#![deny(warnings)] #![no_std] #![no_main] #![cfg_attr(feature = "nightly", feature(core_intrinsics))] use stm32h7xx_hal as hal; #[macro_use] extern crate log; use rtic::cyccnt::{Instant, U32Ext}; use heapless::{consts::*, String}; use stabilizer::{ hardware, server, ADC_SAMPLE_TICKS_LOG2, SAMPLE_BUFFER_SIZE_LOG2, }; use dsp::{iir, iir_int, lockin::Lockin, rpll::RPLL, Accu}; use hardware::{ Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1, }; const SCALE: f32 = i16::MAX as _; const TCP_RX_BUFFER_SIZE: usize = 8192; const TCP_TX_BUFFER_SIZE: usize = 8192; // The number of cascaded IIR biquads per channel. Select 1 or 2! const IIR_CASCADE_LENGTH: usize = 1; #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), net_interface: hardware::Ethernet, // Format: iir_state[ch][cascade-no][coeff] #[init([[iir::Vec5([0.; 5]); IIR_CASCADE_LENGTH]; 2])] iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2], #[init([[iir::IIR::new(1./(1 << 16) as f32, -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])] iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], timestamper: InputStamper, pll: RPLL, lockin: Lockin, } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let pll = RPLL::new(ADC_SAMPLE_TICKS_LOG2 + SAMPLE_BUFFER_SIZE_LOG2); let lockin = Lockin::new( iir_int::Vec5::lowpass(1e-3, 0.707, 2.), // TODO: expose ); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start recording digital input timestamps. stabilizer.timestamp_timer.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, net_interface: stabilizer.net.interface, timestamper: stabilizer.timestamper, pll, lockin, } } /// Main DSP processing routine. /// /// See `dual-iir` for general notes on processing time and timing. /// /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal. /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale. /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available. #[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch, lockin, timestamper, pll], priority=2)] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; let iir_ch = c.resources.iir_ch; let iir_state = c.resources.iir_state; let lockin = c.resources.lockin; let timestamp = c .resources .timestamper .latest_timestamp() .unwrap_or_else(|t| t) // Ignore timer capture overflows. .map(|t| t as i32); let (pll_phase, pll_frequency) = c.resources.pll.update( timestamp, 22, // frequency settling time (log2 counter cycles), TODO: expose 22, // phase settling time, TODO: expose ); // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate) let harmonic: i32 = -1; // TODO: expose // Demodulation LO phase offset let phase_offset: i32 = 0; // TODO: expose let sample_frequency = ((pll_frequency // .wrapping_add(1 << SAMPLE_BUFFER_SIZE_LOG2 - 1) // half-up rounding bias >> SAMPLE_BUFFER_SIZE_LOG2) as i32) .wrapping_mul(harmonic); let sample_phase = phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic)); let output = adc_samples[0] .iter() .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample. .map(|(&sample, phase)| { lockin.update((sample as i16 as i32) << 16, phase) }) .last() .unwrap(); // convert i/q to power/phase, let power_phase = true; // TODO: expose let mut output = if power_phase { // Convert from IQ to power and phase. [output.abs_sqr() as _, output.arg() as _] } else { [output.0 as _, output.1 as _] }; // Filter power and phase through IIR filters. // Note: Normalization to be done in filters. Phase will wrap happily. for j in 0..iir_state[0].len() { for k in 0..output.len() { output[k] = iir_ch[k][j].update(&mut iir_state[k][j], output[k]); } } // Note(unsafe): range clipping to i16 is ensured by IIR filters above. // Convert to DAC data. for i in 0..dac_samples[0].len() { unsafe { dac_samples[0][i] = output[0].to_int_unchecked::() as u16 ^ 0x8000; dac_samples[1][i] = output[1].to_int_unchecked::() as u16 ^ 0x8000; } } } #[idle(resources=[net_interface, iir_state, iir_ch, afes])] fn idle(mut c: idle::Context) -> ! { let mut socket_set_entries: [_; 8] = Default::default(); let mut sockets = smoltcp::socket::SocketSet::new(&mut socket_set_entries[..]); let mut rx_storage = [0; TCP_RX_BUFFER_SIZE]; let mut tx_storage = [0; TCP_TX_BUFFER_SIZE]; let tcp_handle = { let tcp_rx_buffer = smoltcp::socket::TcpSocketBuffer::new(&mut rx_storage[..]); let tcp_tx_buffer = smoltcp::socket::TcpSocketBuffer::new(&mut tx_storage[..]); let tcp_socket = smoltcp::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer); sockets.add(tcp_socket) }; let mut server = server::Server::new(); let mut time = 0u32; let mut next_ms = Instant::now(); // TODO: Replace with reference to CPU clock from CCDR. next_ms += 400_000.cycles(); loop { let tick = Instant::now() > next_ms; if tick { next_ms += 400_000.cycles(); time += 1; } { let socket = &mut *sockets.get::(tcp_handle); if socket.state() == smoltcp::socket::TcpState::CloseWait { socket.close(); } else if !(socket.is_open() || socket.is_listening()) { socket .listen(1235) .unwrap_or_else(|e| warn!("TCP listen error: {:?}", e)); } else { server.poll(socket, |req| { info!("Got request: {:?}", req); stabilizer::route_request!(req, readable_attributes: [ "stabilizer/iir/state": (|| { let state = c.resources.iir_state.lock(|iir_state| server::Status { t: time, x0: iir_state[0][0].0[0], y0: iir_state[0][0].0[2], x1: iir_state[1][0].0[0], y1: iir_state[1][0].0[2], }); Ok::(state) }), // "_b" means cascades 2nd IIR "stabilizer/iir_b/state": (|| { let state = c.resources.iir_state.lock(|iir_state| server::Status { t: time, x0: iir_state[0][IIR_CASCADE_LENGTH-1].0[0], y0: iir_state[0][IIR_CASCADE_LENGTH-1].0[2], x1: iir_state[1][IIR_CASCADE_LENGTH-1].0[0], y1: iir_state[1][IIR_CASCADE_LENGTH-1].0[2], }); Ok::(state) }), "stabilizer/afe0/gain": (|| c.resources.afes.0.get_gain()), "stabilizer/afe1/gain": (|| c.resources.afes.1.get_gain()) ], modifiable_attributes: [ "stabilizer/iir0/state": server::IirRequest, (|req: server::IirRequest| { c.resources.iir_ch.lock(|iir_ch| { if req.channel > 1 { return Err(()); } iir_ch[req.channel as usize][0] = req.iir; Ok::(req) }) }), "stabilizer/iir1/state": server::IirRequest, (|req: server::IirRequest| { c.resources.iir_ch.lock(|iir_ch| { if req.channel > 1 { return Err(()); } iir_ch[req.channel as usize][0] = req.iir; Ok::(req) }) }), "stabilizer/iir_b0/state": server::IirRequest, (|req: server::IirRequest| { c.resources.iir_ch.lock(|iir_ch| { if req.channel > 1 { return Err(()); } iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir; Ok::(req) }) }), "stabilizer/iir_b1/state": server::IirRequest,(|req: server::IirRequest| { c.resources.iir_ch.lock(|iir_ch| { if req.channel > 1 { return Err(()); } iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir; Ok::(req) }) }), "stabilizer/afe0/gain": hardware::AfeGain, (|gain| { c.resources.afes.0.set_gain(gain); Ok::<(), ()>(()) }), "stabilizer/afe1/gain": hardware::AfeGain, (|gain| { c.resources.afes.1.set_gain(gain); Ok::<(), ()>(()) }) ] ) }); } } let sleep = match c.resources.net_interface.poll( &mut sockets, smoltcp::time::Instant::from_millis(time as i64), ) { Ok(changed) => !changed, Err(smoltcp::Error::Unrecognized) => true, Err(e) => { info!("iface poll error: {:?}", e); true } }; if sleep { cortex_m::asm::wfi(); } } } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };