#![deny(warnings)] #![no_std] #![no_main] #![cfg_attr(feature = "nightly", feature(asm))] // Enable returning `!` #![cfg_attr(feature = "nightly", feature(never_type))] #![cfg_attr(feature = "nightly", feature(core_intrinsics))] #[inline(never)] #[panic_handler] #[cfg(all(feature = "nightly", not(feature = "semihosting")))] fn panic(_info: &core::panic::PanicInfo) -> ! { let gpiod = unsafe { &*pac::GPIOD::ptr() }; gpiod.odr.modify(|_, w| w.odr6().high().odr12().high()); // FP_LED_1, FP_LED_3 unsafe { core::intrinsics::abort(); } } #[cfg(feature = "semihosting")] extern crate panic_semihosting; #[cfg(not(any(feature = "nightly", feature = "semihosting")))] extern crate panic_halt; #[macro_use] extern crate log; use core::ptr; // use core::sync::atomic::{AtomicU32, AtomicBool, Ordering}; use core::fmt::Write; use cortex_m_rt::exception; use stm32h7::stm32h743 as pac; use heapless::{String, Vec, consts::*}; use rtfm::cyccnt::{Instant, U32Ext as _}; use smoltcp as net; use serde::{Serialize, Deserialize, de::DeserializeOwned}; use serde_json_core::{ser::to_string, de::from_slice}; mod eth; mod iir; use iir::*; mod i2c; mod eeprom; mod board; #[cfg(not(feature = "semihosting"))] fn init_log() {} #[cfg(feature = "semihosting")] fn init_log() { use log::LevelFilter; use cortex_m_log::log::{Logger, init as init_log}; use cortex_m_log::printer::semihosting::{InterruptOk, hio::HStdout}; static mut LOGGER: Option>> = None; let logger = Logger { inner: InterruptOk::<_>::stdout().unwrap(), level: LevelFilter::Info, }; let logger = unsafe { LOGGER.get_or_insert(logger) }; init_log(logger).unwrap(); } // Pull in build information (from `built` crate) mod build_info { #![allow(dead_code)] // include!(concat!(env!("OUT_DIR"), "/built.rs")); } const SCALE: f32 = ((1 << 15) - 1) as f32; // static ETHERNET_PENDING: AtomicBool = AtomicBool::new(true); const TCP_RX_BUFFER_SIZE: usize = 8192; const TCP_TX_BUFFER_SIZE: usize = 8192; macro_rules! create_socket { ($set:ident, $rx_storage:ident, $tx_storage:ident, $target:ident) => ( let mut $rx_storage = [0; TCP_RX_BUFFER_SIZE]; let mut $tx_storage = [0; TCP_TX_BUFFER_SIZE]; let tcp_rx_buffer = net::socket::TcpSocketBuffer::new(&mut $rx_storage[..]); let tcp_tx_buffer = net::socket::TcpSocketBuffer::new(&mut $tx_storage[..]); let tcp_socket = net::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer); let $target = $set.add(tcp_socket); ) } #[rtfm::app(device = stm32h7::stm32h743, peripherals = true, monotonic = rtfm::cyccnt::CYCCNT)] const APP: () = { struct Resources { spi: (pac::SPI1, pac::SPI2, pac::SPI4, pac::SPI5), i2c: pac::I2C2, ethernet_periph: (pac::ETHERNET_MAC, pac::ETHERNET_DMA, pac::ETHERNET_MTL), #[init([[0.; 5]; 2])] iir_state: [IIRState; 2], #[init([IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE }; 2])] iir_ch: [IIR; 2], #[link_section = ".sram3.eth"] #[init(eth::Device::new())] ethernet: eth::Device, } #[init(schedule = [tick])] fn init(c: init::Context) -> init::LateResources { board::init(); init_log(); // info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap()); // info!("Built on {}", build_info::BUILT_TIME_UTC); // info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET); // c.schedule.tick(Instant::now()).unwrap(); let dp = c.device; init::LateResources { spi: (dp.SPI1, dp.SPI2, dp.SPI4, dp.SPI5), i2c: dp.I2C2, ethernet_periph: (dp.ETHERNET_MAC, dp.ETHERNET_DMA, dp.ETHERNET_MTL), } } #[idle(resources = [ethernet, ethernet_periph, iir_state, iir_ch, i2c])] fn idle(c: idle::Context) -> ! { let (MAC, DMA, MTL) = c.resources.ethernet_periph; let hardware_addr = match eeprom::read_eui48(c.resources.i2c) { Err(_) => { info!("Could not read EEPROM, using default MAC address"); net::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00]) }, Ok(raw_mac) => net::wire::EthernetAddress(raw_mac) }; info!("MAC: {}", hardware_addr); unsafe { c.resources.ethernet.init(hardware_addr, MAC, DMA, MTL) }; let mut neighbor_cache_storage = [None; 8]; let neighbor_cache = net::iface::NeighborCache::new(&mut neighbor_cache_storage[..]); let local_addr = net::wire::IpAddress::v4(10, 0, 16, 99); let mut ip_addrs = [net::wire::IpCidr::new(local_addr, 24)]; let mut iface = net::iface::EthernetInterfaceBuilder::new(c.resources.ethernet) .ethernet_addr(hardware_addr) .neighbor_cache(neighbor_cache) .ip_addrs(&mut ip_addrs[..]) .finalize(); let mut socket_set_entries: [_; 8] = Default::default(); let mut sockets = net::socket::SocketSet::new(&mut socket_set_entries[..]); create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle0); create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle1); // unsafe { eth::enable_interrupt(DMA); } let mut time = 0u32; let mut next_ms = Instant::now(); next_ms += 400_000.cycles(); let mut server = Server::new(); let mut iir_state: resources::iir_state = c.resources.iir_state; let mut iir_ch: resources::iir_ch = c.resources.iir_ch; loop { // if ETHERNET_PENDING.swap(false, Ordering::Relaxed) { } let tick = Instant::now() > next_ms; if tick { next_ms += 400_000.cycles(); time += 1; } { let socket = &mut *sockets.get::(tcp_handle0); if socket.state() == net::socket::TcpState::CloseWait { socket.close(); } else if !