use core::{cmp, slice}; use smoltcp::phy; use smoltcp::time::Instant; use smoltcp::wire::EthernetAddress; use smoltcp::Result; use super::{pac}; #[allow(dead_code)] mod phy_consts { pub const PHY_REG_BCR: u8 = 0x00; pub const PHY_REG_BSR: u8 = 0x01; pub const PHY_REG_ID1: u8 = 0x02; pub const PHY_REG_ID2: u8 = 0x03; pub const PHY_REG_ANTX: u8 = 0x04; pub const PHY_REG_ANRX: u8 = 0x05; pub const PHY_REG_ANEXP: u8 = 0x06; pub const PHY_REG_ANNPTX: u8 = 0x07; pub const PHY_REG_ANNPRX: u8 = 0x08; pub const PHY_REG_SSR: u8 = 0x1F; // Special Status Register pub const PHY_REG_CTL: u8 = 0x0D; // Ethernet PHY Register Control pub const PHY_REG_ADDAR: u8 = 0x0E; // Ethernet PHY Address or Data pub const PHY_REG_WUCSR: u16 = 0x8010; pub const PHY_REG_BCR_COLTEST: u16 = 1 << 7; pub const PHY_REG_BCR_FD: u16 = 1 << 8; pub const PHY_REG_BCR_ANRST: u16 = 1 << 9; pub const PHY_REG_BCR_ISOLATE: u16 = 1 << 10; pub const PHY_REG_BCR_POWERDN: u16 = 1 << 11; pub const PHY_REG_BCR_AN: u16 = 1 << 12; pub const PHY_REG_BCR_100M: u16 = 1 << 13; pub const PHY_REG_BCR_LOOPBACK: u16 = 1 << 14; pub const PHY_REG_BCR_RESET: u16 = 1 << 15; pub const PHY_REG_BSR_JABBER: u16 = 1 << 1; pub const PHY_REG_BSR_UP: u16 = 1 << 2; pub const PHY_REG_BSR_FAULT: u16 = 1 << 4; pub const PHY_REG_BSR_ANDONE: u16 = 1 << 5; pub const PHY_REG_SSR_ANDONE: u16 = 1 << 12; pub const PHY_REG_SSR_SPEED: u16 = 0b111 << 2; pub const PHY_REG_SSR_10BASE_HD: u16 = 0b001 << 2; pub const PHY_REG_SSR_10BASE_FD: u16 = 0b101 << 2; pub const PHY_REG_SSR_100BASE_HD: u16 = 0b010 << 2; pub const PHY_REG_SSR_100BASE_FD: u16 = 0b110 << 2; } use self::phy_consts::*; const EMAC_DES3_OWN: u32 = 0x8000_0000; const EMAC_DES3_CTXT: u32 = 0x4000_0000; const EMAC_DES3_FD: u32 = 0x2000_0000; const EMAC_DES3_LD: u32 = 0x1000_0000; const EMAC_DES3_ES: u32 = 0x0000_8000; const EMAC_TDES2_IOC: u32 = 0x8000_0000; const EMAC_RDES3_IOC: u32 = 0x4000_0000; const EMAC_RDES3_PL: u32 = 0x0000_7FFF; const EMAC_RDES3_BUF1V: u32 = 0x0100_0000; const EMAC_TDES2_B1L: u32 = 0x0000_3FFF; const EMAC_DES0_BUF1AP: u32 = 0xFFFF_FFFF; // 6 DMAC, 6 SMAC, 4 q tag, 2 ethernet type II, 1500 ip MTU, 4 CRC, 2 padding const ETH_BUFFER_SIZE: usize = 1524; const ETH_DESC_U32_SIZE: usize = 4; const ETH_TX_BUFFER_COUNT: usize = 4; const ETH_RX_BUFFER_COUNT: usize = 4; #[allow(dead_code)] mod cr_consts { /* For HCLK 60-100 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_42: u8 = 0; /* For HCLK 100-150 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_62: u8 = 1; /* For HCLK 20-35 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_16: u8 = 2; /* For HCLK 35-60 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_26: u8 = 3; /* For HCLK 150-250 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_102: u8 = 4; /* For HCLK 250-300 MHz */ pub const