#![deny(warnings)] #![no_std] #![no_main] use stabilizer::{hardware, net}; use miniconf::{minimq, Miniconf}; use serde::Deserialize; use dsp::iir; use hardware::{ Adc0Input, Adc1Input, AfeGain, Dac0Output, Dac1Output, DigitalInput0, DigitalInput1, InputPin, SystemTimer, AFE0, AFE1, }; use net::{Action, MiniconfInterface}; const SCALE: f32 = i16::MAX as _; // The number of cascaded IIR biquads per channel. Select 1 or 2! const IIR_CASCADE_LENGTH: usize = 1; #[derive(Clone, Copy, Debug, Deserialize, Miniconf)] pub struct Settings { afe: [AfeGain; 2], iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], allow_hold: bool, force_hold: bool, telemetry_period_secs: u16, } impl Default for Settings { fn default() -> Self { Self { afe: [AfeGain::G1, AfeGain::G1], iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2], allow_hold: false, force_hold: false, telemetry_period_secs: 10, } } } #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)] const APP: () = { struct Resources { afes: (AFE0, AFE1), digital_inputs: (DigitalInput0, DigitalInput1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), mqtt_config: MiniconfInterface, telemetry: net::Telemetry, settings: Settings, // Format: iir_state[ch][cascade-no][coeff] #[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])] iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2], } #[init(spawn=[telemetry, settings_update])] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let mqtt_config = MiniconfInterface::new( stabilizer.net.stack, "", &net::get_device_prefix( env!("CARGO_BIN_NAME"), stabilizer.net.mac_address, ), stabilizer.net.phy, stabilizer.cycle_counter, ); // Spawn a settings update for default settings. c.spawn.settings_update().unwrap(); c.spawn.telemetry().unwrap(); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, telemetry: net::Telemetry::default(), digital_inputs: stabilizer.digital_inputs, mqtt_config, settings: Settings::default(), } } /// Main DSP processing routine for Stabilizer. /// /// # Note /// Processing time for the DSP application code is bounded by the following constraints: /// /// DSP application code starts after the ADC has generated a batch of samples and must be /// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer /// time). If this constraint is not met, firmware will panic due to an ADC input overrun. /// /// The DSP application code must also fill out the next DAC output buffer in time such that the /// DAC can switch to it when it has completed the current buffer. If this constraint is not met /// it's possible that old DAC codes will be generated on the output and the output samples will /// be delayed by 1 batch. /// /// Because the ADC and DAC operate at the same rate, these two constraints actually implement /// the same time bounds, meeting one also means the other is also met. #[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry], priority=2)] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; let hold = c.resources.settings.force_hold || (c.resources.digital_inputs.1.is_high().unwrap() && c.resources.settings.allow_hold); for channel in 0..adc_samples.len() { for sample in 0..adc_samples[0].len() { let mut y = f32::from(adc_samples[channel][sample] as i16); for i in 0..c.resources.iir_state[channel].len() { y = c.resources.settings.iir_ch[channel][i].update( &mut c.resources.iir_state[channel][i], y, hold, ); } // Note(unsafe): The filter limits ensure that the value is in range. // The truncation introduces 1/2 LSB distortion. let y = unsafe { y.to_int_unchecked::() }; // Convert to DAC code dac_samples[channel][sample] = y as u16 ^ 0x8000; } } // Update telemetry measurements. // TODO: Should we report these as voltages? c.resources.telemetry.latest_samples = [adc_samples[0][0] as i16, adc_samples[1][0] as i16]; c.resources.telemetry.latest_outputs = [dac_samples[0][0] as i16, dac_samples[1][0] as i16]; c.resources.telemetry.digital_inputs = [ c.resources.digital_inputs.0.is_high().unwrap(), c.resources.digital_inputs.1.is_high().unwrap(), ]; } #[idle(resources=[mqtt_config], spawn=[settings_update])] fn idle(mut c: idle::Context) -> ! { loop { match c .resources .mqtt_config .lock(|config_interface| config_interface.update()) { Some(Action::Sleep) => cortex_m::asm::wfi(), Some(Action::UpdateSettings) => { c.spawn.settings_update().unwrap() } _ => {} } } } #[task(priority = 1, resources=[mqtt_config, afes, settings])] fn settings_update(mut c: settings_update::Context) { let settings = &c.resources.mqtt_config.mqtt.settings; // Update the IIR channels. c.resources.settings.lock(|current| *current = *settings); // Update AFEs c.resources.afes.0.set_gain(settings.afe[0]); c.resources.afes.1.set_gain(settings.afe[1]); } #[task(priority = 1, resources=[mqtt_config, settings, telemetry], schedule=[telemetry])] fn telemetry(mut c: telemetry::Context) { let telemetry = c.resources.telemetry.lock(|telemetry| telemetry.clone()); // Serialize telemetry outside of a critical section to prevent blocking the processing // task. let telemetry = miniconf::serde_json_core::to_string::< heapless::consts::U256, _, >(&telemetry) .unwrap(); c.resources.mqtt_config.mqtt.client(|client| { // TODO: Incorporate current MQTT prefix instead of hard-coded value. client .publish( "dt/sinara/dual-iir/telemetry", telemetry.as_bytes(), minimq::QoS::AtMostOnce, &[], ) .ok() }); let telemetry_period = c .resources .settings .lock(|settings| settings.telemetry_period_secs); // Schedule the telemetry task in the future. c.schedule .telemetry( c.scheduled + SystemTimer::ticks_from_secs(telemetry_period as u32), ) .unwrap(); } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { stm32h7xx_hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };