#![deny(warnings)] #![no_std] #![no_main] use stm32h7xx_hal as hal; use stabilizer::{hardware, hardware::design_parameters}; use dsp::{lockin::Lockin, rpll::RPLL, Accu}; use hardware::{ Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1, }; #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), timestamper: InputStamper, pll: RPLL, lockin: Lockin, } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let pll = RPLL::new( design_parameters::ADC_SAMPLE_TICKS_LOG2 + design_parameters::SAMPLE_BUFFER_SIZE_LOG2, ); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start recording digital input timestamps. stabilizer.timestamp_timer.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); // Enable the timestamper. stabilizer.timestamper.start(); init::LateResources { afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, timestamper: stabilizer.timestamper, pll, lockin: Lockin::default(), } } /// Main DSP processing routine. /// /// See `dual-iir` for general notes on processing time and timing. /// /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal. /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale. /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available. #[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll], priority=2)] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; let lockin = c.resources.lockin; let timestamp = c .resources .timestamper .latest_timestamp() .unwrap_or(None) // Ignore data from timer capture overflows. .map(|t| t as i32); let (pll_phase, pll_frequency) = c.resources.pll.update( timestamp, 21, // frequency settling time (log2 counter cycles), TODO: expose 21, // phase settling time, TODO: expose ); // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate) let harmonic: i32 = -1; // TODO: expose // Demodulation LO phase offset let phase_offset: i32 = 0; // TODO: expose // Log2 lowpass time constant let time_constant: u8 = 6; // TODO: expose let sample_frequency = ((pll_frequency // half-up rounding bias // .wrapping_add(1 << design_parameters::SAMPLE_BUFFER_SIZE_LOG2 - 1) >> design_parameters::SAMPLE_BUFFER_SIZE_LOG2) as i32) .wrapping_mul(harmonic); let sample_phase = phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic)); let output = adc_samples[0] .iter() .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample. .map(|(&sample, phase)| { lockin.update(sample as i16, phase, time_constant) }) .last() .unwrap(); let conf = "frequency_discriminator"; let output = match conf { // Convert from IQ to power and phase. "power_phase" => [(output.log2() << 24) as _, output.arg()], "frequency_discriminator" => [pll_frequency as _, output.arg()], _ => [output.0, output.1], }; // Convert to DAC data. for i in 0..dac_samples[0].len() { dac_samples[0][i] = (output[0] >> 16) as u16 ^ 0x8000; dac_samples[1][i] = (output[1] >> 16) as u16 ^ 0x8000; } } #[idle(resources=[afes])] fn idle(_: idle::Context) -> ! { loop { // TODO: Implement network interface. cortex_m::asm::wfi(); } } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };