Adding DMA support for DAC writes
This commit is contained in:
parent
56bcf1e0aa
commit
91809cf255
2
Cargo.lock
generated
2
Cargo.lock
generated
@ -501,7 +501,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "stm32h7xx-hal"
|
||||
version = "0.8.0"
|
||||
source = "git+https://github.com/quartiq/stm32h7xx-hal?branch=feature/dma-rtic-example#d8cb6fa5099282665f5e5068a9dcdc9ebaa63240"
|
||||
source = "git+https://github.com/stm32-rs/stm32h7xx-hal?branch=dma#0bfeeca4ce120c1b7c6d140a7da73a4372b874d8"
|
||||
dependencies = [
|
||||
"bare-metal 1.0.0",
|
||||
"cast",
|
||||
|
@ -54,8 +54,8 @@ path = "ad9959"
|
||||
|
||||
[dependencies.stm32h7xx-hal]
|
||||
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
|
||||
git = "https://github.com/quartiq/stm32h7xx-hal"
|
||||
branch = "feature/dma-rtic-example"
|
||||
git = "https://github.com/stm32-rs/stm32h7xx-hal"
|
||||
branch = "dma"
|
||||
|
||||
[features]
|
||||
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]
|
||||
|
27
src/adc.rs
27
src/adc.rs
@ -15,12 +15,9 @@
|
||||
///! busy-waiting because the transfers should complete at approximately the same time.
|
||||
use super::{
|
||||
hal, sampling_timer, DMAReq, DmaConfig, MemoryToPeripheral,
|
||||
PeripheralToMemory, Priority, TargetAddress, Transfer,
|
||||
PeripheralToMemory, Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE,
|
||||
};
|
||||
|
||||
// The desired ADC input buffer size. This is use configurable.
|
||||
const INPUT_BUFFER_SIZE: usize = 1;
|
||||
|
||||
// The following data is written by the timer ADC sample trigger into each of the SPI TXFIFOs. Note
|
||||
// that because the SPI MOSI line is not connected, this data is dont-care. Data in AXI SRAM is not
|
||||
// initialized on boot, so the contents are random.
|
||||
@ -32,16 +29,16 @@ static mut SPI_START: [u16; 1] = [0x00];
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC0_BUF0: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
static mut ADC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC0_BUF1: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
static mut ADC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC1_BUF0: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
static mut ADC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC1_BUF1: [u16; INPUT_BUFFER_SIZE] = [0; INPUT_BUFFER_SIZE];
|
||||
static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
@ -110,7 +107,7 @@ impl AdcInputs {
|
||||
/// are returned - one for each ADC sample stream.
|
||||
pub fn transfer_complete_handler(
|
||||
&mut self,
|
||||
) -> (&[u16; INPUT_BUFFER_SIZE], &[u16; INPUT_BUFFER_SIZE]) {
|
||||
) -> (&[u16; SAMPLE_BUFFER_SIZE], &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
let adc0_buffer = self.adc0.transfer_complete_handler();
|
||||
let adc1_buffer = self.adc1.transfer_complete_handler();
|
||||
(adc0_buffer, adc1_buffer)
|
||||
@ -119,12 +116,12 @@ impl AdcInputs {
|
||||
|
||||
/// Represents data associated with ADC0.
|
||||
pub struct Adc0Input {
|
||||
next_buffer: Option<&'static mut [u16; INPUT_BUFFER_SIZE]>,
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream1<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::SPI2, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; INPUT_BUFFER_SIZE],
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
@ -223,7 +220,7 @@ impl Adc0Input {
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; INPUT_BUFFER_SIZE] {
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
@ -241,12 +238,12 @@ impl Adc0Input {
|
||||
|
||||
/// Represents the data input stream from ADC1
|
||||
pub struct Adc1Input {
|
||||
next_buffer: Option<&'static mut [u16; INPUT_BUFFER_SIZE]>,
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream3<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::SPI3, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; INPUT_BUFFER_SIZE],
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
@ -345,7 +342,7 @@ impl Adc1Input {
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; INPUT_BUFFER_SIZE] {
|
||||
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
|
369
src/dac.rs
369
src/dac.rs
@ -1,114 +1,279 @@
|
||||
///! Stabilizer DAC output control
|
||||
///! Stabilizer DAC management interface
|
||||
///!
|
||||
///! Stabilizer output DACs do not currently rely on DMA requests for generating output.
|
||||
///! Instead, the DACs utilize an internal queue for storing output codes. A timer then periodically
|
||||
///! generates an interrupt which triggers an update of the DACs via a write over SPI.
|
||||
use super::hal;
|
||||
use heapless::consts;
|
||||
///! The Stabilizer DAC utilize a DMA channel to generate output updates. A timer channel is
|
||||
///! configured to generate a DMA write into the SPI TXFIFO, which initiates a SPI transfer and
|
||||
///! results in DAC update for both channels.
|
||||
use super::{
|
||||
hal, sampling_timer, DMAReq, DmaConfig, MemoryToPeripheral, TargetAddress,
|
||||
Transfer, SAMPLE_BUFFER_SIZE,
|
||||
};
|
||||
|
||||
/// Controller structure for managing the DAC outputs.
|
||||
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
|
||||
// each transfer in a ping-pong buffer configuration (one is being prepared while the other is being
|
||||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI4 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI4 TX FIFO
|
||||
struct SPI4 {}
|
||||
impl SPI4 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI4 DMA requests are generated whenever TIM2 CH3 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH3 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI4::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
|
||||
struct SPI5 {}
|
||||
impl SPI5 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
}
|
||||
}
|
||||
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
|
||||
/// SPI5 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
||||
/// SPI5 DMA requests are generated whenever TIM2 CH4 comparison occurs.
|
||||
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
|
||||
|
||||
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI5::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents both DAC output channels.
|
||||
pub struct DacOutputs {
|
||||
dac0_spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
dac1_spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
timer: hal::timer::Timer<hal::stm32::TIM3>,
|
||||
|
||||
// The queue is provided a default length of 32 updates, but this queue can be updated by the
|
||||
// end user to be larger if necessary.
|
||||
outputs: heapless::spsc::Queue<(u16, u16), consts::U32>,
|
||||
dac0: Dac0Output,
|
||||
dac1: Dac1Output,
|
||||
}
|
||||
|
||||
impl DacOutputs {
|
||||
/// Construct a new set of DAC output controls
|
||||
///
|
||||
/// # Args
|
||||
/// * `dac0_spi` - The SPI interface to the DAC0 output.
|
||||
/// * `dac1_spi` - The SPI interface to the DAC1 output.
|
||||
/// * `timer` - The timer used to generate periodic events for updating the DACs.
|
||||
pub fn new(
|
||||
mut dac0_spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
mut dac1_spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
mut timer: hal::timer::Timer<hal::stm32::TIM3>,
|
||||
) -> Self {
|
||||
// Start the DAC SPI interfaces in infinite transaction mode. CS is configured in
|
||||
// auto-suspend mode.
|
||||
dac0_spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
dac1_spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
dac0_spi.listen(hal::spi::Event::Error);
|
||||
dac1_spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Stop the timer and begin listening for timeouts. Timeouts will be used as a means to
|
||||
// generate new DAC outputs.
|
||||
timer.pause();
|
||||
timer.reset_counter();
|
||||
timer.clear_irq();
|
||||
timer.listen(hal::timer::Event::TimeOut);
|
||||
|
||||
Self {
|
||||
dac0_spi,
|
||||
dac1_spi,
|
||||
outputs: heapless::spsc::Queue::new(),
|
||||
timer,
|
||||
}
|
||||
/// Construct the DAC outputs.
|
||||
pub fn new(dac0: Dac0Output, dac1: Dac1Output) -> Self {
|
||||
Self { dac0, dac1 }
|
||||
}
|
||||
|
||||
/// Push a set of new DAC output codes to the internal queue.
|
||||
///
|
||||
/// # Note
|
||||
/// The earlier DAC output codes will be generated within 1 update cycle of the codes. This is a
|
||||
/// fixed latency currently.
|
||||
///
|
||||
/// This function will panic if too many codes are written.
|
||||
/// Enqueue the next DAC output codes for transmission.
|
||||
///
|
||||
/// # Args
|
||||
/// * `dac0_value` - The value to enqueue for a DAC0 update.
|
||||
/// * `dac1_value` - The value to enqueue for a DAC1 update.
|
||||
pub fn push(&mut self, dac0_value: u16, dac1_value: u16) {
|
||||
self.outputs.enqueue((dac0_value, dac1_value)).unwrap();
|
||||
self.timer.resume();
|
||||
}
|
||||
|
||||
/// Update the DAC codes with the next set of values in the internal queue.
