use super::Complex; use core::f64::consts::PI; include!(concat!(env!("OUT_DIR"), "/cossin_table.rs")); /// 2-argument arctangent function. /// /// This implementation uses all integer arithmetic for fast /// computation. It is designed to have high accuracy near the axes /// and lower away from the axes. It is additionally designed so that /// the error changes slowly with respect to the angle. /// /// # Arguments /// /// * `y` - Y-axis component. /// * `x` - X-axis component. /// /// # Returns /// /// The angle between the x-axis and the ray to the point (x,y). The /// result range is from i32::MIN to i32::MAX, where i32::MIN /// represents -pi and, equivalently, +pi. i32::MAX represents one /// count less than +pi. pub fn atan2(y: i32, x: i32) -> i32 { let sign = (x < 0, y < 0); let mut y = y.wrapping_abs() as u32; let mut x = x.wrapping_abs() as u32; let y_greater = y > x; if y_greater { core::mem::swap(&mut y, &mut x); } let z = (16 - y.leading_zeros() as i32).max(0); x >>= z; if x == 0 { return 0; } y >>= z; let r = (y << 16) / x; debug_assert!(r <= 1 << 16); // Uses the general procedure described in the following // Mathematics stack exchange answer: // // https://math.stackexchange.com/a/1105038/583981 // // The atan approximation method has been modified to be cheaper // to compute and to be more compatible with integer // arithmetic. The approximation technique used here is // // pi / 4 * r + C * r * (1 - abs(r)) // // which is taken from Rajan 2006: Efficient Approximations for // the Arctangent Function. // // The least mean squared error solution is C = 0.279 (no the 0.285 that // Rajan uses). K = C*4/pi. // Q5 for K provides sufficient correction accuracy while preserving // as much smoothness of the quadratic correction as possible. const FP_K: usize = 5; const K: u32 = (0.35489 * (1 << FP_K) as f64) as u32; // debug_assert!(K == 11); // `r` is unsigned Q16.16 and <= 1 // `angle` is signed Q1.31 with 1 << 31 == +- pi // Since K < 0.5 and r*(1 - r) <= 0.25 the correction product can use // 4 bits for K, and 15 bits for r and 1-r to remain within the u32 range. let mut angle = ((r << 13) + ((K * (r >> 1) * ((1 << 15) - (r >> 1))) >> (FP_K + 1))) as i32; if y_greater { angle = (1 << 30) - angle; } if sign.0 { angle = i32::MAX - angle; } if sign.1 { angle = angle.wrapping_neg(); } angle } /// Compute the cosine and sine of an angle. /// This is ported from the MiSoC cossin core. /// (https://github.com/m-labs/misoc/blob/master/misoc/cores/cossin.py) /// /// # Arguments /// * `phase` - 32-bit phase. /// /// # Returns /// The cos and sin values of the provided phase as a `Complex` /// value. With a 7-bit deep LUT there is 1e-5 max and 6e-8 RMS error /// in each quadrature over 20 bit phase. pub fn cossin(phase: i32) -> Complex { // Phase bits excluding the three highes MSB const OCTANT_BITS: usize = 32 - 3; // This is a slightly more compact way to compute the four flags for // octant mapping/unmapping used below. let mut octant = (phase as u32) >> OCTANT_BITS; octant ^= octant << 1; // Mask off octant bits. This leaves the angle in the range [0, pi/4). let mut phase = phase & ((1 << OCTANT_BITS) - 1); if octant & 1 != 0 { // phase = pi/4 - phase phase = (1 << OCTANT_BITS) - 1 - phase; } let lookup = COSSIN[(phase >> (OCTANT_BITS - COSSIN_DEPTH)) as usize]; // 1/2 < cos(0 <= x <= pi/4) <= 1: Shift the cos // values and scale the sine values as encoded in the LUT. let mut cos = lookup.0 as i32 + u16::MAX as i32; let mut sin = (lookup.1 as i32) << 1; // 16 + 1 bits for cos/sin and 15 for dphi to saturate the i32 range. const ALIGN_MSB: usize = 32 - 16 - 1; phase >>= OCTANT_BITS - COSSIN_DEPTH - ALIGN_MSB; phase &= (1 << ALIGN_MSB) - 1; // The phase values used for the LUT are at midpoint for the