ETH_MACMIIAR_CR_HCLK_DIV_124: u8 = 5; } use self::cr_consts::*; // set clock range in MAC MII address register // 200 MHz AHB clock = eth_hclk const CLOCK_RANGE: u8 = ETH_MACMIIAR_CR_HCLK_DIV_102; const PHY_ADDR: u8 = 0; fn phy_read(reg_addr: u8, mac: &pac::ETHERNET_MAC) -> u16 { while mac.macmdioar.read().mb().bit_is_set() {} mac.macmdioar.modify(|_, w| unsafe { w.pa() .bits(PHY_ADDR) .rda() .bits(reg_addr) .goc() .bits(0b11) // read .cr() .bits(CLOCK_RANGE) .mb() .set_bit() }); while mac.macmdioar.read().mb().bit_is_set() {} mac.macmdiodr.read().md().bits() } fn phy_write(reg_addr: u8, reg_data: u16, mac: &pac::ETHERNET_MAC) { while mac.macmdioar.read().mb().bit_is_set() {} mac.macmdiodr.write(|w| unsafe { w.md().bits(reg_data) }); mac.macmdioar.modify(|_, w| unsafe { w.pa() .bits(PHY_ADDR) .rda() .bits(reg_addr) .goc() .bits(0b01) // write .cr() .bits(CLOCK_RANGE) .mb() .set_bit() }); while mac.macmdioar.read().mb().bit_is_set() {} } // Writes a value to an extended PHY register in MMD address space fn phy_write_ext(reg_addr: u16, reg_data: u16, mac: &pac::ETHERNET_MAC) { phy_write(PHY_REG_CTL, 0x0003, mac); // set address phy_write(PHY_REG_ADDAR, reg_addr, mac); phy_write(PHY_REG_CTL, 0x4003, mac); // set data phy_write(PHY_REG_ADDAR, reg_data, mac); } #[repr(align(4))] struct RxRing { desc_buf: [[u32; ETH_DESC_U32_SIZE]; ETH_RX_BUFFER_COUNT], pkt_buf: [[u8; ETH_BUFFER_SIZE]; ETH_RX_BUFFER_COUNT], cur_desc: usize, } impl RxRing { const fn new() -> Self { Self { desc_buf: [[0; ETH_DESC_U32_SIZE]; ETH_RX_BUFFER_COUNT], pkt_buf: [[0; ETH_BUFFER_SIZE]; ETH_RX_BUFFER_COUNT], cur_desc: 0, } } unsafe fn init(&mut self, dma: &pac::ETHERNET_DMA) { assert_eq!(self.desc_buf[0].len() % 4, 0); assert_eq!(self.pkt_buf[0].len() % 4, 0); for i in 0..self.desc_buf.len() { for j in 0..self.desc_buf[0].len() { self.desc_buf[i][j] = 0; } for j in 0..self.pkt_buf[0].len() { self.pkt_buf[i][j] = 0; } } let addr = &self.desc_buf as *const _ as u32; assert_eq!(addr & 0x3, 0); dma.dmacrx_dlar.write(|w| w.bits(addr)); dma.dmacrx_rlr .write(|w| w.rdrl().bits(self.desc_buf.len() as u16 - 1)); self.cur_desc = 0; for _ in 0..self.desc_buf.len() { self.buf_release() } } fn next_desc(&self) -> usize { (self.cur_desc + 1) % self.desc_buf.len() } // not owned by DMA fn buf_owned(&self) -> bool { self.desc_buf[self.cur_desc][3] & EMAC_DES3_OWN == 0 } fn buf_valid(&self) -> bool { self.desc_buf[self.cur_desc][3] & (EMAC_DES3_FD | EMAC_DES3_LD | EMAC_DES3_ES | EMAC_DES3_CTXT) == (EMAC_DES3_FD | EMAC_DES3_LD) } unsafe fn buf_as_slice_mut<'a>(&self) -> &'a mut [u8] { let len = (self.desc_buf[self.cur_desc][3] & EMAC_RDES3_PL) as usize; let len = cmp::min(len, ETH_BUFFER_SIZE); let addr = &self.pkt_buf[self.cur_desc] as *const _ as *mut u8; slice::from_raw_parts_mut(addr, len) } fn buf_release(&mut self) { let addr = &self.pkt_buf[self.cur_desc] as *const _; self.desc_buf[self.cur_desc][0] = addr as u32 & EMAC_DES0_BUF1AP; self.desc_buf[self.cur_desc][3] = EMAC_RDES3_BUF1V | EMAC_RDES3_IOC | EMAC_DES3_OWN; let addr = &self.desc_buf[self.cur_desc] as *const _ as u32; assert_eq!