openocd -f stabilizer.cfg
and leave it runningcargo run --release
USB-DFU
- Get cargo-binutils
cargo objcopy --release --bin dual-iir -- -O binary dual-iir.bin
orarm-none-eabi-objcopy -O binary target/thumbv7em-none-eabihf/release/dual-iir dual-iir.bin
- Install the DFU USB tool (
dfu-util
) - Connect to the Micro USB connector below the RJ45
- Short JC2/BOOT
dfu-util -a 0 -s 0x08000000:leave -D dual-iir.bin
ST-Link virtual mass storage
- Prepare
dual-iir.bin
like above - Connect the ST-Link debugger
- Copy
dual-iir.bin
to theNODE_H743ZI
virtual mass storage device
Protocol
Stabilizer can be configured via MQTT. Refer to
miniconf
for more information about topics.
A basic command line interface is available in miniconf.py
.
Telemetry is published via MQTT as well.