Merge branch 'master' into feature/qspi-stream
This commit is contained in:
commit
d3bb5ab0e4
@ -1,6 +1,16 @@
|
||||
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
|
||||
runner = "gdb-multiarch -q -x openocd.gdb"
|
||||
rustflags = ["-C", "link-arg=-Tlink.x"]
|
||||
rustflags = [
|
||||
"-C", "link-arg=-Tlink.x",
|
||||
# The target (below) defaults to cortex-m4
|
||||
# There currently are two different options to go beyond that:
|
||||
# 1. cortex-m7 has the right flags and instructions (FPU) but no instruction schedule yet
|
||||
"-C", "target-cpu=cortex-m7",
|
||||
# 2. cortex-m4 with the additional fpv5 instructions and a potentially
|
||||
# better-than-nothing instruction schedule
|
||||
"-C", "target-feature=+fp-armv8d16",
|
||||
# When combined they are equivalent to (1) alone
|
||||
]
|
||||
|
||||
[build]
|
||||
target = "thumbv7em-none-eabihf"
|
||||
|
@ -62,7 +62,7 @@ branch = "dma"
|
||||
[features]
|
||||
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]
|
||||
bkpt = [ ]
|
||||
nightly = ["cortex-m/inline-asm"]
|
||||
nightly = ["cortex-m/inline-asm", "dsp/nightly"]
|
||||
|
||||
[profile.dev]
|
||||
codegen-units = 1
|
||||
|
@ -6,3 +6,6 @@ edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
serde = { version = "1.0", features = ["derive"], default-features = false }
|
||||
|
||||
[features]
|
||||
nightly = []
|
||||
|
@ -1,4 +1,4 @@
|
||||
use core::ops::{Add, Mul};
|
||||
use core::ops::{Add, Mul, Neg};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use core::f32;
|
||||
@ -8,23 +8,35 @@ use core::f32;
|
||||
// `compiler-intrinsics`/llvm should have better (robust, universal, and
|
||||
// faster) implementations.
|
||||
|
||||
fn abs(x: f32) -> f32 {
|
||||
if x >= 0. {
|
||||
fn abs<T>(x: T) -> T
|
||||
where
|
||||
T: PartialOrd + Default + Neg<Output = T>,
|
||||
{
|
||||
if x >= T::default() {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn copysign(x: f32, y: f32) -> f32 {
|
||||
if (x >= 0. && y >= 0.) || (x <= 0. && y <= 0.) {
|
||||
fn copysign<T>(x: T, y: T) -> T
|
||||
where
|
||||
T: PartialOrd + Default + Neg<Output = T>,
|
||||
{
|
||||
if (x >= T::default() && y >= T::default())
|
||||
|| (x <= T::default() && y <= T::default())
|
||||
{
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn max(x: f32, y: f32) -> f32 {
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
fn max<T>(x: T, y: T) -> T
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
if x > y {
|
||||
x
|
||||
} else {
|
||||
@ -32,7 +44,11 @@ fn max(x: f32, y: f32) -> f32 {
|
||||
}
|
||||
}
|
||||
|
||||
fn min(x: f32, y: f32) -> f32 {
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
fn min<T>(x: T, y: T) -> T
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
if x < y {
|
||||
x
|
||||
} else {
|
||||
@ -40,6 +56,16 @@ fn min(x: f32, y: f32) -> f32 {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
fn max(x: f32, y: f32) -> f32 {
|
||||
core::intrinsics::maxnumf32(x, y)
|
||||
}
|
||||
|
||||
#[cfg(feature = "nightly")]
|
||||
fn min(x: f32, y: f32) -> f32 {
|
||||
core::intrinsics::minnumf32(x, y)
|
||||
}
|
||||
|
||||
// Multiply-accumulate vectors `x` and `a`.
|
||||
//
|
||||
// A.k.a. dot product.
|
||||
@ -50,7 +76,7 @@ where
|
||||
{
|
||||
x.iter()
|
||||
.zip(a)
|
||||
.map(|(&x, &a)| x * a)
|
||||
.map(|(x, a)| *x * *a)
|
||||
.fold(y0, |y, xa| y + xa)
|
||||
}
|
||||
|
||||
@ -58,10 +84,10 @@ where
|
||||
///
|
||||
/// To represent the IIR state (input and output memory) during the filter update
|
||||
/// this contains the three inputs (x0, x1, x2) and the two outputs (y1, y2)
|
||||
/// concatenated.