(addr & 0x3, 0); let dma = unsafe { pac::Peripherals::steal().ETHERNET_DMA }; // Ensure changes to the descriptor (in particular, the OWN flag) are // committed before DMA engine sees tail pointer store. cortex_m::asm::dsb(); dma.dmacrx_dtpr.write(|w| unsafe { w.bits(addr) }); self.cur_desc = self.next_desc(); } } #[repr(align(4))] struct TxRing { desc_buf: [[u32; ETH_DESC_U32_SIZE]; ETH_TX_BUFFER_COUNT], pkt_buf: [[u8; ETH_BUFFER_SIZE]; ETH_TX_BUFFER_COUNT], cur_desc: usize, } impl TxRing { const fn new() -> Self { Self { desc_buf: [[0; ETH_DESC_U32_SIZE]; ETH_TX_BUFFER_COUNT], pkt_buf: [[0; ETH_BUFFER_SIZE]; ETH_TX_BUFFER_COUNT], cur_desc: 0, } } unsafe fn init(&mut self, dma: &pac::ETHERNET_DMA) { assert_eq!(self.desc_buf[0].len() % 4, 0); assert_eq!(self.pkt_buf[0].len() % 4, 0); for i in 0..self.desc_buf.len() { for j in 0..self.desc_buf[0].len() { self.desc_buf[i][j] = 0; } for j in 0..self.pkt_buf[0].len() { self.pkt_buf[i][j] = 0; } } self.cur_desc = 0; let addr = &self.desc_buf as *const _ as u32; assert_eq!(addr & 0x3, 0); dma.dmactx_dlar.write(|w| w.bits(addr)); dma.dmactx_rlr .write(|w| w.tdrl().bits(self.desc_buf.len() as u16 - 1)); let addr = &self.desc_buf[0] as *const _ as u32; assert_eq!(addr & 0x3, 0); dma.dmactx_dtpr.write(|w| w.bits(addr)); } fn next_desc(&self) -> usize { (self.cur_desc + 1) % self.desc_buf.len() } // not owned by DMA fn buf_owned(&self) -> bool { self.desc_buf[self.cur_desc][3] & EMAC_DES3_OWN == 0 } unsafe fn buf_as_slice_mut<'a>(&mut self, len: usize) -> &'a mut [u8] { let len = cmp::min(len, ETH_BUFFER_SIZE); self.desc_buf[self.cur_desc][2] = EMAC_TDES2_IOC | (len as u32 & EMAC_TDES2_B1L); let addr = &self.pkt_buf[self.cur_desc] as *const _ as *mut u8; self.desc_buf[self.cur_desc][0] = addr as u32 & EMAC_DES0_BUF1AP; slice::from_raw_parts_mut(addr, len) } fn buf_release(&mut self) { self.desc_buf[self.cur_desc][3] = EMAC_DES3_OWN | EMAC_DES3_FD | EMAC_DES3_LD; self.cur_desc = self.next_desc(); let addr = &self.desc_buf[self.cur_desc] as *const _ as u32; assert_eq!(addr & 0x3, 0); let dma = unsafe { pac::Peripherals::steal().ETHERNET_DMA }; // Ensure packet contents as well as changes to the descriptor have been // committed before DMA engine sees the tail pointer store. cortex_m::asm::dsb(); dma.dmactx_dtpr.write(|w| unsafe { w.bits(addr) }); } } pub struct Device { rx: RxRing, tx: TxRing, } impl Device { pub const fn new() -> Self { Self { rx: RxRing::new(), tx: TxRing::new(), } } // Initialize the ethernet peripherals // // # Safety // // This iis transitively unsafe since it sets potentially // unsafe register values. Might ultimately be safe if the values // are correct. // // After `init` is called, `Device` shall not be moved. pub unsafe fn init( &mut self, mac: EthernetAddress, eth_mac: &pac::ETHERNET_MAC, eth_dma: &pac::ETHERNET_DMA, eth_mtl: &pac::ETHERNET_MTL, ) { eth_dma.dmamr.modify(|_, w| w.swr().set_bit()); while eth_dma.dmamr.read().swr().bit_is_set() {} // 200 MHz eth_mac .mac1ustcr .modify(|_, w| w.tic_1us_cntr().bits(200 - 1)); // Configuration Register eth_mac.maccr.modify(|_, w| { w.arpen() .clear_bit() .ipc() .set_bit() .ipg() .bits(0b000) // 96 bit .ecrsfd() .clear_bit() .dcrs() .clear_bit() .bl() .bits(0b00) // 19 .prelen() .bits(0b00) // 7 // CRC stripping for Type frames .cst() .set_bit() // Fast Ethernet speed .fes() .set_bit() // Duplex mode .dm() .set_bit() // Automatic pad/CRC stripping .acs() .set_bit() // Retry disable in half-duplex mode .dr() .set_bit() }); eth_mac.macecr.modify(|_, w| { w.eipgen() .clear_bit() .usp() .clear_bit() .spen() .clear_bit() .dcrcc() .clear_bit() }); // Set the MAC address eth_mac.maca0lr.write(|w| { w.addrlo().bits( u32::from(mac.0[0]) | (u32::from(mac.0[1]) << 8) | (u32::from(mac.0[2]) << 16) | (u32::from(mac.0[3]) << 24), ) }); eth_mac.maca0hr.write(|w| { w.addrhi() .bits(u16::from(mac.0[4]) | (u16::from(mac.0[5]) << 8)) }); // frame filter register eth_mac.macpfr.modify(|_, w| { w.dntu() .clear_bit() .ipfe() .clear_bit() .vtfe() .clear_bit() .hpf() .clear_bit() .saf() .clear_bit() .saif() .clear_bit() .pcf() .bits(0b00) .dbf() .clear_bit() .pm() .clear_bit() .daif() .clear_bit() .hmc() .clear_bit() .huc() .clear_bit() // Receive All .ra() .clear_bit() // Promiscuous mode .pr() .clear_bit() }); eth_mac.macwtr.write(|w| w.pwe().clear_bit()); // Flow Control Register eth_mac.macqtx_fcr.modify(|_, w| { // Pause time w.pt().bits(0x100) }); eth_mac.macrx_fcr.modify(|_, w| w); eth_mtl.mtlrx_qomr.modify(|_, w| { w // Receive store and forward .rsf() .set_bit() // Dropping of TCP/IP checksum error frames disable .dis_tcp_ef() .clear_bit() // Forward error frames .fep() .clear_bit() // Forward undersized good packets .fup() .clear_bit() }); eth_mtl.mtltx_qomr.modify(|_, w| { w // Transmit store and forward .tsf() .set_bit() }); if (phy_read(PHY_REG_ID1, eth_mac) != 0x0007) | (phy_read(PHY_REG_ID2, eth_mac) != 0xC131) { error!