use core::ops::Mul; use super::{atan2, cossin}; #[derive(Copy, Clone, Default, PartialEq, Debug)] pub struct Complex(pub T, pub T); impl Complex { pub fn map(&self, func: F) -> Self where F: Fn(T) -> T, { Complex(func(self.0), func(self.1)) } } impl Complex { /// Return a Complex on the unit circle given an angle. /// /// Example: /// /// ``` /// use dsp::Complex; /// Complex::::from_angle(0); /// Complex::::from_angle(1 << 30); // pi/2 /// Complex::::from_angle(-1 << 30); // -pi/2 /// ``` pub fn from_angle(angle: i32) -> Self { let (c, s) = cossin(angle); Self(c, s) } /// Return the absolute square (the squared magnitude). /// /// Note: Normalization is `1 << 32`, i.e. U0.32. /// /// Note(panic): This will panic for `Complex(i32::MIN, i32::MIN)` /// /// Example: /// /// ``` /// use dsp::Complex; /// assert_eq!(Complex(i32::MIN, 0).abs_sqr(), 1 << 31); /// assert_eq!(Complex(i32::MAX, i32::MAX).abs_sqr(), u32::MAX - 3); /// ``` pub fn abs_sqr(&self) -> u32 { (((self.0 as i64) * (self.0 as i64) + (self.1 as i64) * (self.1 as i64)) >> 31) as u32 } /// log2(power) re full scale approximation /// /// TODO: scale up, interpolate /// /// Panic: /// This will panic for `Complex(i32::MIN, i32::MIN)` /// /// Example: /// /// ``` /// use dsp::Complex; /// assert_eq!(Complex(i32::MAX, i32::MAX).log2(), -1); /// assert_eq!(Complex(i32::MAX, 0).log2(), -2); /// assert_eq!(Complex(1, 0).log2(), -63); /// assert_eq!(Complex(0, 0).log2(), -64); /// ``` pub fn log2(&self) -> i32 { let a = (self.0 as i64) * (self.0 as i64) + (self.1 as i64) * (self.1 as i64); -(a.leading_zeros() as i32) } /// Return the angle. /// /// Note: Normalization is `1 << 31 == pi`. /// /// Example: /// /// ``` /// use dsp::Complex; /// assert_eq!(Complex(1, 0).arg(), 0); /// assert_eq!(Complex(-i32::MAX, 1).arg(), i32::MAX); /// assert_eq!(Complex(-i32::MAX, -1).arg(), -i32::MAX); /// assert_eq!(Complex(0, -1).arg(), -i32::MAX >> 1); /// assert_eq!(Complex(0, 1).arg(), (i32::MAX >> 1) + 1); /// assert_eq!(Complex(1, 1).arg(), (i32::MAX >> 2) + 1); /// ``` pub fn arg(&self) -> i32 { atan2(self.1, self.0) } } impl Mul for Complex { type Output = Self; fn mul(self, other: Self) -> Self { let a = self.0 as i64; let b = self.1 as i64; let c = other.0 as i64; let d = other.1 as i64; Complex( ((a * c - b * d + (1 << 31)) >> 32) as i32, ((b * c + a * d + (1 << 31)) >> 32) as i32, ) } } impl Mul for Complex { type Output = Self; fn mul(self, other: i32) -> Self { Complex( ((other as i64 * self.0 as i64 + (1 << 31)) >> 32) as i32, ((other as i64 * self.1 as i64 + (1 << 31)) >> 32) as i32, ) } } impl Mul for Complex { type Output = Self; fn mul(self, other: i16) -> Self { Complex( (other as i32 * (self.0 >> 16) + (1 << 15)) >> 16, (other as i32 * (self.1 >> 16) + (1 << 15)) >> 16, ) } }