truncated phase. // Interpolate relative to the LUT entry midpoint. phase -= (1 << (ALIGN_MSB - 1)) - (octant & 1) as i32; // Fixed point pi/4. const PI4: i32 = (PI / 4. * (1 << (32 - ALIGN_MSB)) as f64) as i32; // No rounding bias necessary here since we keep enough low bits. let dphi = (phase * PI4) >> (32 - ALIGN_MSB); // Make room for the sign bit. let dcos = (sin * dphi) >> (COSSIN_DEPTH + 1); let dsin = (cos * dphi) >> (COSSIN_DEPTH + 1); cos = (cos << (ALIGN_MSB - 1)) - dcos; sin = (sin << (ALIGN_MSB - 1)) + dsin; // Unmap using octant bits. if octant & 2 != 0 { core::mem::swap(&mut sin, &mut cos); } if octant & 4 != 0 { cos *= -1; } if octant & 8 != 0 { sin *= -1; } (cos, sin) } #[cfg(test)] mod tests { use super::*; use core::f64::consts::PI; fn angle_to_axis(angle: f64) -> f64 { let angle = angle % (PI / 2.); (PI / 2. - angle).min(angle) } #[test] fn atan2_absolute_error() { const N: usize = 321; let mut test_vals = [0i32; N + 4]; let scale = (1i64 << 31) as f64; for i in 0..N { test_vals[i] = (scale * (-1. + 2. * i as f64 / N as f64)) as i32; } assert!(test_vals.contains(&i32::MIN)); test_vals[N] = i32::MAX; test_vals[N + 1] = 0; test_vals[N + 2] = -1; test_vals[N + 3] = 1; let mut rms_err = 0f64; let mut abs_err = 0f64; let mut rel_err = 0f64; for &x in test_vals.iter() { for &y in test_vals.iter() { let want = (y as f64 / scale).atan2(x as f64 / scale); let have = atan2(y, x) as f64 * PI / scale; let err = (have - want).abs(); abs_err = abs_err.max(err); rms_err += err * err; if err > 3e-5 { rel_err = rel_err.max(err / angle_to_axis(want)); } } } rms_err = rms_err.sqrt() / test_vals.len() as f64; println!("max abs err: {:.2e}", abs_err); println!("rms abs err: {:.2e}", rms_err); println!("max rel err: {:.2e}", rel_err); assert!(abs_err < 5e-3); assert!(rms_err < 3e-3); assert!(rel_err < 0.6); } #[test] fn cossin_error_max_rms_all_phase() { // Constant amplitude error due to LUT data range. const AMPLITUDE: f64 = ((1i64 << 31) - (1i64 << 15)) as f64; const MAX_PHASE: f64 = (1i64 << 32) as f64; let mut rms_err: Complex = (0., 0.); let mut sum_err: Complex = (0., 0.); let mut max_err: Complex = (0., 0.); let mut sum: Complex = (0., 0.); let mut demod: Complex = (0., 0.); // use std::{fs::File, io::{BufWriter, prelude::*}, path::Path}; // let mut file = BufWriter::new(File::create(Path::new("data.bin")).unwrap()); const PHASE_DEPTH: usize = 20; for phase in 0..(1 << PHASE_DEPTH) { let phase = (phase << (32 - PHASE_DEPTH)) as i32; let have = cossin(phase); // file.write(&have.0.to_le_bytes()).unwrap(); // file.write(&have.1.to_le_bytes()).unwrap(); let have = (have.0 as f64 / AMPLITUDE, have.1 as f64 / AMPLITUDE); let radian_phase = 2. * PI * phase as f64 / MAX_PHASE; let want = (radian_phase.cos(), radian_phase.sin()); sum.0 += have.0; sum.1 += have.1; demod.0 += have.0 * want.0 - have.1 * want.1; demod.1 += have.1 * want.0 + have.0 * want.1; let err = (have.0 - want.0, have.1 - want.1); sum_err.0 += err.0; sum_err.1 += err.1; rms_err.0 += err.0 * err.0; rms_err.1 += err.1 * err.1; max_err.0 = max_err.0.max(err.0.abs()); max_err.1 = max_err.1.max(err.1.abs()); } rms_err.0 /= MAX_PHASE; rms_err.1 /= MAX_PHASE; println!("sum: {:.2e} {:.2e}", sum.0, sum.1); println!("demod: {:.2e} {:.2e}", demod.0, demod.1); println!("sum_err: {:.2e} {:.2e}", sum_err.0, sum_err.1); println!("rms: {:.2e} {:.2e}", rms_err.0.sqrt(), rms_err.1.sqrt()); println!("max: {:.2e} {:.2e}", max_err.0, max_err.1); assert!(sum.0.abs() < 4e-10); assert!(sum.1.abs() < 4e-10); assert!(demod.0.abs() < 4e-10); assert!(demod.1.abs() < 4e-10); assert!(sum_err.0.abs() < 4e-10); assert!(sum_err.1.abs() < 4e-10); assert!(rms_err.0.sqrt() < 6e-8); assert!(rms_err.1.sqrt() < 6e-8); assert!(max_err.0 < 1.1e-5); assert!(max_err.1 < 1.1e-5); } }