|
||||
///
|
||||
/// # Note
|
||||
/// This is intended to be called from the TIM3 update ISR.
|
||||
///
|
||||
/// If the last value in the queue is used, the timer is stopped.
|
||||
pub fn update(&mut self) {
|
||||
self.timer.clear_irq();
|
||||
match self.outputs.dequeue() {
|
||||
Some((dac0, dac1)) => self.write(dac0, dac1),
|
||||
None => {
|
||||
self.timer.pause();
|
||||
self.timer.reset_counter();
|
||||
self.timer.clear_irq();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
/// Write immediate values to the DAC outputs.
|
||||
///
|
||||
/// # Note
|
||||
/// The DACs will be updated as soon as the SPI transfer completes, which will be nominally
|
||||
/// 320nS after this function call.
|
||||
///
|
||||
/// # Args
|
||||
/// * `dac0_value` - The output code to write to DAC0.
|
||||
/// * `dac1_value` - The output code to write to DAC1.
|
||||
pub fn write(&mut self, dac0_value: u16, dac1_value: u16) {
|
||||
// In order to optimize throughput and minimize latency, the DAC codes are written directly
|
||||
// into the SPI TX FIFO. No error checking is conducted. Errors are handled via interrupts
|
||||
// instead.
|
||||
unsafe {
|
||||
core::ptr::write_volatile(
|
||||
&self.dac0_spi.inner().txdr as *const _ as *mut u16,
|
||||
dac0_value,
|
||||
);
|
||||
|
||||
core::ptr::write_volatile(
|
||||
&self.dac1_spi.inner().txdr as *const _ as *mut u16,
|
||||
dac1_value,
|
||||
);
|
||||
}
|
||||
/// * `dac0_codes` - The output codes for DAC0 to enqueue.
|
||||
/// * `dac1_codes` - The output codes for DAC1 to enqueue.
|
||||
pub fn next_data(
|
||||
&mut self,
|
||||
dac0_codes: &[u16; SAMPLE_BUFFER_SIZE],
|
||||
dac1_codes: &[u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
self.dac0.next_data(dac0_codes);
|
||||
self.dac1.next_data(dac1_codes);
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC0.
|
||||
pub struct Dac0Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
_spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
SPI4,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac0Output {
|
||||
/// Construct the DAC0 output channel.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface used to communicate with the ADC.
|
||||
/// * `stream` - The DMA stream used to write DAC codes over SPI.
|
||||
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel3,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The stream constantly writes to the TX FIFO to write new update codes.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI4::new(),
|
||||
unsafe { &mut DAC0_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
|
||||
_spi: spi,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Schedule the next set of DAC update codes.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next samples to enqueue for transmission.
|
||||
pub fn next_data(&mut self, data: &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Copy data into the next buffer
|
||||
next_buffer.copy_from_slice(data);
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents the data output stream from DAC1.
|
||||
pub struct Dac1Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
_spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
SPI5,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
first_transfer: bool,
|
||||
}
|
||||
|
||||
impl Dac1Output {
|
||||
/// Construct a new DAC1 output data stream.
|
||||
///
|
||||
/// # Args
|
||||
/// * `spi` - The SPI interface connected to DAC1.
|
||||
/// * `stream` - The DMA stream used to write DAC codes the SPI TX FIFO.
|
||||
/// * `trigger_channel` - The timer channel used to generate DMA requests for DAC updates.
|
||||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel4,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
trigger_channel.listen_dma();
|
||||
trigger_channel.to_output_compare(0);
|
||||
|
||||
// The trigger stream constantly writes to the TX FIFO to generate DAC updates.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.peripheral_increment(false)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI5::new(),
|
||||
unsafe { &mut DAC1_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
|
||||
// DAC.
|
||||
let mut spi = spi.disable();
|
||||
spi.listen(hal::spi::Event::Error);
|
||||
|
||||
// Allow the SPI FIFOs to operate using only DMA data channels.
|
||||
spi.enable_dma_tx();
|
||||
|
||||
// Enable SPI and start it in infinite transaction mode.
