#![no_std] #![no_main] #![feature(asm)] // Enable returning `!` #![feature(never_type)] #[cfg(not(feature = "semihosting"))] extern crate panic_abort; #[cfg(feature = "semihosting")] extern crate panic_semihosting; #[macro_use] extern crate log; use core::ptr; use core::cell::RefCell; use core::sync::atomic::{AtomicU32, AtomicBool, Ordering}; use core::fmt::Write; use cortex_m_rt::{entry, exception}; use stm32h7::stm32h7x3::{self as stm32, Peripherals, CorePeripherals, interrupt}; use cortex_m::interrupt::Mutex; use heapless::{String, Vec, consts::*}; use smoltcp as net; use serde::{Serialize, Deserialize}; use serde_json_core::{ser::to_string, de::from_slice}; mod eth; mod iir; use iir::*; #[cfg(not(feature = "semihosting"))] fn init_log() {} #[cfg(feature = "semihosting")] fn init_log() { use log::LevelFilter; use cortex_m_log::log::{Logger, init}; use cortex_m_log::printer::semihosting::{InterruptOk, hio::HStdout}; static mut LOGGER: Option>> = None; let logger = Logger { inner: InterruptOk::<_>::stdout().unwrap(), level: LevelFilter::Info, }; let logger = unsafe { LOGGER.get_or_insert(logger) }; init(logger).unwrap(); } // Pull in build information (from `built` crate) mod build_info { #![allow(dead_code)] // include!(concat!(env!("OUT_DIR"), "/built.rs")); } fn pwr_setup(pwr: &stm32::PWR) { // go to VOS1 voltage scale for high perf pwr.cr3.write(|w| w.sden().set_bit() .ldoen().set_bit() .bypass().clear_bit() ); while pwr.csr1.read().actvosrdy().bit_is_clear() {} pwr.d3cr.write(|w| unsafe { w.vos().bits(0b11) }); // vos1 while pwr.d3cr.read().vosrdy().bit_is_clear() {} } fn rcc_reset(rcc: &stm32::RCC) { // Reset all peripherals rcc.ahb1rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.ahb1rstr.write(|w| unsafe { w.bits(0)}); rcc.apb1lrstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.apb1lrstr.write(|w| unsafe { w.bits(0)}); rcc.apb1hrstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.apb1hrstr.write(|w| unsafe { w.bits(0)}); rcc.ahb2rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.ahb2rstr.write(|w| unsafe { w.bits(0)}); rcc.apb2rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.apb2rstr.write(|w| unsafe { w.bits(0)}); // do not reset the cpu rcc.ahb3rstr.write(|w| unsafe { w.bits(0x7FFF_FFFF) }); rcc.ahb3rstr.write(|w| unsafe { w.bits(0)}); rcc.apb3rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.apb3rstr.write(|w| unsafe { w.bits(0)}); rcc.ahb4rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.ahb4rstr.write(|w| unsafe { w.bits(0)}); rcc.apb4rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); rcc.apb4rstr.write(|w| unsafe { w.bits(0)}); } fn rcc_pll_setup(rcc: &stm32::RCC, flash: &stm32::FLASH) { // Ensure HSI is on and stable rcc.cr.modify(|_, w| w.hsion().set_bit()); while rcc.cr.read().hsirdy().bit_is_clear() {} // Set system clock to HSI rcc.cfgr.modify(|_, w| unsafe { w.sw().bits(0) }); // hsi while rcc.cfgr.read().sws().bits() != 0 {} // Clear registers to reset value rcc.cr.write(|w| w.hsion().set_bit()); rcc.cfgr.reset(); // Ensure HSE is on and stable rcc.cr.modify(|_, w| w.hseon().set_bit() .hsebyp().clear_bit()); while rcc.cr.read().hserdy().bit_is_clear() {} rcc.pllckselr.modify(|_, w| unsafe { w.pllsrc().bits(0b10) // hse .divm1().bits(1) // ref prescaler .divm2().bits(1) // ref prescaler }); // Configure PLL1: 8MHz /1 *100 /2 = 400 MHz rcc.pllcfgr.modify(|_, w| unsafe { w.pll1vcosel().clear_bit() // 192-836 MHz VCO .pll1rge().bits(0b11) // 8-16 MHz PFD .pll1fracen().clear_bit() .divp1en().set_bit() .pll2vcosel().set_bit() // 150-420 MHz VCO .pll2rge().bits(0b11) // 8-16 MHz PFD .pll2fracen().clear_bit() .divp2en().set_bit() .divq2en().set_bit() }); rcc.pll1divr.write(|w| unsafe { w.divn1().bits(100 - 1) // feebdack divider .divp1().bits(2 - 1) // p output divider }); rcc.cr.modify(|_, w| w.pll1on().set_bit()); while rcc.cr.read().pll1rdy().bit_is_clear() {} // Configure PLL2: 8MHz /1 *25 / 2 = 100 MHz rcc.pll2divr.write(|w| unsafe { w.divn1().bits(25 - 1) // feebdack divider .divp1().bits(2 - 1) // p output divider .divq1().bits(2 - 1) // q output divider }); rcc.cr.modify(|_, w| w.pll2on().set_bit()); while rcc.cr.read().pll2rdy().bit_is_clear() {} // hclk 200 MHz, pclk 100 MHz let dapb = 0b100; rcc.d1cfgr.write(|w| unsafe { w.d1cpre().bits(0) // sys_ck not divided .hpre().bits(0b1000) // rcc_hclk3 = sys_d1cpre_ck / 2 .d1ppre().bits(dapb) // rcc_pclk3 = rcc_hclk3 / 2 }); rcc.d2cfgr.write(|w| unsafe { w.d2ppre1().bits(dapb) // rcc_pclk1 = rcc_hclk3 / 2 .d2ppre2().bits(dapb) // rcc_pclk2 = rcc_hclk3 / 2 }); rcc.d3cfgr.write(|w| unsafe { w.d3ppre().bits(dapb) // rcc_pclk4 = rcc_hclk3 / 2 }); // 2 wait states, 0b10 programming delay // 185-210 MHz flash.acr.write(|w| unsafe { w.wrhighfreq().bits(2) .latency().bits(2) }); while flash.acr.read().latency().bits() != 2 {} // CSI for I/O compensationc ell rcc.cr.modify(|_, w| w.csion().set_bit()); while rcc.cr.read().csirdy().bit_is_clear() {} // Set system clock to pll1_p rcc.cfgr.modify(|_, w| unsafe { w.sw().bits(0b011) }); // pll1p while rcc.cfgr.read().sws().bits() != 0b011 {} rcc.d1ccipr.write(|w| unsafe { w.ckpersrc().bits(1) // hse_ck }); rcc.d2ccip1r.modify(|_, w| unsafe { w.spi123src().bits(1) // pll2_p .spi45src().bits(1) // pll2_q }); rcc.d3ccipr.modify(|_, w| unsafe { w.spi6src().bits(1) // pll2_q }); } fn io_compensation_setup(syscfg: &stm32::SYSCFG) { syscfg.cccsr.modify(|_, w| w.en().set_bit() .cs().clear_bit() .hslv().clear_bit() ); while syscfg.cccsr.read().ready().bit_is_clear() {} } fn gpio_setup(gpioa: &stm32::GPIOA, gpiob: &stm32::GPIOB, gpiod: &stm32::GPIOD, gpioe: &stm32::GPIOE, gpiof: &stm32::GPIOF, gpiog: &stm32::GPIOG) { // FP_LED0 gpiod.otyper.modify(|_, w| w.ot5().push_pull()); gpiod.moder.modify(|_, w| w.moder5().output()); gpiod.odr.modify(|_, w| w.odr5().clear_bit()); // FP_LED1 gpiod.otyper.modify(|_, w| w.ot6().push_pull()); gpiod.moder.modify(|_, w| w.moder6().output()); gpiod.odr.modify(|_, w| w.odr6().clear_bit()); // LED_FP2 gpiog.otyper.modify(|_, w| w.ot4().push_pull()); gpiog.moder.modify(|_, w| w.moder4().output()); gpiog.odr.modify(|_, w| w.odr4().clear_bit()); // LED_FP3 gpiod.otyper.modify(|_, w| w.ot12().push_pull()); gpiod.moder.modify(|_, w| w.moder12().output()); gpiod.odr.modify(|_, w| w.odr12().clear_bit()); // AFE0_A0,1: PG2,PG3 gpiog.otyper.modify(|_, w| w.ot2().push_pull() .ot3().push_pull() ); gpiog.moder.modify(|_, w| w.moder2().output() .moder3().output() ); gpiog.odr.modify(|_, w| w.odr2().clear_bit() .odr3().clear_bit() ); // ADC0 // SCK: PG11 gpiog.moder.modify(|_, w| w.moder11().alternate()); gpiog.otyper.modify(|_, w| w.ot11().push_pull()); gpiog.ospeedr.modify(|_, w| w.ospeedr11().very_high_speed()); gpiog.afrh.modify(|_, w| w.afr11().af5()); // MOSI: PD7 // MISO: PA6 gpioa.moder.modify(|_, w| w.moder6().alternate()); gpioa.afrl.modify(|_, w| w.afr6().af5()); // NSS: PG10 gpiog.moder.modify(|_, w| w.moder10().alternate()); gpiog.otyper.modify(|_, w| w.ot10().push_pull()); gpiog.ospeedr.modify(|_, w| w.ospeedr10().very_high_speed()); gpiog.afrh.modify(|_, w| w.afr10().af5()); // DAC0 // SCK: PB10 gpiob.moder.modify(|_, w| w.moder10().alternate()); gpiob.otyper.modify(|_, w| w.ot10().push_pull()); gpiob.ospeedr.modify(|_, w| w.ospeedr10().very_high_speed()); gpiob.afrh.modify(|_, w| w.afr10().af5()); // MOSI: PB15 gpiob.moder.modify(|_, w| w.moder15().alternate()); gpiob.otyper.modify(|_, w| w.ot15().push_pull()); gpiob.ospeedr.modify(|_, w| w.ospeedr15().very_high_speed()); gpiob.afrh.modify(|_, w| w.afr15().af5()); // MISO: PB14 // NSS: PB9 gpiob.moder.modify(|_, w| w.moder9().alternate()); gpiob.otyper.modify(|_, w| w.ot9().push_pull()); gpiob.ospeedr.modify(|_, w| w.ospeedr9().very_high_speed()); gpiob.afrh.modify(|_, w| w.afr9().af5()); // DAC0_LDAC: PE11 gpioe.moder.modify(|_, w| w.moder11().output()); gpioe.otyper.modify(|_, w| w.ot11().push_pull()); gpioe.odr.modify(|_, w| w.odr11().clear_bit()); // DAC_CLR: PE12 gpioe.moder.modify(|_, w| w.moder12().output()); gpioe.otyper.modify(|_, w| w.ot12().push_pull()); gpioe.odr.modify(|_, w| w.odr12().set_bit()); // AFE1_A0,1: PD14,PD15 gpiod.otyper.modify(|_, w| w.ot14().push_pull() .ot15().push_pull() ); gpiod.moder.modify(|_, w| w.moder14().output() .moder15().output() ); gpiod.odr.modify(|_, w| w.odr14().clear_bit() .odr15().clear_bit() ); // ADC1 // SCK: PF6 gpiof.moder.modify(|_, w| w.moder7().alternate()); gpiof.otyper.modify(|_, w| w.ot7().push_pull()); gpiof.ospeedr.modify(|_, w| w.ospeedr7().very_high_speed()); gpiof.afrl.modify(|_, w| w.afr7().af5()); // MOSI: PF9 // MISO: PF7 gpiof.moder.modify(|_, w| w.moder8().alternate()); gpiof.afrh.modify(|_, w| w.afr8().af5()); // NSS: PF8 gpiof.moder.modify(|_, w| w.moder6().alternate()); gpiof.otyper.modify(|_, w| w.ot6().push_pull()); gpiof.ospeedr.modify(|_, w| w.ospeedr6().very_high_speed()); gpiof.afrl.modify(|_, w| w.afr6().af5()); // DAC1 // SCK: PE2 gpioe.moder.modify(|_, w| w.moder2().alternate()); gpioe.otyper.modify(|_, w| w.ot2().push_pull()); gpioe.ospeedr.modify(|_, w| w.ospeedr2().very_high_speed()); gpioe.afrl.modify(|_, w| w.afr2().af5()); // MOSI: PE6 gpioe.moder.modify(|_, w| w.moder6().alternate()); gpioe.otyper.modify(|_, w| w.ot6().push_pull()); gpioe.ospeedr.modify(|_, w| w.ospeedr6().very_high_speed()); gpioe.afrl.modify(|_, w| w.afr6().af5()); // MISO: PE5 // NSS: PE4 gpioe.moder.modify(|_, w| w.moder4().alternate()); gpioe.otyper.modify(|_, w| w.ot4().push_pull()); gpioe.ospeedr.modify(|_, w| w.ospeedr4().very_high_speed()); gpioe.afrl.modify(|_, w| w.afr4().af5()); // DAC1_LDAC: PE15 gpioe.moder.modify(|_, w| w.moder15().output()); gpioe.otyper.modify(|_, w| w.ot15().push_pull()); gpioe.odr.modify(|_, w| w.odr15().clear_bit()); } // ADC0 fn spi1_setup(spi1: &stm32::SPI1) { spi1.cfg1.modify(|_, w| { w.mbr().bits(1) // clk/4 .dsize().bits(16 - 1) .fthvl().one_frame() }); spi1.cfg2.modify(|_, w| unsafe { w.afcntr().set_bit() .ssom().set_bit() // ss deassert between frames during midi .ssoe().set_bit() // ss output enable .ssiop().clear_bit() // ss active low .ssm().clear_bit() // PAD counts .cpol().set_bit() .cpha().set_bit() .lsbfrst().clear_bit() .master().set_bit() .sp().bits(0) // motorola .comm().bits(0b10) // simplex receiver .ioswp().clear_bit() .midi().bits(0) // master inter data idle .mssi().bits(6) // master SS idle }); spi1.cr2.modify(|_, w| { w.tsize().bits(1) }); spi1.cr1.write(|w| w.spe().set_bit()); } // ADC1 fn spi5_setup(spi5: &stm32::SPI5) { spi5.cfg1.modify(|_, w| { w.mbr().bits(1) // clk/4 .dsize().bits(16 - 1) .fthvl().one_frame() }); spi5.cfg2.modify(|_, w| unsafe { w.afcntr().set_bit() .ssom().set_bit() // ss deassert between frames during midi .ssoe().set_bit() // ss output enable .ssiop().clear_bit() // ss active low .ssm().clear_bit() // PAD counts .cpol().set_bit() .cpha().set_bit() .lsbfrst().clear_bit() .master().set_bit() .sp().bits(0) // motorola .comm().bits(0b10) // simplex receiver .ioswp().clear_bit() .midi().bits(0) // master inter data idle .mssi().bits(6) // master SS idle }); spi5.cr2.modify(|_, w| { w.tsize().bits(1) }); spi5.cr1.write(|w| w.spe().set_bit()); } // DAC0 fn spi2_setup(spi2: &stm32::SPI2) { spi2.cfg1.modify(|_, w| { w.mbr().bits(0) // clk/2 .dsize().bits(16 - 1) .fthvl().one_frame() }); spi2.cfg2.modify(|_, w| unsafe { w.afcntr().set_bit() .ssom().set_bit() // ss deassert between frames during midi .ssoe().set_bit() // ss output enable .ssiop().clear_bit() // ss active low .ssm().clear_bit() // PAD counts .cpol().clear_bit() .cpha().clear_bit() .lsbfrst().clear_bit() .master().set_bit() .sp().bits(0) // motorola .comm().bits(0b01) // simplex transmitter .ioswp().clear_bit() .midi().bits(0) // master inter data idle .mssi().bits(0) // master SS idle }); spi2.cr2.modify(|_, w| w.tsize().bits(0)); spi2.cr1.write(|w| w.spe().enabled()); spi2.cr1.modify(|_, w| w.cstart().started()); } // DAC1 fn spi4_setup(spi4: &stm32::SPI4) { spi4.cfg1.modify(|_, w| { w.mbr().bits(0) // clk/2 .dsize().bits(16 - 1) .fthvl().one_frame() }); spi4.cfg2.modify(|_, w| unsafe { w.afcntr().set_bit() .ssom().set_bit() // ss deassert between frames during midi .ssoe().set_bit() // ss output enable .ssiop().clear_bit() // ss active low .ssm().clear_bit() // PAD counts .cpol().clear_bit() .cpha().clear_bit() .lsbfrst().clear_bit() .master().set_bit() .sp().bits(0) // motorola .comm().bits(0b01) // simplex transmitter .ioswp().clear_bit() .midi().bits(0) // master inter data idle .mssi().bits(0) // master SS idle }); spi4.cr2.modify(|_, w| { w.tsize().bits(0) }); spi4.cr1.write(|w| w.spe().enabled()); spi4.cr1.modify(|_, w| w.cstart().started()); } fn tim2_setup(tim2: &stm32::TIM2) { tim2.psc.write(|w| unsafe { w.psc().bits(200 - 1) }); // from 200 MHz tim2.arr.write(|w| unsafe { w.bits(2 - 1) }); // µs tim2.dier.write(|w| w.ude().set_bit()); tim2.egr.write(|w| w.ug().set_bit()); tim2.cr1.modify(|_, w| w.dir().clear_bit() // up .cen().set_bit()); // enable } fn dma1_setup(dma1: &stm32::DMA1, dmamux1: &stm32::DMAMUX1, ma: usize, pa0: usize, pa1: usize) { dma1.s0cr.modify(|_, w| w.en().clear_bit()); while dma1.s0cr.read().en().bit_is_set() {} dma1.s0par.write(|w| unsafe { w.pa().bits(pa0 as u32) }); dma1.s0m0ar.write(|w| unsafe { w.m0a().bits(ma as u32) }); dma1.s0ndtr.write(|w| unsafe { w.ndt().bits(1) }); dmamux1.ccr[0].modify(|_, w| unsafe { w.dmareq_id().bits(22) }); // tim2_up dma1.s0cr.modify(|_, w| unsafe { w.pl().bits(0b01) // medium .circ().set_bit() // reload ndtr .msize().bits(0b10) // 32 .minc().clear_bit() .mburst().bits(0b00) .psize().bits(0b10) // 32 .pinc().clear_bit() .pburst().bits(0b00) .dbm().clear_bit() .dir().bits(0b01) // memory_to_peripheral .pfctrl().clear_bit() // dma is FC }); dma1.s0fcr.modify(|_, w| w.dmdis().clear_bit()); dma1.s0cr.modify(|_, w| w.en().set_bit()); dma1.s1cr.modify(|_, w| w.en().clear_bit()); while dma1.s1cr.read().en().bit_is_set() {} dma1.s1par.write(|w| unsafe { w.pa().bits(pa1 as u32) }); dma1.s1m0ar.write(|w| unsafe { w.m0a().bits(ma as u32) }); dma1.s1ndtr.write(|w| unsafe { w.ndt().bits(1) }); dmamux1.ccr[1].modify(|_, w| unsafe { w.dmareq_id().bits(22) }); // tim2_up dma1.s1cr.modify(|_, w| unsafe { w.pl().bits(0b01) // medium .circ().set_bit() // reload ndtr .msize().bits(0b10) // 32 .minc().clear_bit() .mburst().bits(0b00) .psize().bits(0b10) // 32 .pinc().clear_bit() .pburst().bits(0b00) .dbm().clear_bit() .dir().bits(0b01) // memory_to_peripheral .pfctrl().clear_bit() // dma is FC }); dma1.s1fcr.modify(|_, w| w.dmdis().clear_bit()); dma1.s1cr.modify(|_, w| w.en().set_bit()); } type SpiPs = Option<(stm32::SPI1, stm32::SPI2, stm32::SPI4, stm32::SPI5)>; static SPIP: Mutex> = Mutex::new(RefCell::new(None)); #[link_section = ".sram1.datspi"] static