#![deny(warnings)] #![no_std] #![no_main] #![cfg_attr(feature = "nightly", feature(core_intrinsics))] use stm32h7xx_hal as hal; use rtic::cyccnt::{Instant, U32Ext}; use stabilizer::{hardware, ADC_SAMPLE_TICKS_LOG2, SAMPLE_BUFFER_SIZE_LOG2}; use miniconf::{ embedded_nal::{IpAddr, Ipv4Addr}, MqttInterface, StringSet, }; use serde::Deserialize; use dsp::{iir, iir_int, lockin::Lockin, rpll::RPLL, Accu}; use hardware::{ Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1, }; const SCALE: f32 = i16::MAX as _; // The number of cascaded IIR biquads per channel. Select 1 or 2! const IIR_CASCADE_LENGTH: usize = 1; #[derive(Debug, Deserialize, StringSet)] pub struct Settings { iir: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], } impl Settings { pub fn new() -> Self { Self { iir: [[iir::IIR::default(); IIR_CASCADE_LENGTH]; 2], } } } #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), mqtt_interface: MqttInterface, // Format: iir_state[ch][cascade-no][coeff] #[init([[iir::Vec5([0.; 5]); IIR_CASCADE_LENGTH]; 2])] iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2], #[init([[iir::IIR::new(1./(1 << 16) as f32, -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])] iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], timestamper: InputStamper, pll: RPLL, lockin: Lockin, } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let broker = IpAddr::V4(Ipv4Addr::new(10, 0, 0, 2)); let mqtt_interface = MqttInterface::new( stabilizer.net.stack, "stabilizer/lockin", broker, Settings::new(), ) .unwrap(); let pll = RPLL::new(ADC_SAMPLE_TICKS_LOG2 + SAMPLE_BUFFER_SIZE_LOG2); let lockin = Lockin::new( iir_int::Vec5::lowpass(1e-3, 0.707, 2.), // TODO: expose ); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start recording digital input timestamps. stabilizer.timestamp_timer.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { mqtt_interface, afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, timestamper: stabilizer.timestamper, pll, lockin, } } /// Main DSP processing routine. /// /// See `dual-iir` for general notes on processing time and timing. /// /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal. /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale. /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available. #[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch, lockin, timestamper, pll], priority=2)] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; let iir_ch = c.resources.iir_ch; let iir_state = c.resources.iir_state; let lockin = c.resources.lockin; let timestamp = c .resources .timestamper .latest_timestamp() .unwrap_or_else(|t| t) // Ignore timer capture overflows. .map(|t| t as i32); let (pll_phase, pll_frequency) = c.resources.pll.update( timestamp, 22, // frequency settling time (log2 counter cycles), TODO: expose 22, // phase settling time, TODO: expose ); // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate) let harmonic: i32 = -1; // TODO: expose // Demodulation LO phase offset let phase_offset: i32 = 0; // TODO: expose let sample_frequency = ((pll_frequency // .wrapping_add(1 << SAMPLE_BUFFER_SIZE_LOG2 - 1) // half-up rounding bias >> SAMPLE_BUFFER_SIZE_LOG2) as i32) .wrapping_mul(harmonic); let sample_phase = phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic)); let output = adc_samples[0] .iter() .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample. .map(|(&sample, phase)| { lockin.update((sample as i16 as i32) << 16, phase) }) .last() .unwrap(); // convert i/q to power/phase, let power_phase = true; // TODO: expose let mut output = if power_phase { // Convert from IQ to power and phase. [output.abs_sqr() as _, output.arg() as _] } else { [output.0 as _, output.1 as _] }; // Filter power and phase through IIR filters. // Note: Normalization to be done in filters. Phase will wrap happily. for j in 0..iir_state[0].len() { for k in 0..output.len() { output[k] = iir_ch[k][j].update(&mut iir_state[k][j], output[k]); } } // Note(unsafe): range clipping to i16 is ensured by IIR filters above. // Convert to DAC data. for i in 0..dac_samples[0].len() { unsafe { dac_samples[0][i] = output[0].to_int_unchecked::() as u16 ^ 0x8000; dac_samples[1][i] = output[1].to_int_unchecked::() as u16 ^ 0x8000; } } } #[idle(resources=[mqtt_interface], spawn=[settings_update])] fn idle(mut c: idle::Context) -> ! { let mut time = 0u32; let mut next_ms = Instant::now(); // TODO: Replace with reference to CPU clock from CCDR. next_ms += 400_000.cycles(); loop { let tick = Instant::now() > next_ms; if tick { next_ms += 400_000.cycles(); time += 1; } let sleep = c .resources .mqtt_interface .lock(|interface| !interface.network_stack().poll(time)); match c .resources .mqtt_interface .lock(|interface| interface.update().unwrap()) { miniconf::Action::Continue => { if sleep { cortex_m::asm::wfi(); } } miniconf::Action::CommitSettings => { c.spawn.settings_update().unwrap() } } } } #[task(priority = 1, resources=[mqtt_interface, afes, iir_ch])] fn settings_update(mut c: settings_update::Context) { let settings = &c.resources.mqtt_interface.settings; c.resources.iir_ch.lock(|iir| *iir = settings.iir); // TODO: Update AFEs } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };