#![deny(warnings)] #![no_std] #![no_main] use embedded_hal::digital::v2::InputPin; use serde::Deserialize; use dsp::{Accu, Complex, ComplexExt, Lockin, RPLL}; use stabilizer::net; use stabilizer::hardware::{ design_parameters, setup, Adc0Input, Adc1Input, AdcCode, AfeGain, Dac0Output, Dac1Output, DacCode, DigitalInput0, DigitalInput1, InputStamper, SystemTimer, AFE0, AFE1, }; use miniconf::Miniconf; use net::{NetworkState, NetworkUsers, Telemetry, TelemetryBuffer}; // A constant sinusoid to send on the DAC output. // Full-scale gives a +/- 10.24V amplitude waveform. Scale it down to give +/- 1V. const ONE: i16 = ((1.0 / 10.24) * i16::MAX as f32) as _; const SQRT2: i16 = (ONE as f32 * 0.707) as _; const DAC_SEQUENCE: [i16; design_parameters::SAMPLE_BUFFER_SIZE] = [ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2, 0, SQRT2]; #[derive(Copy, Clone, Debug, Deserialize, Miniconf)] enum Conf { Magnitude, Phase, ReferenceFrequency, LogPower, InPhase, Quadrature, Modulation, } #[derive(Copy, Clone, Debug, Miniconf, Deserialize, PartialEq)] enum LockinMode { Internal, External, } #[derive(Copy, Clone, Debug, Deserialize, Miniconf)] pub struct Settings { afe: [AfeGain; 2], lockin_mode: LockinMode, pll_tc: [u8; 2], lockin_tc: u8, lockin_harmonic: i32, lockin_phase: i32, output_conf: [Conf; 2], telemetry_period: u16, } impl Default for Settings { fn default() -> Self { Self { afe: [AfeGain::G1; 2], lockin_mode: LockinMode::External, pll_tc: [21, 21], // frequency and phase settling time (log2 counter cycles) lockin_tc: 6, // lockin lowpass time constant lockin_harmonic: -1, // Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate) lockin_phase: 0, // Demodulation LO phase offset output_conf: [Conf::InPhase, Conf::Quadrature], // The default telemetry period in seconds. telemetry_period: 10, } } } #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)] const APP: () = { struct Resources { afes: (AFE0, AFE1), adcs: (Adc0Input, Adc1Input), dacs: (Dac0Output, Dac1Output), network: NetworkUsers, settings: Settings, telemetry: TelemetryBuffer, digital_inputs: (DigitalInput0, DigitalInput1), timestamper: InputStamper, pll: RPLL, lockin: Lockin<4>, } #[init(spawn=[settings_update, telemetry])] fn init(c: init::Context) -> init::LateResources { // Configure the microcontroller let (mut stabilizer, _pounder) = setup(c.core, c.device); let network = NetworkUsers::new( stabilizer.net.stack, stabilizer.net.phy, stabilizer.cycle_counter, env!("CARGO_BIN_NAME"), stabilizer.net.mac_address, ); let settings = Settings::default(); let pll = RPLL::new( design_parameters::ADC_SAMPLE_TICKS_LOG2 + design_parameters::SAMPLE_BUFFER_SIZE_LOG2, ); // Spawn a settings and telemetry update for default settings. c.spawn.settings_update().unwrap(); c.spawn.telemetry().unwrap(); // Enable ADC/DAC events stabilizer.adcs.0.start(); stabilizer.adcs.1.start(); stabilizer.dacs.0.start(); stabilizer.dacs.1.start(); // Start recording digital input timestamps. stabilizer.timestamp_timer.start(); // Start sampling ADCs. stabilizer.adc_dac_timer.start(); // Enable the timestamper. stabilizer.timestamper.start(); init::LateResources { afes: stabilizer.afes, adcs: stabilizer.adcs, dacs: stabilizer.dacs, network, digital_inputs: stabilizer.digital_inputs, timestamper: stabilizer.timestamper, telemetry: net::TelemetryBuffer::default(), settings, pll, lockin: Lockin::default(), } } /// Main DSP processing routine. /// /// See `dual-iir` for general notes on processing time and timing. /// /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal. /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale. /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available. #[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings, telemetry], priority=2)] #[inline(never)] #[link_section = ".itcm.process"] fn process(c: process::Context) { let adc_samples = [ c.resources.adcs.0.acquire_buffer(), c.resources.adcs.1.acquire_buffer(), ]; let mut dac_samples = [ c.resources.dacs.0.acquire_buffer(), c.resources.dacs.1.acquire_buffer(), ]; let lockin = c.resources.lockin; let settings = c.resources.settings; let (reference_phase, reference_frequency) = match settings.lockin_mode { LockinMode::External => { let timestamp = c.resources.timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows. let (pll_phase, pll_frequency) = c.resources.pll.update( timestamp.map(|t| t as i32), settings.pll_tc[0], settings.pll_tc[1], ); ( pll_phase, (pll_frequency >> design_parameters::SAMPLE_BUFFER_SIZE_LOG2) as i32, ) } LockinMode::Internal => { // Reference phase and frequency are known. ( 1i32 << 30, 1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2), ) } }; let sample_frequency = reference_frequency.wrapping_mul(settings.lockin_harmonic); let sample_phase = settings.lockin_phase.wrapping_add( reference_phase.wrapping_mul(settings.lockin_harmonic), ); let output: Complex = adc_samples[0] .iter() // Zip in the LO phase. .zip(Accu::new(sample_phase, sample_frequency)) // Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter) .map(|(&sample, phase)| { let s = (sample as i16 as i32) << 16; lockin.update(s, phase, settings.lockin_tc) }) // Decimate .last() .unwrap() * 2; // Full scale assuming the 2f component is gone. // Convert to DAC data. for (channel, samples) in dac_samples.iter_mut().enumerate() { for (i, sample) in samples.iter_mut().enumerate() { let value = match settings.output_conf[channel] { Conf::Magnitude => output.abs_sqr() as i32 >> 16, Conf::Phase => output.arg() >> 16, Conf::LogPower => (output.log2() << 24) as i32 >> 16, Conf::ReferenceFrequency => { reference_frequency as i32 >> 16 } Conf::InPhase => output.re >> 16, Conf::Quadrature => output.im >> 16, Conf::Modulation => DAC_SEQUENCE[i] as i32, }; *sample = DacCode::from(value as i16).0; } } // Update telemetry measurements. c.resources.telemetry.adcs = [AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])]; c.resources.telemetry.dacs = [DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])]; } #[idle(resources=[network], spawn=[settings_update])] fn idle(mut c: idle::Context) -> ! { loop { match c.resources.network.lock(|net| net.update()) { NetworkState::SettingsChanged => { c.spawn.settings_update().unwrap() } NetworkState::Updated => {} NetworkState::NoChange => cortex_m::asm::wfi(), } } } #[task(priority = 1, resources=[network, settings, afes])] fn settings_update(mut c: settings_update::Context) { let settings = c.resources.network.miniconf.settings(); c.resources.afes.0.set_gain(settings.afe[0]); c.resources.afes.1.set_gain(settings.afe[1]); c.resources.settings.lock(|current| *current = *settings); } #[task(priority = 1, resources=[network, digital_inputs, settings, telemetry], schedule=[telemetry])] fn telemetry(mut c: telemetry::Context) { let mut telemetry: TelemetryBuffer = c.resources.telemetry.lock(|telemetry| *telemetry); telemetry.digital_inputs = [ c.resources.digital_inputs.0.is_high().unwrap(), c.resources.digital_inputs.1.is_high().unwrap(), ]; let (gains, telemetry_period) = c .resources .settings .lock(|settings| (settings.afe, settings.telemetry_period)); c.resources .network .telemetry .publish(&telemetry.finalize(gains[0], gains[1])); // Schedule the telemetry task in the future. c.schedule .telemetry( c.scheduled + SystemTimer::ticks_from_secs(telemetry_period as u32), ) .unwrap(); } #[task(binds = ETH, priority = 1)] fn eth(_: eth::Context) { unsafe { stm32h7xx_hal::ethernet::interrupt_handler() } } #[task(binds = SPI2, priority = 3)] fn spi2(_: spi2::Context) { panic!("ADC0 input overrun"); } #[task(binds = SPI3, priority = 3)] fn spi3(_: spi3::Context) { panic!("ADC1 input overrun"); } #[task(binds = SPI4, priority = 3)] fn spi4(_: spi4::Context) { panic!("DAC0 output error"); } #[task(binds = SPI5, priority = 3)] fn spi5(_: spi5::Context) { panic!("DAC1 output error"); } extern "C" { // hw interrupt handlers for RTIC to use for scheduling tasks // one per priority fn DCMI(); fn JPEG(); fn SDMMC(); } };