#![deny(warnings)] #![no_std] #![no_main] use stm32h7xx_hal as hal; use stabilizer::hardware; use miniconf::{ embedded_nal::{IpAddr, Ipv4Addr}, minimq, MqttInterface, StringSet, }; use serde::Deserialize; use dsp::iir; use hardware::{ Adc0Input, Adc1Input, AfeGain, CycleCounter, Dac0Output, Dac1Output, NetworkStack, AFE0, AFE1, }; const SCALE: f32 = i16::MAX as _; // The number of cascaded IIR biquads per channel. Select 1 or 2! const IIR_CASCADE_LENGTH: usize = 1; #[derive(Debug, Deserialize, StringSet)] pub struct Settings { afe: [AfeGain; 2], iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], } impl Default for Settings { fn default() -> Self { Self { afe: [AfeGain::G1, AfeGain::G1], iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2], } } } #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), mqtt_interface: MqttInterface, clock: CycleCounter, // Format: iir_state[ch][cascade-no][coeff] #[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])] iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2], #[init([[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])] iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2], } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let mqtt_interface = { let mqtt_client = { let broker = IpAddr::V4(Ipv4Addr::new(10, 34, 16, 1)); minimq::MqttClient::new( broker, "stabilizer", stabilizer.net.stack, ) .unwrap() }; MqttInterface::new(mqtt_client, "stabilizer", Settings::default()) .unwrap() }; // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { mqtt_interface, afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, clock: stabilizer.cycle_counter, } } /// Main DSP processing routine for Stabilizer. /// /// # Note /// Processing time for the DSP application code is bounded by the following constraints: /// /// DSP application code starts after the ADC has generated a batch of samples and must be /// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer /// time). If this constraint is not met, firmware will panic due to an ADC input overrun. /// /// The DSP application code must also fill out the next DAC output buffer in time such that the /// DAC can switch to it when it has completed the current buffer. If this constraint is not met /// it's possible that old DAC codes will be generated on the output and the output samples will /// be delayed by 1 batch. /// /// Because the ADC and DAC operate at the same rate, these two constraints actually implement /// the same time bounds, meeting one also means the other is also met. #[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch], priority=2)] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; for channel in 0..adc_samples.len() { for sample in 0..adc_samples[0].len() { let x = f32::from(adc_samples[channel][sample] as i16); let mut y = x; for i in 0..c.resources.iir_state[channel].len() { y = c.resources.iir_ch[channel][i] .update(&mut c.resources.iir_state[channel][i], y); } // Note(unsafe): The filter limits ensure that the value is in range. // The truncation introduces 1/2 LSB distortion. let y = unsafe { y.to_int_unchecked::() }; // Convert to DAC code dac_samples[channel][sample] = y as u16 ^ 0x8000; } } } #[idle(resources=[mqtt_interface, clock], spawn=[settings_update])] fn idle(mut c: idle::Context) -> ! { let clock = c.resources.clock; loop { let sleep = c.resources.mqtt_interface.lock(|interface| { !interface.network_stack().poll(clock.current_ms()) }); match c .resources .mqtt_interface .lock(|interface| interface.update().unwrap()) { miniconf::Action::Continue => { if sleep { cortex_m::asm::wfi(); } } miniconf::Action::CommitSettings => { c.spawn.settings_update().unwrap() } } } } #[task(priority = 1, resources=[mqtt_interface, afes, iir_ch])] fn settings_update(mut c: settings_update::Context) { let settings = &c.resources.mqtt_interface.settings; // Update the IIR channels. c.resources.iir_ch.lock(|iir| *iir = settings.iir_ch); // Update AFEs c.resources.afes.0.set_gain(settings.afe[0]); c.resources.afes.1.set_gain(settings.afe[1]); } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };