#![deny(warnings)] #![no_std] #![no_main] use dsp::{Accu, Complex, ComplexExt, Lockin}; use generic_array::typenum::U2; use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1}; use stabilizer::{hardware, hardware::design_parameters}; // A constant sinusoid to send on the DAC output. // Full-scale gives a +/- 10V amplitude waveform. Scale it down to give +/- 1V. const ONE: i16 = (0.1 * u16::MAX as f32) as _; const SQRT2: i16 = (ONE as f32 * 0.707) as _; const DAC_SEQUENCE: [i16; design_parameters::SAMPLE_BUFFER_SIZE] = [ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2, 0, SQRT2]; #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adc: Adc1Input, dacs: (Dac0Output, Dac1Output), lockin: Lockin, } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); // Enable ADC/DAC events stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { lockin: Lockin::default(), afes: stabilizer.afes, adc: stabilizer.adcs.1, dacs: stabilizer.dacs, } } /// Main DSP processing routine. /// /// See `dual-iir` for general notes on processing time and timing. /// /// This is an implementation of an internal-reference lockin on the ADC1 signal. /// The reference at f_sample/8 is output on DAC0 and the phase of the demodulated /// signal on DAC1. #[task(binds=DMA1_STR4, resources=[adc, dacs, lockin], priority=2)] fn process(c: process::Context) { let lockin = c.resources.lockin; let adc_samples = c.resources.adc.acquire_buffer(); let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; // Reference phase and frequency are known. let pll_phase = 0i32; let pll_frequency = 1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2); // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate) let harmonic: i32 = -1; // Demodulation LO phase offset let phase_offset: i32 = 1 << 30; // Log2 lowpass time constant. let time_constant: u8 = 8; let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic); let sample_phase = phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic)); let output: Complex = adc_samples .iter() // Zip in the LO phase. .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter) .map(|(&sample, phase)| { let s = (sample as i16 as i32) << 16; lockin.update(s, phase, time_constant) }) // Decimate .last() .unwrap() * 2; // Full scale assuming the 2f component is gone. // Convert to DAC data. for (i, data) in DAC_SEQUENCE.iter().enumerate() { // DAC0 always generates a fixed sinusoidal output. dac_samples[0][i] = *data as u16 ^ 0x8000; dac_samples[1][i] = (output.arg() >> 16) as u16 ^ 0x8000; } } #[idle(resources=[afes])] fn idle(_: idle::Context) -> ! { loop { cortex_m::asm::wfi(); } } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { stm32h7xx_hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };