use super::Complex; use core::f64::consts::PI; include!(concat!(env!("OUT_DIR"), "/cossin_table.rs")); /// Compute the cosine and sine of an angle. /// This is ported from the MiSoC cossin core. /// (https://github.com/m-labs/misoc/blob/master/misoc/cores/cossin.py) /// /// # Arguments /// * `phase` - 32-bit phase. /// /// # Returns /// The cos and sin values of the provided phase as a `Complex` /// value. With a 7-bit deep LUT there is 1e-5 max and 6e-8 RMS error /// in each quadrature over 20 bit phase. pub fn cossin(phase: i32) -> Complex { // Phase bits excluding the three highes MSB const OCTANT_BITS: usize = 32 - 3; // This is a slightly more compact way to compute the four flags for // octant mapping/unmapping used below. let mut octant = (phase as u32) >> OCTANT_BITS; octant ^= octant << 1; // Mask off octant bits. This leaves the angle in the range [0, pi/4). let mut phase = phase & ((1 << OCTANT_BITS) - 1); if octant & 1 != 0 { // phase = pi/4 - phase phase = (1 << OCTANT_BITS) - 1 - phase; } let lookup = COSSIN[(phase >> (OCTANT_BITS - COSSIN_DEPTH)) as usize]; // 1/2 < cos(0 <= x <= pi/4) <= 1: Shift the cos // values and scale the sine values as encoded in the LUT. let mut cos = lookup.0 as i32 + u16::MAX as i32; let mut sin = (lookup.1 as i32) << 1; // 16 + 1 bits for cos/sin and 15 for dphi to saturate the i32 range. const ALIGN_MSB: usize = 32 - 16 - 1; phase >>= OCTANT_BITS - COSSIN_DEPTH - ALIGN_MSB; phase &= (1 << ALIGN_MSB) - 1; // The phase values used for the LUT are at midpoint for the truncated phase. // Interpolate relative to the LUT entry midpoint. phase -= (1 << (ALIGN_MSB - 1)) - (octant & 1) as i32; // Fixed point pi/4. const PI4: i32 = (PI / 4. * (1 << (32 - ALIGN_MSB)) as f64) as i32; // No rounding bias necessary here since we keep enough low bits. let dphi = (phase * PI4) >> (32 - ALIGN_MSB); // Make room for the sign bit. let dcos = (sin * dphi) >> (COSSIN_DEPTH + 1); let dsin = (cos * dphi) >> (COSSIN_DEPTH + 1); cos = (cos << (ALIGN_MSB - 1)) - dcos; sin = (sin << (ALIGN_MSB - 1)) + dsin; // Unmap using octant bits. if octant & 2 != 0 { core::mem::swap(&mut sin, &mut cos); } if octant & 4 != 0 { cos *= -1; } if octant & 8 != 0 { sin *= -1; } Complex(cos, sin) } #[cfg(test)] mod tests { use super::*; use core::f64::consts::PI; #[test] fn cossin_error_max_rms_all_phase() { // Constant amplitude error due to LUT data range. const AMPLITUDE: f64 = ((1i64 << 31) - (1i64 << 15)) as _; const MAX_PHASE: f64 = (1i64 << 32) as _; let mut rms_err = Complex(0f64, 0f64); let mut sum_err = Complex(0f64, 0f64); let mut max_err = Complex(0f64, 0f64); let mut sum = Complex(0f64, 0f64); let mut demod = Complex(0f64, 0f64); // use std::{fs::File, io::{BufWriter, prelude::*}, path::Path}; // let mut file = BufWriter::new(File::create(Path::new("data.bin")).unwrap()); // log2 of the number of phase values to check const PHASE_DEPTH: usize = 20; for phase in 0..(1 << PHASE_DEPTH) { let phase = (phase << (32 - PHASE_DEPTH)) as i32; let have = cossin(phase); // file.write(&have.0.to_le_bytes()).unwrap(); // file.write(&have.1.to_le_bytes()).unwrap(); let have = (have.0 as f64 / AMPLITUDE, have.1 as f64 / AMPLITUDE); let radian_phase = 2. * PI * phase as f64 / MAX_PHASE; let want = (radian_phase.cos(), radian_phase.sin()); sum.0 += have.0; sum.1 += have.1; demod.0 += have.0 * want.0 - have.1 * want.1; demod.1 += have.1 * want.0 + have.0 * want.1; let err = (have.0 - want.0, have.1 - want.1); sum_err.0 += err.0; sum_err.1 += err.1; rms_err.0 += err.0 * err.0; rms_err.1 += err.1 * err.1; max_err.0 = max_err.0.max(err.0.abs()); max_err.1 = max_err.1.max(err.1.abs()); } rms_err.0 /= MAX_PHASE; rms_err.1 /= MAX_PHASE; println!("sum: {:.2e} {:.2e}", sum.0, sum.1); println!("demod: {:.2e} {:.2e}", demod.0, demod.1); println!("sum_err: {:.2e} {:.2e}", sum_err.0, sum_err.1); println!("rms: {:.2e} {:.2e}", rms_err.0.sqrt(), rms_err.1.sqrt()); println!("max: {:.2e} {:.2e}", max_err.0, max_err.1); assert!(sum.0.abs() < 4e-10); assert!(sum.1.abs() < 4e-10); assert!(demod.0.abs() < 4e-10); assert!(demod.1.abs() < 4e-10); assert!(sum_err.0.abs() < 4e-10); assert!(sum_err.1.abs() < 4e-10); assert!(rms_err.0.sqrt() < 6e-8); assert!(rms_err.1.sqrt() < 6e-8); assert!(max_err.0 < 1.1e-5); assert!(max_err.1 < 1.1e-5); } }