|
||||
/// concatenated. Lower indices correspond to more recent samples.
|
||||
/// To represent the IIR coefficients, this contains the feed-forward
|
||||
/// coefficients (b0, b1, b2) followd by the feed-back coefficients (a1, a2),
|
||||
/// all normalized such that a0 = 1.
|
||||
/// coefficients (b0, b1, b2) followd by the negated feed-back coefficients
|
||||
/// (-a1, -a2), all five normalized such that a0 = 1.
|
||||
pub type IIRState = [f32; 5];
|
||||
|
||||
/// IIR configuration.
|
||||
@ -159,10 +185,13 @@ impl IIR {
|
||||
/// * `xy` - Current filter state.
|
||||
/// * `x0` - New input.
|
||||
pub fn update(&self, xy: &mut IIRState, x0: f32) -> f32 {
|
||||
let n = self.ba.len();
|
||||
debug_assert!(xy.len() == n);
|
||||
// `xy` contains x0 x1 y0 y1 y2
|
||||
// Increment time x1 x2 y1 y2 y3
|
||||
// Rotate y3 x1 x2 y1 y2
|
||||
xy.rotate_right(1);
|
||||
// Shift x1 x1 x2 y1 y2
|
||||
// This unrolls better than xy.rotate_right(1)
|
||||
xy.copy_within(0..n - 1, 1);
|
||||
// Store x0 x0 x1 x2 y1 y2
|
||||
xy[0] = x0;
|
||||
// Compute y0 by multiply-accumulate
|
||||
@ -170,7 +199,7 @@ impl IIR {
|
||||
// Limit y0
|
||||
let y0 = max(self.y_min, min(self.y_max, y0));
|
||||
// Store y0 x0 x1 y0 y1 y2
|
||||
xy[xy.len() / 2] = y0;
|
||||
xy[n / 2] = y0;
|
||||
y0
|
||||
}
|
||||
}
|
||||
|
@ -1,3 +1,4 @@
|
||||
#![no_std]
|
||||
#![cfg_attr(feature = "nightly", feature(asm, core_intrinsics))]
|
||||
|
||||
pub mod iir;
|
||||
|
518
src/adc.rs
518
src/adc.rs
@ -27,358 +27,184 @@ static mut SPI_START: [u16; 1] = [0x00];
|
||||
// The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for
|
||||
// each transfer in a ping-pong buffer configuration (one is being acquired while the other is being
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
static mut ADC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI2 {
|
||||
_channel: sampling_timer::tim2::Channel1,
|
||||
}
|
||||
impl SPI2 {
|
||||
pub fn new(_channel: sampling_timer::tim2::Channel1) -> Self {
|
||||
Self { _channel }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
|
||||
// may only be used if ownership of the timer2 channel 1 compare channel is assured, which is
|
||||
// ensured by maintaining ownership of the channel.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI2 DMA requests are generated whenever TIM2 CH1 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH1 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
// Note(unsafe): It is assumed that SPI2 is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI3 {
|
||||
_channel: sampling_timer::tim2::Channel2,
|
||||
}
|
||||
impl SPI3 {
|
||||
pub fn new(_channel: sampling_timer::tim2::Channel2) -> Self {
|
||||
Self { _channel }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
|
||||
// may only be used if ownership of the timer2 channel 2 compare channel is assured, which is
|
||||
// ensured by maintaining ownership of the channel.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
|
||||
/// SPI3 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI3 DMA requests are generated whenever TIM2 CH2 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH2 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
// Note(unsafe): It is assumed that SPI3 is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents both ADC input channels.
|
||||
pub struct AdcInputs {
|
||||
adc0: Adc0Input,
|
||||
adc1: Adc1Input,
|
||||
}
|
||||
|
||||
impl AdcInputs {
|
||||
/// Construct the ADC inputs.
|
||||
pub fn new(adc0: Adc0Input, adc1: Adc1Input) -> Self {
|
||||
Self { adc0, adc1 }
|
||||
}
|
||||
|
||||
/// Interrupt handler to handle when the sample collection DMA transfer completes.
|
||||
///
|
||||
/// # Returns
|
||||
/// (adc0, adc1) where adcN is a reference to the collected ADC samples. Two array references
|
||||
/// are returned - one for each ADC sample stream.
|
||||
pub fn transfer_complete_handler(
|
||||
&mut self,
|
||||
) -> (&[u16; SAMPLE_BUFFER_SIZE], &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
let adc0_buffer = self.adc0.transfer_complete_handler();
|
||||
let adc1_buffer = self.adc1.transfer_complete_handler();
|
||||
(adc0_buffer, adc1_buffer)
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with ADC0.
|
||||
pub struct Adc0Input {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream1<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::SPI2, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
SPI2,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; 1],
|
||||
>,
|
||||
}
|
||||
|
||||
impl Adc0Input {
|
||||
/// Construct the ADC0 input channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into
|
||||
/// the SPI TX FIFO.
|
||||
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
|
||||
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel1,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
|
||||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
SPI2::new(trigger_channel),
|
||||
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
|
||||
// actually modified. It technically only needs to be immutably borrowed, but the
|
||||
// current HAL API only supports mutable borrows.
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
|
||||
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
|
||||
// after the requested number of samples have been collected. Note that only ADC1's data
|
||||
// stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
// application (e.g. a second DMA transfer completes before the first was done with
|
||||
// processing). This is used as a flow control indicator to guarantee that no ADC samples
|
||||
// are lost.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC0_BUF0 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
unsafe { &mut ADC0_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
);
|
||||
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
});
|
||||
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC0_BUF1 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
macro_rules! adc_input {
|
||||
($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident,
|
||||
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {
|
||||
/// $spi is used as a type for indicating a DMA transfer into the SPI TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct $spi {
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle a transfer completion.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the data input stream from ADC1
|
||||
pub struct Adc1Input {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream3<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::SPI3, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
SPI3,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; 1],
|
||||
>,
|
||||
}
|
||||
|
||||
impl Adc1Input {
|
||||
/// Construct a new ADC1 input data stream.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface connected to ADC1.
|
||||
/// * `trigger_stream` - The DMA stream used to trigger ADC conversions on the SPI interface.
|
||||
/// * `data_stream` - The DMA stream used to read ADC samples from the SPI RX FIFO.
|
||||
/// * `trigger_channel` - The ADC sampling timer output compare channel for read triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel2,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
|
||||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
SPI3::new(trigger_channel),
|
||||
// Note(unsafe). This transaction is read-only and SPI_START is a dont-care value,
|
||||
// so it is always safe to share.
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
|
||||
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
|
||||
// after the requested number of samples have been collected. Note that only ADC1's data
|
||||
// stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.transfer_complete_interrupt(true)
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
// application (e.g. a second DMA transfer completes before the first was done with
|
||||
// processing). This is used as a flow control indicator to guarantee that no ADC samples
|
||||
// are lost.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC1_BUF0 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
unsafe { &mut ADC1_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
);
|
||||
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
});
|
||||
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC1_BUF1 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
impl $spi {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
) -> Self {
|
||||
Self { _channel }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Handle a transfer completion.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
|
||||
// may only be used if ownership of the timer2 $trigger_channel compare channel is assured, which is
|
||||
// ensured by maintaining ownership of the channel.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for $spi {
|
||||
/// SPI is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
/// SPI DMA requests are generated whenever TIM2 CHx ($dma_req) comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::$spi::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
/// Represents data associated with ADC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
|
||||
$spi,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; 1],
|
||||
>,
|
||||
}
|
||||
|
||||
impl $name {
|
||||
/// Construct the ADC input channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into
|
||||
/// the SPI TX FIFO.
|
||||
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
|
||||
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::$trigger_stream<
|
||||
hal::stm32::DMA1,
|
||||
>,
|
||||
data_stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::$trigger_channel,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
|
||||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<
|
||||
_,
|
||||
_,
|
||||
MemoryToPeripheral,
|
||||
_,
|
||||
> = Transfer::init(
|
||||
trigger_stream,
|
||||
$spi::new(trigger_channel),
|
||||
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
|
||||
// actually modified. It technically only needs to be immutably borrowed, but the
|
||||
// current HAL API only supports mutable borrows.
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
|
||||
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
|
||||
// after the requested number of samples have been collected. Note that only ADC1's (sic!)
|
||||
// data stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.transfer_complete_interrupt($index == 1)
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
// application (e.g. a second DMA transfer completes before the first was done with
|
||||
// processing). This is used as a flow control indicator to guarantee that no ADC samples
|
||||
// are lost.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC_BUF[$index][0] is "owned" by this peripheral.
|
||||
// It shall not be used anywhere else in the module.
|
||||
unsafe { &mut ADC_BUF[$index][0] },
|
||||
None,
|
||||
data_config,
|
||||
);
|
||||
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_rx();
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
});
|
||||
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
}
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with ADC samples.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer); // .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
adc_input!(Adc0Input, 0, Stream0, Stream1, SPI2, Channel1, TIM2_CH1);
|
||||
adc_input!(Adc1Input, 1, Stream2, Stream3, SPI3, Channel2, TIM2_CH2);
|
||||
|
431
src/dac.rs
431
src/dac.rs
@ -11,306 +11,147 @@ use super::{
|
||||
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
|
||||
// each transfer in a ping-pong buffer configuration (one is being prepared while the other is being
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI4 is used as a type for indicating a DMA transfer into the SPI4 TX FIFO
|
||||
struct SPI4 {
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
}
|
||||
|
||||
impl SPI4 {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI4 DMA requests are generated whenever TIM2 CH3 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH3 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
|
||||
struct SPI5 {
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
}
|
||||
|
||||
impl SPI5 {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
|
||||
/// SPI5 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI5 DMA requests are generated whenever TIM2 CH4 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents both DAC output channels.
|
||||
pub struct DacOutputs {
|
||||
dac0: Dac0Output,
|
||||
dac1: Dac1Output,
|
||||
}
|
||||
|
||||
impl DacOutputs {
|
||||
/// Construct the DAC outputs.
|
||||
pub fn new(dac0: Dac0Output, dac1: Dac1Output) -> Self {
|
||||
Self { dac0, dac1 }
|
||||
}
|
||||
|
||||
/// Borrow the next DAC output buffers to populate the DAC output codes in-place.
|
||||
///
|
||||
/// # Returns
|
||||
/// (dac0, dac1) where each value is a mutable reference to the output code array for DAC0 and
|
||||
/// DAC1 respectively.
|
||||
pub fn prepare_data(
|
||||
&mut self,
|
||||
) -> (
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
(self.dac0.prepare_buffer(), self.dac1.prepare_buffer())
|
||||
}
|
||||
|
||||
/// Enqueue the next DAC output codes for transmission.
|
||||
///
|
||||
/// # Note
|
||||
/// It is assumed that data was populated using `prepare_data()` before this function is
|
||||
/// called.
|
||||
pub fn commit_data(&mut self) {
|
||||
self.dac0.commit_buffer();
|
||||
self.dac1.commit_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC0.
|
||||
pub struct Dac0Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
SPI4,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac0Output {
|
||||
/// Construct the DAC0 output channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `stream` - The DMA stream used to write DAC codes over SPI.
|
||||
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel3,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The stream constantly writes to the TX FIFO to write new update codes.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI4::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
|
||||
unsafe { &mut DAC0_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
macro_rules! dac_output {
|
||||
($name:ident, $index:literal, $data_stream:ident,
|
||||
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {
|
||||
/// $spi is used as a type for indicating a DMA transfer into the SPI TX FIFO
|
||||
struct $spi {
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the data output stream from DAC1.
|
||||
pub struct Dac1Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
SPI5,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac1Output {
|
||||
/// Construct a new DAC1 output data stream.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface connected to DAC1.
|
||||
/// * `stream` - The DMA stream used to write DAC codes the SPI TX FIFO.
|
||||
/// * `trigger_channel` - The timer channel used to generate DMA requests for DAC updates.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::Channel4,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO to generate DAC updates.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
|
||||
// DAC.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI5::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided to the transfer.
