use core::f32::consts::PI; use serde::{Deserialize, Serialize}; /// Generic vector for integer IIR filter. /// This struct is used to hold the x/y input/output data vector or the b/a coefficient /// vector. #[derive(Copy, Clone, Default, Deserialize, Serialize)] pub struct IIRState(pub [i32; 5]); impl IIRState { /// Lowpass biquad filter using cutoff and sampling frequencies. Taken from: /// https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html /// /// # Args /// * `f` - Corner frequency, or 3dB cutoff frequency (in units of sample rate). /// This is only accurate for low corner frequencies less than ~0.01. /// * `q` - Quality factor (1/sqrt(2) for critical). /// * `k` - DC gain. /// /// # Returns /// 2nd-order IIR filter coefficients in the form [b0,b1,b2,a1,a2]. a0 is set to -1. pub fn lowpass(f: f32, q: f32, k: f32) -> IIRState { // 3rd order Taylor approximation of sin and cos. let f = f * 2. * PI; let fsin = f - f * f * f / 6.; let fcos = 1. - f * f / 2.; let alpha = fsin / (2. * q); // IIR uses Q2.30 fixed point let a0 = (1. + alpha) / (1 << IIR::SHIFT) as f32; let b0 = (k / 2. * (1. - fcos) / a0) as _; let a1 = (2. * fcos / a0) as _; let a2 = ((alpha - 1.) / a0) as _; IIRState([b0, 2 * b0, b0, a1, a2]) } } fn macc(y0: i32, x: &[i32], a: &[i32], shift: u32) -> i32 { // Rounding bias, half up let y0 = ((y0 as i64) << shift) + (1 << (shift - 1)); let y = x .iter() .zip(a) .map(|(x, a)| *x as i64 * *a as i64) .fold(y0, |y, xa| y + xa); (y >> shift) as i32 } /// Integer biquad IIR /// /// See `dsp::iir::IIR` for general implementation details. /// Offset and limiting disabled to suit lowpass applications. /// Coefficient scaling fixed and optimized. #[derive(Copy, Clone, Default, Deserialize, Serialize)] pub struct IIR { pub ba: IIRState, // pub y_offset: i32, // pub y_min: i32, // pub y_max: i32, } impl IIR { /// Coefficient fixed point format: signed Q2.30. /// Tailored to low-passes, PI, II etc. pub const SHIFT: u32 = 30; /// Feed a new input value into the filter, update the filter state, and /// return the new output. Only the state `xy` is modified. /// /// # Arguments /// * `xy` - Current filter state. /// * `x0` - New input. pub fn update(&self, xy: &mut IIRState, x0: i32) -> i32 { let n = self.ba.0.len(); debug_assert!(xy.0.len() == n); // `xy` contains x0 x1 y0 y1 y2 // Increment time x1 x2 y1 y2 y3 // Shift x1 x1 x2 y1 y2 // This unrolls better than xy.rotate_right(1) xy.0.copy_within(0..n - 1, 1); // Store x0 x0 x1 x2 y1 y2 xy.0[0] = x0; // Compute y0 by multiply-accumulate let y0 = macc(0, &xy.0, &self.ba.0, IIR::SHIFT); // Limit y0 // let y0 = y0.max(self.y_min).min(self.y_max); // Store y0 x0 x1 y0 y1 y2 xy.0[n / 2] = y0; y0 } } #[cfg(test)] mod test { use super::IIRState; #[test] fn lowpass_gen() { let ba = IIRState::lowpass(1e-3, 1. / 2f32.sqrt(), 2.); println!("{:?}", ba.0); } }