mut DAT: u32 = 0x201; // EN | CSTART static TIME: AtomicU32 = AtomicU32::new(0); static ETHERNET_PENDING: AtomicBool = AtomicBool::new(true); #[link_section = ".sram3.eth"] static mut ETHERNET: eth::Device = eth::Device::new(); const TCP_RX_BUFFER_SIZE: usize = 8192; const TCP_TX_BUFFER_SIZE: usize = 8192; macro_rules! create_socket { ($set:ident, $rx_storage:ident, $tx_storage:ident, $target:ident) => ( let mut $rx_storage = [0; TCP_RX_BUFFER_SIZE]; let mut $tx_storage = [0; TCP_TX_BUFFER_SIZE]; let tcp_rx_buffer = net::socket::TcpSocketBuffer::new(&mut $rx_storage[..]); let tcp_tx_buffer = net::socket::TcpSocketBuffer::new(&mut $tx_storage[..]); let tcp_socket = net::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer); let $target = $set.add(tcp_socket); ) } #[entry] fn main() -> ! { let mut cp = CorePeripherals::take().unwrap(); let dp = Peripherals::take().unwrap(); let rcc = dp.RCC; rcc_reset(&rcc); init_log(); // info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap()); // info!("Built on {}", build_info::BUILT_TIME_UTC); // info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET); pwr_setup(&dp.PWR); rcc_pll_setup(&rcc, &dp.FLASH); rcc.apb4enr.modify(|_, w| w.syscfgen().set_bit()); io_compensation_setup(&dp.SYSCFG); // 100 MHz cp.SYST.set_clock_source(cortex_m::peripheral::syst::SystClkSource::Core); cp.SYST.set_reload(cortex_m::peripheral::SYST::get_ticks_per_10ms()*200/10); cp.SYST.enable_counter(); cp.SYST.enable_interrupt(); unsafe { cp.SCB.shpr[11].write(128); } // systick exception priority cp.SCB.enable_icache(); // TODO: ETH DMA coherence issues // cp.SCB.enable_dcache(&mut cp.CPUID); cp.DWT.enable_cycle_counter(); rcc.ahb4enr.modify(|_, w| w.gpioaen().set_bit() .gpioben().set_bit() .gpiocen().set_bit() .gpioden().set_bit() .gpioeen().set_bit() .gpiofen().set_bit() .gpiogen().set_bit() ); gpio_setup(&dp.GPIOA, &dp.GPIOB, &dp.GPIOD, &dp.GPIOE, &dp.GPIOF, &dp.GPIOG); rcc.apb1lenr.modify(|_, w| w.spi2en().set_bit()); let spi2 = dp.SPI2; spi2_setup(&spi2); rcc.apb2enr.modify(|_, w| w.spi4en().set_bit()); let spi4 = dp.SPI4; spi4_setup(&spi4); rcc.apb2enr.modify(|_, w| w.spi1en().set_bit()); let spi1 = dp.SPI1; spi1_setup(&spi1); spi1.ier.write(|w| w.eotie().set_bit()); rcc.apb2enr.modify(|_, w| w.spi5en().set_bit()); let spi5 = dp.SPI5; spi5_setup(&spi5); // spi5.ier.write(|w| w.eotie().set_bit()); rcc.ahb2enr.modify(|_, w| w .sram1en().set_bit() .sram2en().set_bit() .sram3en().set_bit() ); rcc.ahb1enr.modify(|_, w| w.dma1en().set_bit()); // init SRAM1 rodata can't load with sram1 disabled unsafe { DAT = 0x201 }; // EN | CSTART cortex_m::asm::dsb(); let dat_addr = unsafe { &DAT as *const _ } as usize; cp.SCB.clean_dcache_by_address(dat_addr, 4); dma1_setup(&dp.DMA1, &dp.DMAMUX1, dat_addr, &spi1.cr1 as *const _ as usize, &spi5.cr1 as *const _ as usize); rcc.apb1lenr.modify(|_, w| w.tim2en().set_bit()); // work around the SPI stall erratum //let dbgmcu = dp.DBGMCU; //dbgmcu.apb1lfz1.modify(|_, w| w.stop_tim2().set_bit()); // stop tim2 in debug unsafe { ptr::write_volatile(0x5c00_103c as *mut usize, 0x0000_0001) }; eth::setup(&rcc, &dp.SYSCFG); eth::setup_pins(&dp.GPIOA, &dp.GPIOB, &dp.GPIOC, &dp.GPIOG); let device = unsafe { &mut ETHERNET }; let hardware_addr = net::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00]); unsafe { device.init(hardware_addr) }; let mut neighbor_cache_storage = [None; 8]; let neighbor_cache = net::iface::NeighborCache::new(&mut neighbor_cache_storage[..]); let local_addr = net::wire::IpAddress::v4(10, 0, 16, 99); let mut ip_addrs = [net::wire::IpCidr::new(local_addr, 24)]; let mut iface = net::iface::EthernetInterfaceBuilder::new(device) .ethernet_addr(hardware_addr) .neighbor_cache(neighbor_cache) .ip_addrs(&mut ip_addrs[..]) .finalize(); let mut socket_set_entries: [_; 8] = Default::default(); let mut sockets = net::socket::SocketSet::new(&mut socket_set_entries[..]); create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle0); create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle1); unsafe { eth::enable_interrupt(); } unsafe { cp.NVIC.set_priority(stm32::Interrupt::ETH, 196); } // mid prio cp.NVIC.enable(stm32::Interrupt::ETH); tim2_setup(&dp.TIM2); unsafe { cp.NVIC.set_priority(stm32::Interrupt::SPI1, 0); } // highest prio cortex_m::interrupt::free(|cs| { cp.NVIC.enable(stm32::Interrupt::SPI1); SPIP.borrow(cs).replace(Some((spi1, spi2, spi4, spi5))); }); let mut last = 0; let mut server = Server::new(); loop { // if ETHERNET_PENDING.swap(false, Ordering::Relaxed) { } let time = TIME.load(Ordering::Relaxed); { let socket = &mut *sockets.get::(tcp_handle0); if !(socket.is_open() || socket.is_listening()) { socket.listen(1234).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e)); } else if last != time && socket.can_send() { last = time; handle_status(socket, time); } } { let socket = &mut *sockets.get::(tcp_handle1); if !(socket.is_open() || socket.is_listening()) { socket.listen(1235).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e)); } else { server.handle_command(socket); } } if !match iface.poll(&mut sockets, net::time::Instant::from_millis(time as i64)) { Ok(changed) => changed, Err(net::Error::Unrecognized) => true, Err(e) => { info!("iface poll error: {:?}", e); true } } { cortex_m::asm::wfi(); } } } #[derive(Deserialize,Serialize)] struct Request { channel: u8, iir: IIR, } #[derive(Serialize)] struct Response<'a> { code: i32, message: &'a str, } fn reply(socket: &mut net::socket::TcpSocket, msg: &T) { let mut u: String = to_string(msg).unwrap(); u.push('\n').unwrap(); socket.write_str(&u).unwrap(); } struct Server { data: Vec, discard: bool, } impl Server { fn new() -> Self { Self { data: Vec::new(), discard: false } } fn handle_command(&mut self, socket: &mut net::socket::TcpSocket) { while socket.can_recv() { let found = socket.recv(|buf| { let (len, found) = match