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
Self {
|
||||
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
|
||||
transfer,
|
||||
_spi: spi,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn next_data(&mut self, data: &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Copy data into the next buffer
|
||||
next_buffer.copy_from_slice(data);
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
}
|
||||
}
|
||||
|
46
src/main.rs
46
src/main.rs
@ -51,8 +51,12 @@ use smoltcp::wire::Ipv4Address;
|
||||
|
||||
use heapless::{consts::*, String};
|
||||
|
||||
// The desired sampling frequency of the ADCs.
|
||||
const SAMPLE_FREQUENCY_KHZ: u32 = 500;
|
||||
|
||||
// The desired ADC sample processing buffer size.
|
||||
const SAMPLE_BUFFER_SIZE: usize = 1;
|
||||
|
||||
#[link_section = ".sram3.eth"]
|
||||
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
|
||||
|
||||
@ -66,7 +70,7 @@ mod sampling_timer;
|
||||
mod server;
|
||||
|
||||
use adc::{Adc0Input, Adc1Input, AdcInputs};
|
||||
use dac::DacOutputs;
|
||||
use dac::{Dac0Output, Dac1Output, DacOutputs};
|
||||
|
||||
#[cfg(not(feature = "semihosting"))]
|
||||
fn init_log() {}
|
||||
@ -426,13 +430,17 @@ const APP: () = {
|
||||
)
|
||||
};
|
||||
|
||||
let timer = dp.TIM3.timer(
|
||||
SAMPLE_FREQUENCY_KHZ.khz(),
|
||||
ccdr.peripheral.TIM3,
|
||||
&ccdr.clocks,
|
||||
let dac0 = Dac0Output::new(
|
||||
dac0_spi,
|
||||
dma_streams.4,
|
||||
sampling_timer_channels.ch3,
|
||||
);
|
||||
|
||||
DacOutputs::new(dac0_spi, dac1_spi, timer)
|
||||
let dac1 = Dac1Output::new(
|
||||
dac1_spi,
|
||||
dma_streams.5,
|
||||
sampling_timer_channels.ch4,
|
||||
);
|
||||
DacOutputs::new(dac0, dac1)
|
||||
};
|
||||
|
||||
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
|
||||
@ -735,35 +743,33 @@ const APP: () = {
|
||||
}
|
||||
}
|
||||
|
||||
#[task(binds = TIM3, resources=[dacs], priority = 3)]
|
||||
fn dac_update(c: dac_update::Context) {
|
||||
c.resources.dacs.update();
|
||||
}
|
||||
|
||||
#[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
|
||||
fn adc_update(mut c: adc_update::Context) {
|
||||
fn adc_update(c: adc_update::Context) {
|
||||
let (adc0_samples, adc1_samples) =
|
||||
c.resources.adcs.transfer_complete_handler();
|
||||
|
||||
for (adc0, adc1) in adc0_samples.iter().zip(adc1_samples.iter()) {
|
||||
let result_adc0 = {
|
||||
let mut dac0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
let mut dac1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
for (i, (adc0, adc1)) in
|
||||
adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
|
||||
{
|
||||
dac0[i] = {
|
||||
let x0 = f32::from(*adc0 as i16);
|
||||
let y0 = c.resources.iir_ch[0]
|
||||
.update(&mut c.resources.iir_state[0], x0);
|
||||
y0 as i16 as u16 ^ 0x8000
|
||||
};
|
||||
|
||||
let result_adc1 = {
|
||||
dac1[i] = {
|
||||
let x1 = f32::from(*adc1 as i16);
|
||||
let y1 = c.resources.iir_ch[1]
|
||||
.update(&mut c.resources.iir_state[1], x1);
|
||||
y1 as i16 as u16 ^ 0x8000
|
||||
};
|
||||
|
||||
c.resources
|
||||
.dacs
|
||||
.lock(|dacs| dacs.push(result_adc0, result_adc1));
|
||||
}
|
||||
|
||||
c.resources.dacs.next_data(&dac0, &dac1);
|
||||
}
|
||||
|
||||
#[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]
|
||||
|
@ -103,5 +103,45 @@ impl Timer2Channel2 {
|
||||
/// Representation of CH3 of TIM2.
|
||||
pub struct Timer2Channel3 {}
|
||||
|
||||
impl Timer2Channel3 {
|
||||
/// Allow CH4 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc3de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr3.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr2_output()
|
||||
.modify(|_, w| unsafe { w.cc3s().bits(0) });
|
||||
}
|
||||
}
|
||||
|
||||
/// Representation of CH4 of TIM2.
|
||||
pub struct Timer2Channel4 {}
|
||||
|
||||
impl Timer2Channel4 {
|
||||
/// Allow CH4 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc4de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr4.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr2_output()
|
||||
.modify(|_, w| unsafe { w.cc4s().bits(0) });
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user