(socket.is_open() || socket.is_listening()) { socket.listen(1234).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e)); } else if tick && socket.can_send() { let s = iir_state.lock(|iir_state| Status { t: time, x0: iir_state[0][0], y0: iir_state[0][2], x1: iir_state[1][0], y1: iir_state[1][2] }); json_reply(socket, &s); } } { let socket = &mut *sockets.get::(tcp_handle1); if socket.state() == net::socket::TcpState::CloseWait { socket.close(); } else if !(socket.is_open() || socket.is_listening()) { socket.listen(1235).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e)); } else { server.poll(socket, |req: &Request| { if req.channel < 2 { iir_ch.lock(|iir_ch| iir_ch[req.channel as usize] = req.iir); } }); } } if !match iface.poll(&mut sockets, net::time::Instant::from_millis(time as i64)) { Ok(changed) => changed, Err(net::Error::Unrecognized) => true, Err(e) => { info!("iface poll error: {:?}", e); true } } { // cortex_m::asm::wfi(); } } } #[task(priority = 1, schedule = [tick])] fn tick(c: tick::Context) { static mut TIME: u32 = 0; *TIME += 1; const PERIOD: u32 = 200_000_000; c.schedule.tick(c.scheduled + PERIOD.cycles()).unwrap(); } // seems to slow it down // #[link_section = ".data.spi1"] #[task(binds = SPI1, resources = [spi, iir_state, iir_ch], priority = 2)] fn spi1(c: spi1::Context) { #[cfg(feature = "bkpt")] cortex_m::asm::bkpt(); let (spi1, spi2, spi4, spi5) = c.resources.spi; let iir_ch = c.resources.iir_ch; let iir_state = c.resources.iir_state; let sr = spi1.sr.read(); if sr.eot().bit_is_set() { spi1.ifcr.write(|w| w.eotc().set_bit()); } if sr.rxp().bit_is_set() { let rxdr = &spi1.rxdr as *const _ as *const u16; let a = unsafe { ptr::read_volatile(rxdr) }; let x0 = f32::from(a as i16); let y0 = iir_ch[0].update(&mut iir_state[0], x0); let d = y0 as i16 as u16 ^ 0x8000; let txdr = &spi2.txdr as *const _ as *mut u16; unsafe { ptr::write_volatile(txdr, d) }; } let sr = spi5.sr.read(); if sr.eot().bit_is_set() { spi5.ifcr.write(|w| w.eotc().set_bit()); } if sr.rxp().bit_is_set() { let rxdr = &spi5.rxdr as *const _ as *const u16; let a = unsafe { ptr::read_volatile(rxdr) }; let x0 = f32::from(a as i16); let y0 = iir_ch[1].update(&mut iir_state[1], x0); let d = y0 as i16 as u16 ^ 0x8000; let txdr = &spi4.txdr as *const _ as *mut u16; unsafe { ptr::write_volatile(txdr, d) }; } #[cfg(feature = "bkpt")] cortex_m::asm::bkpt(); } /* #[task(binds = ETH, resources = [ethernet_periph], priority = 1)] fn eth(c: eth::Context) { let dma = &c.resources.ethernet_periph.1; ETHERNET_PENDING.store(true, Ordering::Relaxed); unsafe { eth::interrupt_handler(dma) } } */ extern "C" { // hw interrupt handlers for RTFM to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } }; #[derive(Deserialize,Serialize)] struct Request { channel: u8, iir: IIR, } #[derive(Serialize)] struct Response<'a> { code: i32, message: &'a str, } #[derive(Serialize)] struct Status { t: u32, x0: f32, y0: f32, x1: f32, y1: f32 } fn json_reply(socket: &mut net::socket::TcpSocket, msg: &T) { let mut u: String = to_string(msg).unwrap(); u.push('\n').unwrap(); socket.write_str(&u).unwrap(); } struct Server { data: Vec, discard: bool, } impl Server { fn new() -> Self { Self { data: Vec::new(), discard: false } } fn poll(&mut self, socket: &mut net::socket::TcpSocket, f: F) -> Option where T: DeserializeOwned, F: FnOnce(&T) -> R, { while socket.can_recv() { let found = socket.recv(|buf| { let (len, found) = match buf.iter().position(|&c| c as char == '\n') { Some(end) => (end + 1, true), None => (buf.len(), false), }; if self.data.len() + len >= self.data.capacity() { self.discard = true; self.data.clear(); } else if !self.discard && len > 0 { self.data.extend_from_slice(&buf[..len]).unwrap(); } (len, found) }).unwrap(); if found { if self.discard { self.discard = false; json_reply(socket, &Response { code: 520, message: "command buffer overflow" }); self.data.clear(); } else { let r = from_slice::(&self.data[..self.data.len() - 1]); self.data.clear(); match r { Ok(res) => { let r = f(&res); json_reply(socket, &Response { code: 200, message: "ok" }); return Some(r); }, Err(err) => { warn!("parse error {:?}", err); json_reply(socket, &Response { code: 550, message: "parse error" }); }, } } } } None } } #[exception] fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! { panic!("HardFault at {:#?}", ef); } #[exception] fn DefaultHandler(irqn: i16) { panic!("Unhandled exception (IRQn = {})", irqn); }