use serde::{Deserialize, Serialize}; pub type IIRState = [i32; 5]; fn macc(y0: i32, x: &[i32], a: &[i32], shift: u32) -> i32 { // Rounding bias, half up let y0 = ((y0 as i64) << shift) + (1 << (shift - 1)); let y = x .iter() .zip(a) .map(|(x, a)| *x as i64 * *a as i64) .fold(y0, |y, xa| y + xa); (y >> shift) as i32 } /// Integer biquad IIR /// /// See `dsp::iir::IIR` for general implementation details. /// Offset and limiting disabled to suit lowpass applications. /// Coefficient scaling fixed and optimized. #[derive(Copy, Clone, Deserialize, Serialize)] pub struct IIR { pub ba: IIRState, // pub y_offset: i32, // pub y_min: i32, // pub y_max: i32, } impl IIR { /// Coefficient fixed point: signed Q2.30. /// Tailored to low-passes PI, II etc. const SHIFT: u32 = 30; /// Feed a new input value into the filter, update the filter state, and /// return the new output. Only the state `xy` is modified. /// /// # Arguments /// * `xy` - Current filter state. /// * `x0` - New input. pub fn update(&self, xy: &mut IIRState, x0: i32) -> i32 { let n = self.ba.len(); debug_assert!(xy.len() == n); // `xy` contains x0 x1 y0 y1 y2 // Increment time x1 x2 y1 y2 y3 // Shift x1 x1 x2 y1 y2 // This unrolls better than xy.rotate_right(1) xy.copy_within(0..n - 1, 1); // Store x0 x0 x1 x2 y1 y2 xy[0] = x0; // Compute y0 by multiply-accumulate let y0 = macc(0, xy, &self.ba, IIR::SHIFT); // Limit y0 // let y0 = y0.max(self.y_min).min(self.y_max); // Store y0 x0 x1 y0 y1 y2 xy[n / 2] = y0; y0 } }