pub use num::Complex; use super::{atan2, cossin}; /// Complex extension trait offering DSP (fast, good accuracy) functionality. pub trait ComplexExt { fn from_angle(angle: T) -> Self; fn abs_sqr(&self) -> U; fn log2(&self) -> T; fn arg(&self) -> T; fn saturating_add(&self, other: Self) -> Self; fn saturating_sub(&self, other: Self) -> Self; } impl ComplexExt for Complex { /// Return a Complex on the unit circle given an angle. /// /// Example: /// /// ``` /// use dsp::{Complex, ComplexExt}; /// Complex::::from_angle(0); /// Complex::::from_angle(1 << 30); // pi/2 /// Complex::::from_angle(-1 << 30); // -pi/2 /// ``` fn from_angle(angle: i32) -> Self { let (c, s) = cossin(angle); Self::new(c, s) } /// Return the absolute square (the squared magnitude). /// /// Note: Normalization is `1 << 32`, i.e. U0.32. /// /// Note(panic): This will panic for `Complex(i32::MIN, i32::MIN)` /// /// Example: /// /// ``` /// use dsp::{Complex, ComplexExt}; /// assert_eq!(Complex::new(i32::MIN, 0).abs_sqr(), 1 << 31); /// assert_eq!(Complex::new(i32::MAX, i32::MAX).abs_sqr(), u32::MAX - 3); /// ``` fn abs_sqr(&self) -> u32 { (((self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64)) >> 31) as u32 } /// log2(power) re full scale approximation /// /// TODO: scale up, interpolate /// /// Panic: /// This will panic for `Complex(i32::MIN, i32::MIN)` /// /// Example: /// /// ``` /// use dsp::{Complex, ComplexExt}; /// assert_eq!(Complex::new(i32::MAX, i32::MAX).log2(), -1); /// assert_eq!(Complex::new(i32::MAX, 0).log2(), -2); /// assert_eq!(Complex::new(1, 0).log2(), -63); /// assert_eq!(Complex::new(0, 0).log2(), -64); /// ``` fn log2(&self) -> i32 { let a = (self.re as i64) * (self.re as i64) + (self.im as i64) * (self.im as i64); -(a.leading_zeros() as i32) } /// Return the angle. /// /// Note: Normalization is `1 << 31 == pi`. /// /// Example: /// /// ``` /// use dsp::{Complex, ComplexExt}; /// assert_eq!(Complex::new(1, 0).arg(), 0); /// assert_eq!(Complex::new(-i32::MAX, 1).arg(), i32::MAX); /// assert_eq!(Complex::new(-i32::MAX, -1).arg(), -i32::MAX); /// assert_eq!(Complex::new(0, -1).arg(), -i32::MAX >> 1); /// assert_eq!(Complex::new(0, 1).arg(), (i32::MAX >> 1) + 1); /// assert_eq!(Complex::new(1, 1).arg(), (i32::MAX >> 2) + 1); /// ``` fn arg(&self) -> i32 { atan2(self.im, self.re) } fn saturating_add(&self, other: Self) -> Self { Self::new( self.re.saturating_add(other.re), self.im.saturating_add(other.im), ) } fn saturating_sub(&self, other: Self) -> Self { Self::new( self.re.saturating_sub(other.re), self.im.saturating_sub(other.im), ) } } /// Full scale fixed point multiplication. pub trait MulScaled { fn mul_scaled(self, other: T) -> Self; } impl MulScaled> for Complex { fn mul_scaled(self, other: Self) -> Self { let a = self.re as i64; let b = self.im as i64; let c = other.re as i64; let d = other.im as i64; Complex { re: ((a * c - b * d + (1 << 30)) >> 31) as i32, im: ((b * c + a * d + (1 << 30)) >> 31) as i32, } } } impl MulScaled for Complex { fn mul_scaled(self, other: i32) -> Self { Complex { re: ((other as i64 * self.re as i64 + (1 << 30)) >> 31) as i32, im: ((other as i64 * self.im as i64 + (1 << 30)) >> 31) as i32, } } } impl MulScaled for Complex { fn mul_scaled(self, other: i16) -> Self { Complex { re: (other as i32 * (self.re >> 16) + (1 << 14)) >> 15, im: (other as i32 * (self.im >> 16) + (1 << 14)) >> 15, } } }