#![deny(warnings)] #![no_std] #![no_main] #![cfg_attr(feature = "nightly", feature(core_intrinsics))] use dsp::{iir_int, lockin::Lockin, Accu}; use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1}; use stabilizer::{hardware, SAMPLE_BUFFER_SIZE, SAMPLE_BUFFER_SIZE_LOG2}; // A constant sinusoid to send on the DAC output. // Full-scale gives a +/- 10V amplitude waveform. Scale it down to give +/- 1V. const ONE: i16 = (0.1 * u16::MAX as f32) as _; const SQRT2: i16 = (ONE as f32 * 0.707) as _; const DAC_SEQUENCE: [i16; SAMPLE_BUFFER_SIZE] = [0, SQRT2, ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2]; // TODO: rotate by -2 samples to start with ONE #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adc1: Adc1Input, dacs: (Dac0Output, Dac1Output), lockin: Lockin, } #[init] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device); let lockin = Lockin::new( iir_int::Vec5::lowpass(1e-3, 0.707, 2.), // TODO: expose ); // Enable ADC/DAC events stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); init::LateResources { lockin, afes: stabilizer.afes, adc1: stabilizer.adcs.1, dacs: stabilizer.dacs, } } /// Main DSP processing routine for Stabilizer. /// /// # Note /// Processing time for the DSP application code is bounded by the following constraints: /// /// DSP application code starts after the ADC has generated a batch of samples and must be /// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer /// time). If this constraint is not met, firmware will panic due to an ADC input overrun. /// /// The DSP application code must also fill out the next DAC output buffer in time such that the /// DAC can switch to it when it has completed the current buffer. If this constraint is not met /// it's possible that old DAC codes will be generated on the output and the output samples will /// be delayed by 1 batch. /// /// Because the ADC and DAC operate at the same rate, these two constraints actually implement /// the same time bounds, meeting one also means the other is also met. /// /// TODO: Document #[task(binds=DMA1_STR4, resources=[adc1, dacs, lockin], priority=2)] fn process(c: process::Context) { let lockin = c.resources.lockin; let adc_samples = c.resources.adc1.acquire_buffer(); let dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; // DAC0 always generates a fixed sinusoidal output. dac_samples[0] .iter_mut() .zip(DAC_SEQUENCE.iter()) .for_each(|(d, s)| *d = *s as u16 ^ 0x8000); // Reference phase and frequency are known. let pll_phase = 0; let pll_frequency = 1i32 << (32 - SAMPLE_BUFFER_SIZE_LOG2); // Harmonic index of the LO: -1 to _de_modulate the fundamental let harmonic: i32 = -1; // Demodulation LO phase offset let phase_offset: i32 = (0.7495 * i32::MAX as f32) as i32; // TODO: adapt to sequence rotation above let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic); let sample_phase = phase_offset .wrapping_add((pll_phase as i32).wrapping_mul(harmonic)); let output = adc_samples .iter() // Zip in the LO phase. .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter) .map(|(&sample, phase)| { lockin.update((sample as i16 as i32) << 16, phase) }) // Decimate .last() .unwrap(); // convert i/q to power/phase, let power_phase = true; // TODO: expose let output = if power_phase { // Convert from IQ to power and phase. [output.abs_sqr(), output.arg()] } else { [output.0, output.1] }; for value in dac_samples[1].iter_mut() { *value = (output[1] >> 16) as u16 ^ 0x8000; } } #[idle(resources=[afes])] fn idle(_: idle::Context) -> ! { loop { // TODO: Implement network interface. cortex_m::asm::wfi(); } } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { stm32h7xx_hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };