//! Lock-in amplifier. //! //! Lock-in processing is performed through a combination of the //! following modular processing blocks: demodulation, filtering, //! decimation and computing the magnitude and phase from a complex //! signal. These processing blocks are mutually independent. //! //! # Terminology //! //! * _demodulation signal_ - A copy of the reference signal that is //! optionally frequency scaled and phase shifted. This is a complex //! signal. The demodulation signals are used to demodulate the ADC //! sampled signal. //! * _internal clock_ - A fast internal clock used to increment a //! counter for determining the 0-phase points of a reference signal. //! * _reference signal_ - A constant-frequency signal used to derive //! the demodulation signal. //! * _timestamp_ - Timestamps record the timing of the reference //! signal's 0-phase points. For instance, if a reference signal is //! provided externally, a fast internal clock increments a //! counter. When the external reference reaches the 0-phase point //! (e.g., a positive edge), the value of the counter is recorded as a //! timestamp. These timestamps are used to determine the frequency //! and phase of the reference signal. //! //! # Usage //! //! The first step is to initialize a `Lockin` instance with //! `Lockin::new()`. This provides the lock-in algorithms with //! necessary information about the demodulation and filtering steps, //! such as whether to demodulate with a harmonic of the reference //! signal and the IIR biquad filter to use. There are then 4 //! different processing steps that can be used: //! //! * `demodulate` - Computes the phase of the demodulation signal //! corresponding to each ADC sample, uses this phase to compute the //! demodulation signal, and multiplies this demodulation signal by //! the ADC-sampled signal. This is a method of `Lockin` since it //! requires information about how to modify the reference signal for //! demodulation. //! * `filter` - Performs IIR biquad filtering of a complex //! signals. This is commonly performed on the signal provided by the //! demodulation step, but can be performed at any other point in the //! processing chain or omitted entirely. `filter` is a method of //! `Lockin` since it must hold onto the filter configuration and //! state. //! * `decimate` - This decimates a signal to reduce the load on the //! DAC output. It does not require any state information and is //! therefore a normal function. //! * `magnitude_phase` - Computes the magnitude and phase of the //! component of the ADC-sampled signal whose frequency is equal to //! the demodulation frequency. This does not require any state //! information and is therefore a normal function. use super::iir::{IIRState, IIR}; use super::Complex; use core::f32::consts::PI; /// The number of ADC samples in one batch. pub const ADC_SAMPLE_BUFFER_SIZE: usize = 16; /// The number of outputs sent to the DAC for each ADC batch. pub const DECIMATED_BUFFER_SIZE: usize = 1; /// Treat the 2-element array as a FIFO. This allows new elements to /// be pushed into the array, existing elements to shift back in the /// array, and the last element to fall off the array. trait Fifo2 { fn push(&mut self, new_element: Option); } impl Fifo2 for [Option; 2] { /// Push a new element into the array. The existing elements move /// backward in the array by one location, and the current last /// element is discarded. /// /// # Arguments /// /// * `new_element` - New element pushed into the front of the /// array. fn push(&mut self, new_element: Option) { // For array sizes greater than 2 it would be preferable to // use a rotating index to avoid unnecessary data // copying. However, this would somewhat complicate the use of // iterators and for 2 elements, shifting is inexpensive. self[1] = self[0]; self[0] = new_element; } } /// Performs lock-in amplifier processing of a signal. pub struct Lockin { phase_offset: f32, sample_period: u32, harmonic: u32, timestamps: [Option; 2], iir: IIR, iirstate: [IIRState; 2], } impl Lockin { /// Initialize a new `Lockin` instance. /// /// # Arguments /// /// * `phase_offset` - Phase offset (in radians) applied to the /// demodulation signal. /// * `sample_period` - ADC sampling period in terms of the /// internal clock period. /// * `harmonic` - Integer scaling factor used to adjust the /// demodulation frequency. E.g., 2 would demodulate with the /// first harmonic. /// * `iir` - IIR biquad filter. /// /// # Returns /// /// New `Lockin` instance. pub fn new( phase_offset: f32, sample_period: u32, harmonic: u32, iir: IIR, ) -> Self { Lockin { phase_offset: phase_offset, sample_period: sample_period, harmonic: harmonic, timestamps: [None, None], iir: iir, iirstate: [[0.; 5]; 2], } } /// Demodulate an input signal with the complex reference signal. /// /// # Arguments /// /// * `adc_samples` - One batch of ADC samples. /// * `timestamps` - Counter values corresponding to the edges of /// an external reference signal. The counter is incremented by a /// fast internal clock. /// /// # Returns /// /// The demodulated complex signal as a `Result`. When there are /// an insufficient number of timestamps to perform processing, /// `Err` is returned. /// /// # Assumptions /// /// `demodulate` expects that the timestamp counter value is equal /// to 0 when the ADC samples its first input in a batch. This can /// be achieved by configuring the timestamp counter to overflow /// at the end of the ADC batch sampling period. pub fn demodulate( &mut self, adc_samples: &[i16], timestamps: &[u16], ) -> Result<[Complex; ADC_SAMPLE_BUFFER_SIZE], &str> { let sample_period = self.sample_period as i32; // update old timestamps for new ADC batch self.timestamps.iter_mut().for_each(|t| match *t { Some(timestamp) => { // Existing timestamps have aged by one ADC batch // period since the last ADC batch. *t = Some( timestamp - ADC_SAMPLE_BUFFER_SIZE as i32 * sample_period, ); } None => (), }); // return prematurely if there aren't enough timestamps for // processing let old_timestamp_count = self.timestamps.iter().filter(|t| t.is_some()).count(); if old_timestamp_count + timestamps.len() < 2 { return Err("insufficient timestamps"); } let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE]; // if we have not yet recorded any timestamps, the first // reference period must be computed from the first and // second timestamps in the array let mut timestamp_index: usize = if old_timestamp_count == 0 { 1 } else { 0 }; // compute ADC sample phases, sines/cosines and demodulate signal .iter_mut() .zip(adc_samples.iter()) .enumerate() .for_each(|(i, (s, sample))| { let adc_sample_count = i as i32 * sample_period; // index of the closest timestamp that occurred after // the current ADC sample let closest_timestamp_after_index: i32 = if timestamps.len() > 0 { // Linear search is fast because both the timestamps // and ADC sample counts are sorted. Because of this, // we only need to check timestamps that were also // greater than the last ADC sample count. while timestamp_index < timestamps.len() - 1 && (timestamps[timestamp_index] as i32) < adc_sample_count { timestamp_index += 1; } timestamp_index as i32 } else { -1 }; // closest timestamp that occurred before to the // current ADC sample let closest_timestamp_before: i32; let reference_period = if closest_timestamp_after_index < 0 { closest_timestamp_before = self.timestamps[0].unwrap(); closest_timestamp_before - self.timestamps[1].unwrap() } else if closest_timestamp_after_index == 0 { closest_timestamp_before = self.timestamps[0].unwrap(); timestamps[0] as i32 - closest_timestamp_before } else { closest_timestamp_before = timestamps [(closest_timestamp_after_index - 1) as usize] as i32; timestamps[closest_timestamp_after_index as usize] as i32 - closest_timestamp_before }; let integer_phase: i32 = (adc_sample_count - closest_timestamp_before) * self.harmonic as i32; let phase = self.phase_offset + 2. * PI * integer_phase as f32 / reference_period as f32; let (sine, cosine) = libm::sincosf(phase); let sample = *sample as f32; s.0 = sine * sample; s.1 = cosine * sample; }); // record new timestamps let start_index: usize = if timestamps.len() < 2 { 0 } else { timestamps.len() - 2 }; timestamps[start_index..] .iter() .for_each(|t| self.timestamps.push(Some(*t as i32))); Ok(signal) } /// Filter the complex signal using the supplied biquad IIR. The /// signal array is modified in place. /// /// # Arguments /// /// * `signal` - Complex signal to filter. pub fn filter(&mut self, signal: &mut [Complex]) { signal.iter_mut().for_each(|s| { s.0 = self.iir.update(&mut self.iirstate[0], s.0); s.1 = self.iir.update(&mut self.iirstate[1], s.1); }); } } /// Decimate the complex signal to `DECIMATED_BUFFER_SIZE`. The ratio /// of `ADC_SAMPLE_BUFFER_SIZE` to `DECIMATED_BUFFER_SIZE` must be a /// power of 2. /// /// # Arguments /// /// * `signal` - Complex signal to decimate. /// /// # Returns /// /// The decimated signal. pub fn decimate( signal: [Complex; ADC_SAMPLE_BUFFER_SIZE], ) -> [Complex; DECIMATED_BUFFER_SIZE] { let n_k = ADC_SAMPLE_BUFFER_SIZE / DECIMATED_BUFFER_SIZE; debug_assert!