|
||||
unsafe { &mut DAC1_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
|
||||
transfer,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
impl $spi {
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::$trigger_channel,
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for $spi {
|
||||
/// SPI is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
/// SPI DMA requests are generated whenever TIM2 CHx ($dma_req) comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
$spi,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl $name {
|
||||
/// Construct the DAC output channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `stream` - The DMA stream used to write DAC codes over SPI.
|
||||
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::tim2::$trigger_channel,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The stream constantly writes to the TX FIFO to write new update codes.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
$spi::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
|
||||
unsafe { &mut DAC_BUF[$index][0] },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC_BUF[$index][1]) },
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Acquire the next output buffer to populate it with DAC codes.
|
||||
pub fn acquire_buffer(
|
||||
&mut self,
|
||||
) -> &'static mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.take().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn release_buffer(
|
||||
&mut self,
|
||||
next_buffer: &'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
dac_output!(Dac0Output, 0, Stream4, SPI4, Channel3, TIM2_CH3);
|
||||
dac_output!(Dac1Output, 1, Stream5, SPI5, Channel4, TIM2_CH4);
|
||||
|
79
src/main.rs
79
src/main.rs
@ -13,6 +13,9 @@
|
||||
fn panic(_info: &core::panic::PanicInfo) -> ! {
|
||||
let gpiod = unsafe { &*hal::stm32::GPIOD::ptr() };
|
||||
gpiod.odr.modify(|_, w| w.odr6().high().odr12().high()); // FP_LED_1, FP_LED_3
|
||||
#[cfg(feature = "nightly")]
|
||||
core::intrinsics::abort();
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
unsafe {
|
||||
core::intrinsics::abort();
|
||||
}
|
||||
@ -70,8 +73,8 @@ mod pounder;
|
||||
mod sampling_timer;
|
||||
mod server;
|
||||
|
||||
use adc::{Adc0Input, Adc1Input, AdcInputs};
|
||||
use dac::{Dac0Output, Dac1Output, DacOutputs};
|
||||
use adc::{Adc0Input, Adc1Input};
|
||||
use dac::{Dac0Output, Dac1Output};
|
||||
use dsp::iir;
|
||||
use pounder::DdsOutput;
|
||||
|
||||
@ -189,11 +192,10 @@ macro_rules! route_request {
|
||||
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
|
||||
const APP: () = {
|
||||
struct Resources {
|
||||
afe0: AFE0,
|
||||
afe1: AFE1,
|
||||
afes: (AFE0, AFE1),
|
||||
|
||||
adcs: AdcInputs,
|
||||
dacs: DacOutputs,
|
||||
adcs: (Adc0Input, Adc1Input),
|
||||
dacs: (Dac0Output, Dac1Output),
|
||||
|
||||
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
|
||||
|
||||
@ -362,7 +364,7 @@ const APP: () = {
|
||||
)
|
||||
};
|
||||
|
||||
AdcInputs::new(adc0, adc1)
|
||||
(adc0, adc1)
|
||||
};
|
||||
|
||||
let dacs = {
|
||||
@ -447,7 +449,7 @@ const APP: () = {
|
||||
dma_streams.5,
|
||||
sampling_timer_channels.ch4,
|
||||
);
|
||||
DacOutputs::new(dac0, dac1)
|
||||
(dac0, dac1)
|
||||
};
|
||||
|
||||
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
|
||||
@ -777,8 +779,7 @@ const APP: () = {
|
||||
sampling_timer.start();
|
||||
|
||||
init::LateResources {
|
||||
afe0,
|
||||
afe1,
|
||||
afes: (afe0, afe1),
|
||||
|
||||
adcs,
|
||||
dacs,
|
||||
@ -792,29 +793,28 @@ const APP: () = {
|
||||