("PHY ID error!"); } phy_write(PHY_REG_BCR, PHY_REG_BCR_RESET, eth_mac); while phy_read(PHY_REG_BCR, eth_mac) & PHY_REG_BCR_RESET == PHY_REG_BCR_RESET {} phy_write_ext(PHY_REG_WUCSR, 0, eth_mac); phy_write( PHY_REG_BCR, PHY_REG_BCR_AN | PHY_REG_BCR_ANRST | PHY_REG_BCR_100M, eth_mac, ); /* while phy_read(PHY_REG_BSR) & PHY_REG_BSR_UP == 0 {}; while phy_read(PHY_REG_BSR) & PHY_REG_BSR_ANDONE == 0 {}; while phy_read(PHY_REG_SSR) & (PHY_REG_SSR_ANDONE | PHY_REG_SSR_SPEED) != PHY_REG_SSR_ANDONE | PHY_REG_SSR_100BASE_FD {}; */ // operation mode register eth_dma.dmamr.modify(|_, w| { w.intm() .bits(0b00) // Rx Tx priority ratio 1:1 .pr() .bits(0b000) .txpr() .clear_bit() .da() .clear_bit() }); // bus mode register eth_dma.dmasbmr.modify(|_, w| { // Address-aligned beats w.aal() .set_bit() // Fixed burst .fb() .set_bit() }); eth_dma .dmaccr .modify(|_, w| w.dsl().bits(0).pblx8().clear_bit().mss().bits(536)); eth_dma.dmactx_cr.modify(|_, w| { w // Tx DMA PBL .txpbl() .bits(32) .tse() .clear_bit() // Operate on second frame .osf() .clear_bit() }); eth_dma.dmacrx_cr.modify(|_, w| { w // receive buffer size .rbsz() .bits(ETH_BUFFER_SIZE as u16) // Rx DMA PBL .rxpbl() .bits(32) // Disable flushing of received frames .rpf() .clear_bit() }); self.rx.init(eth_dma); self.tx.init(eth_dma); // Manage MAC transmission and reception eth_mac.maccr.modify(|_, w| { w.re() .bit(true) // Receiver Enable .te() .bit(true) // Transmiter Enable }); eth_mtl.mtltx_qomr.modify(|_, w| w.ftq().set_bit()); // Ensure ring buffer descriptors have been set up in memory before // enabling DMA engine. cortex_m::asm::dsb(); // Manage DMA transmission and reception eth_dma.dmactx_cr.modify(|_, w| w.st().set_bit()); eth_dma.dmacrx_cr.modify(|_, w| w.sr().set_bit()); eth_dma .dmacsr .modify(|_, w| w.tps().set_bit().rps().set_bit()); } } impl<'a, 'b> phy::Device<'a> for &'b mut Device { type RxToken = RxToken<'a>; type TxToken = TxToken<'a>; fn capabilities(&self) -> phy::DeviceCapabilities { let mut capabilities = phy::DeviceCapabilities::default(); // ethernet frame type II (6 smac, 6 dmac, 2 ethertype), // sans CRC (4), 1500 IP MTU capabilities.max_transmission_unit = 1514; capabilities.max_burst_size = Some(self.tx.desc_buf.len()); capabilities } fn receive(&mut self) -> Option<(RxToken, TxToken)> { // Skip all queued packets with errors. while self.rx.buf_owned() && !self.rx.buf_valid() { self.rx.buf_release() } if !(self.rx.buf_owned() && self.tx.buf_owned()) { return None; } Some((RxToken(&mut self.rx), TxToken(&mut self.tx))) } fn transmit(&mut self) -> Option { if !self.tx.buf_owned() { return None; } Some(TxToken(&mut self.tx)) } } pub struct RxToken<'a>(&'a mut RxRing); impl<'a> phy::RxToken for RxToken<'a> { fn consume(self, _timestamp: Instant, f: F) -> Result where F: FnOnce(&mut [u8]) -> Result, { let result = f(unsafe { self.0.buf_as_slice_mut() }); self.0.buf_release(); result } } pub struct TxToken<'a>(&'a mut TxRing); impl<'a> phy::TxToken for TxToken<'a> { fn consume(self, _timestamp: Instant, len: usize, f: F) -> Result where F: FnOnce(&mut [u8]) -> Result, { let result = f(unsafe { self.0.buf_as_slice_mut(len) }); self.0.buf_release(); result } }