( ADC_SAMPLE_BUFFER_SIZE == DECIMATED_BUFFER_SIZE || n_k % 2 == 0 ); let mut signal_decimated = [(0_f32, 0_f32); DECIMATED_BUFFER_SIZE]; signal_decimated .iter_mut() .zip(signal.iter().step_by(n_k)) .for_each(|(s_d, s)| { s_d.0 = s.0; s_d.1 = s.1; }); signal_decimated } /// Compute the magnitude and phase from the complex signal. The /// signal array is modified in place. /// /// # Arguments /// /// * `signal` - Complex signal to decimate. pub fn magnitude_phase(signal: &mut [Complex]) { signal.iter_mut().for_each(|s| { let new_i = libm::sqrtf([s.0, s.1].iter().map(|i| i * i).sum()); let new_q = libm::atan2f(s.1, s.0); s.0 = new_i; s.1 = new_q; }); } #[cfg(test)] mod tests { use super::*; use crate::testing::{ complex_array_is_close, complex_array_within_tolerance, }; #[test] fn array_push() { let mut arr: [Option; 2] = [None, None]; arr.push(Some(1)); assert_eq!(arr, [Some(1), None]); arr.push(Some(2)); assert_eq!(arr, [Some(2), Some(1)]); arr.push(Some(10)); assert_eq!(arr, [Some(10), Some(2)]); } #[test] fn magnitude_phase_length_1_quadrant_1() { let mut signal: [Complex; 1] = [(1., 1.)]; magnitude_phase(&mut signal); assert!(complex_array_is_close(&signal, &[(2_f32.sqrt(), PI / 4.)])); signal = [(3_f32.sqrt() / 2., 1. / 2.)]; magnitude_phase(&mut signal); assert!(complex_array_is_close(&signal, &[(1., PI / 6.)])); } #[test] fn magnitude_phase_length_1_quadrant_2() { let mut signal = [(-1., 1.)]; magnitude_phase(&mut signal); assert!(complex_array_is_close( &signal, &[(2_f32.sqrt(), 3. * PI / 4.)] )); signal = [(-1. / 2., 3_f32.sqrt() / 2.)]; magnitude_phase(&mut signal); assert!(complex_array_is_close(&signal, &[(1_f32, 2. * PI / 3.)])); } #[test] fn magnitude_phase_length_1_quadrant_3() { let mut signal = [(-1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())]; magnitude_phase(&mut signal); assert!(complex_array_is_close( &signal, &[(1_f32.sqrt(), -3. * PI / 4.)] )); signal = [(-1. / 2., -2_f32.sqrt())]; magnitude_phase(&mut signal); assert!(complex_array_is_close( &signal, &[((3. / 2.) as f32, -1.91063323625 as f32)] )); } #[test] fn magnitude_phase_length_1_quadrant_4() { let mut signal = [(1. / 2_f32.sqrt(), -1. / 2_f32.sqrt())]; magnitude_phase(&mut signal); assert!(complex_array_is_close( &signal, &[(1_f32.sqrt(), -1. * PI / 4.)] )); signal = [(3_f32.sqrt() / 2., -1. / 2.)]; magnitude_phase(&mut signal); assert!(complex_array_is_close(&signal, &[(1_f32, -PI / 6.)])); } #[test] fn decimate_sample_16_decimated_1() { let signal: [Complex; ADC_SAMPLE_BUFFER_SIZE] = [ (0.0, 1.6), (0.1, 1.7), (0.2, 1.8), (0.3, 1.9), (0.4, 2.0), (0.5, 2.1), (0.6, 2.2), (0.7, 2.3), (0.8, 2.4), (0.9, 2.5), (1.0, 2.6), (1.1, 2.7), (1.2, 2.8), (1.3, 2.9), (1.4, 3.0), (1.5, 3.1), ]; assert_eq!(decimate(signal), [(0.0, 1.6)]); } #[test] fn lockin_demodulate_valid_0() { let mut lockin = Lockin::new( 0., 200, 1, IIR { ba: [0_f32; 5], y_offset: 0., y_min: -(1 << 15) as f32, y_max: (1 << 15) as f32 - 1., }, ); assert_eq!( lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[]), Err("insufficient timestamps") ); } #[test] fn lockin_demodulate_valid_1() { let mut lockin = Lockin::new( 0., 200, 1, IIR { ba: [0_f32; 5], y_offset: 0., y_min: -(1 << 15) as f32, y_max: (1 << 15) as f32 - 1., }, ); assert_eq!( lockin.demodulate(&[0; ADC_SAMPLE_BUFFER_SIZE], &[0],), Err("insufficient timestamps") ); } #[test] fn lockin_demodulate_valid_2() { let adc_period: u32 = 200; let mut lockin = Lockin::new( 0., adc_period, 1, IIR { ba: [0_f32; 5], y_offset: 0., y_min: -(1 << 15) as f32, y_max: (1 << 15) as f32 - 1., }, ); let adc_samples: [i16; ADC_SAMPLE_BUFFER_SIZE] = [-8, 7, -7, 6, -6, 5, -5, 4, -4, 3, -3, 2, -2, -1, 1, 0]; let reference_period: u16 = 2800; let initial_phase_integer: u16 = 200; let timestamps: &[u16] = &[ initial_phase_integer, initial_phase_integer + reference_period, ]; let initial_phase: f32 = -(initial_phase_integer as f32) / reference_period as f32 * 2. * PI; let phase_increment: f32 = adc_period as f32 / reference_period as f32 * 2. * PI; let mut signal = [(0., 0.); ADC_SAMPLE_BUFFER_SIZE]; for (n, s) in signal.iter_mut().enumerate() { let adc_phase = initial_phase + n as f32 * phase_increment; let sine = adc_phase.sin(); let cosine = adc_phase.cos(); s.0 = sine * adc_samples[n] as f32; s.1 = cosine * adc_samples[n] as f32; } let result = lockin.demodulate(&adc_samples, timestamps).unwrap(); assert!( complex_array_within_tolerance(&result, &signal, 0., 1e-5), "\nsignal computed: {:?},\nsignal expected: {:?}", result, signal ); } }