}
|
||||
}
|
||||
|
||||
#[task(binds=DMA1_STR3, resources=[adcs, dacs, dds_output, iir_state, iir_ch], priority=2)]
|
||||
fn adc_update(c: adc_update::Context) {
|
||||
let (adc0_samples, adc1_samples) =
|
||||
c.resources.adcs.transfer_complete_handler();
|
||||
#[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch, dds_output], priority=2)]
|
||||
fn process(c: process::Context) {
|
||||
let adc_samples = [
|
||||
c.resources.adcs.0.acquire_buffer(),
|
||||
c.resources.adcs.1.acquire_buffer(),
|
||||
];
|
||||
let dac_samples = [
|
||||
c.resources.dacs.0.acquire_buffer(),
|
||||
c.resources.dacs.1.acquire_buffer(),
|
||||
];
|
||||
|
||||
let (dac0, dac1) = c.resources.dacs.prepare_data();
|
||||
|
||||
for (i, (adc0, adc1)) in
|
||||
adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
|
||||
{
|
||||
dac0[i] = {
|
||||
let x0 = f32::from(*adc0 as i16);
|
||||
let y0 = c.resources.iir_ch[0]
|
||||
.update(&mut c.resources.iir_state[0], x0);
|
||||
y0 as i16 as u16 ^ 0x8000
|
||||
};
|
||||
|
||||
dac1[i] = {
|
||||
let x1 = f32::from(*adc1 as i16);
|
||||
let y1 = c.resources.iir_ch[1]
|
||||
.update(&mut c.resources.iir_state[1], x1);
|
||||
y1 as i16 as u16 ^ 0x8000
|
||||
};
|
||||
for channel in 0..adc_samples.len() {
|
||||
for sample in 0..adc_samples[0].len() {
|
||||
let x = f32::from(adc_samples[channel][sample] as i16);
|
||||
let y = c.resources.iir_ch[channel]
|
||||
.update(&mut c.resources.iir_state[channel], x);
|
||||
// Note(unsafe): The filter limits ensure that the value is in range.
|
||||
// The truncation introduces 1/2 LSB distortion.
|
||||
let y = unsafe { y.to_int_unchecked::<i16>() };
|
||||
// Convert to DAC code
|
||||
dac_samples[channel][sample] = y as u16 ^ 0x8000;
|
||||
}
|
||||
}
|
||||
|
||||
if let Some(dds_output) = c.resources.dds_output {
|
||||
@ -824,13 +824,16 @@ const APP: () = {
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
builder.write_profile();
|
||||
}
|
||||
|
||||
c.resources.dacs.commit_data();
|
||||
let [dac0, dac1] = dac_samples;
|
||||
c.resources.dacs.0.release_buffer(dac0);
|
||||
c.resources.dacs.1.release_buffer(dac1);
|
||||
}
|
||||
|
||||
#[idle(resources=[net_interface, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]
|
||||
#[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afes])]
|
||||
fn idle(mut c: idle::Context) -> ! {
|
||||
let mut socket_set_entries: [_; 8] = Default::default();
|
||||
let mut sockets =
|
||||
@ -890,8 +893,8 @@ const APP: () = {
|
||||
|
||||
Ok::<server::Status, ()>(state)
|
||||
}),
|
||||
"stabilizer/afe0/gain": (|| c.resources.afe0.get_gain()),
|
||||
"stabilizer/afe1/gain": (|| c.resources.afe1.get_gain())
|
||||
"stabilizer/afe0/gain": (|| c.resources.afes.0.get_gain()),
|
||||
"stabilizer/afe1/gain": (|| c.resources.afes.1.get_gain())
|
||||
],
|
||||
|
||||
modifiable_attributes: [
|
||||
@ -918,11 +921,11 @@ const APP: () = {
|
||||
})
|
||||
}),
|
||||
"stabilizer/afe0/gain": afe::Gain, (|gain| {
|
||||
c.resources.afe0.set_gain(gain);
|
||||
c.resources.afes.0.set_gain(gain);
|
||||
Ok::<(), ()>(())
|
||||
}),
|
||||
"stabilizer/afe1/gain": afe::Gain, (|gain| {
|
||||
c.resources.afe1.set_gain(gain);
|
||||
c.resources.afes.1.set_gain(gain);
|
||||
Ok::<(), ()>(())
|
||||
})
|
||||
]
|
||||
|
@ -47,7 +47,6 @@ impl DdsOutput {
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Trigger the IO_update signal generating timer to asynchronous create the IO_Update pulse.
|
||||
self.io_update_trigger.trigger();
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user