/// Reciprocal PLL. /// /// Consumes noisy, quantized timestamps of a reference signal and reconstructs /// the phase and frequency of the update() invocations with respect to (and in units of /// 1 << 32 of) that reference. #[derive(Copy, Clone, Default)] pub struct RPLL { dt2: u8, // 1 << dt2 is the counter rate to update() rate ratio t: i32, // current counter time x: i32, // previous timestamp ff: i32, // current frequency estimate from the frequency loop f: i32, // current frequency estimate from both frequency and phase loop y: i32, // current phase estimate } impl RPLL { /// Create a new RPLL instance. /// /// Args: /// * dt2: inverse update() rate. 1 << dt2 is the counter rate to update() rate ratio. /// * t: Counter time. Counter value at the first update() call. Typically 0. /// /// Returns: /// Initialized RPLL instance. pub fn new(dt2: u8, t: i32) -> RPLL { let mut pll = RPLL::default(); pll.dt2 = dt2; pll.t = t; pll } /// Advance the RPLL and optionally supply a new timestamp. /// /// Args: /// * input: Optional new timestamp (wrapping around at the i32 boundary). /// * shift_frequency: Frequency lock settling time. 1 << shift_frequency is /// frequency lock settling time in counter periods. The settling time must be larger /// than the signal period to lock to. /// * shift_phase: Phase lock settling time. Usually the same as /// `shift_frequency` (see there). /// /// Returns: /// A tuple containing the current phase (wrapping at the i32 boundary, pi) and /// frequency (wrapping at the i32 boundary, Nyquist) estimate. pub fn update( &mut self, input: Option, shift_frequency: u8, shift_phase: u8, ) -> (i32, i32) { debug_assert!(shift_frequency > 0); debug_assert!(shift_phase > 0); debug_assert!(32 + self.dt2 >= shift_frequency); self.y = self.y.wrapping_add(self.f as i32); if let Some(x) = input { self.ff = self.ff.wrapping_add((1i32 << 32 + self.dt2 - shift_frequency) - ((self.ff as i64).wrapping_mul(x.wrapping_sub(self.x) as i64) + (1i64 << shift_frequency - 1) // half-up rounding bias >> shift_frequency) as i32); self.f = self.ff.wrapping_add( ((self.f as i64).wrapping_mul(self.t.wrapping_sub(x) as i64) .wrapping_sub((self.y as i64) << self.dt2) // + (1i64 << shift_phase - 1) >> shift_phase) as i32, ); self.x = x; } self.t = self.t.wrapping_add(1 << self.dt2); (self.y, self.f) } }