buf.iter().position(|&c| c as char == '\n') { Some(end) => (end + 1, true), None => (buf.len(), false), }; if self.data.len() + len >= self.data.capacity() { self.discard = true; self.data.clear(); } else if !self.discard && len > 0 { self.data.extend_from_slice(&buf[..len - 1]).unwrap(); } (len, found) }).unwrap(); if !found { continue; } let resp = if self.discard { self.discard = false; Response{ code: 520, message: "command buffer overflow" } } else { match from_slice::(&self.data) { Ok(request) => { if request.channel > 1 { Response{ code: 530, message: "invalid channel" } } else { cortex_m::interrupt::free(|_| { unsafe { IIR_CH[request.channel as usize] = request.iir; }; }); Response{ code: 200, message: "ok" } } }, Err(err) => { warn!("parse error {:?}", err); Response{ code: 550, message: "parse error" } }, } }; self.data.clear(); reply(socket, &resp); socket.close(); } } } fn handle_status(socket: &mut net::socket::TcpSocket, time: u32) { let s = unsafe { Status{ t: time, x0: IIR_STATE[0][0], y0: IIR_STATE[0][2], x1: IIR_STATE[1][0], y1: IIR_STATE[1][2], }}; reply(socket, &s); } #[derive(Serialize)] struct Status { t: u32, x0: f32, y0: f32, x1: f32, y1: f32 } const SCALE: f32 = ((1 << 15) - 1) as f32; static mut IIR_STATE: [IIRState; 2] = [[0.; 5]; 2]; static mut IIR_CH: [IIR; 2] = [ IIR{ ba: [0., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE }; 2]; // seems to slow it down // #[link_section = ".data.spi1"] #[interrupt] fn SPI1() { #[cfg(feature = "bkpt")] cortex_m::asm::bkpt(); cortex_m::interrupt::free(|cs| { let spip = SPIP.borrow(cs).borrow(); let (spi1, spi2, spi4, spi5) = spip.as_ref().unwrap(); let sr = spi1.sr.read(); if sr.eot().bit_is_set() { spi1.ifcr.write(|w| w.eotc().set_bit()); } if sr.rxp().bit_is_set() { let rxdr = &spi1.rxdr as *const _ as *const u16; let a = unsafe { ptr::read_volatile(rxdr) }; let x0 = f32::from(a as i16); let y0 = unsafe { IIR_CH[0].update(&mut IIR_STATE[0], x0) }; let d = y0 as i16 as u16 ^ 0x8000; let txdr = &spi2.txdr as *const _ as *mut u16; unsafe { ptr::write_volatile(txdr, d) }; } let sr = spi5.sr.read(); if sr.eot().bit_is_set() { spi5.ifcr.write(|w| w.eotc().set_bit()); } if sr.rxp().bit_is_set() { let rxdr = &spi5.rxdr as *const _ as *const u16; let a = unsafe { ptr::read_volatile(rxdr) }; let x0 = f32::from(a as i16); let y0 = unsafe { IIR_CH[1].update(&mut IIR_STATE[1], x0) }; let d = y0 as i16 as u16 ^ 0x8000; let txdr = &spi4.txdr as *const _ as *mut u16; unsafe { ptr::write_volatile(txdr, d) }; } }); #[cfg(feature = "bkpt")] cortex_m::asm::bkpt(); } #[interrupt] fn ETH() { ETHERNET_PENDING.store(true, Ordering::Relaxed); unsafe { eth::interrupt_handler() } } #[exception] fn SysTick() { TIME.fetch_add(1, Ordering::Relaxed); } #[exception] fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! { panic!("HardFault at {:#?}", ef); } #[exception] fn DefaultHandler(irqn: i16) { panic!("Unhandled exception (IRQn = {})", irqn); }