Merge pull request #240 from vertigo-designs/feature/lockin-app-refactor

Adding internal lock-in integration demo
master
Robert Jördens 2021-01-31 19:14:08 +01:00 committed by GitHub
commit 8dc811da11
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 160 additions and 0 deletions

View File

@ -0,0 +1,160 @@
#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
// A constant sinusoid to send on the DAC output.
const DAC_SEQUENCE: [f32; 8] =
[0.0, 0.707, 1.0, 0.707, 0.0, -0.707, -1.0, -0.707];
use dsp::{iir_int, lockin::Lockin};
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
use stabilizer::hardware;
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adc1: Adc1Input,
dacs: (Dac0Output, Dac1Output),
lockin: Lockin,
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
let lockin = Lockin::new(
&iir_int::IIRState::lowpass(1e-3, 0.707, 2.), // TODO: expose
);
// Enable ADC/DAC events
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
lockin,
afes: stabilizer.afes,
adc1: stabilizer.adcs.1,
dacs: stabilizer.dacs,
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
///
/// TODO: Document
#[task(binds=DMA1_STR4, resources=[adc1, dacs, lockin], priority=2)]
fn process(c: process::Context) {
let adc_samples = c.resources.adc1.acquire_buffer();
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
// DAC0 always generates a fixed sinusoidal output.
for (i, value) in DAC_SEQUENCE.iter().enumerate() {
// Full-scale gives a +/- 12V amplitude waveform. Scale it down to give +/- 100mV.
let y = value * i16::MAX as f32 / 120.0;
// Note(unsafe): The DAC_SEQUENCE values are guaranteed to be normalized.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[0][i] = y as u16 ^ 0x8000;
}
let pll_phase = 0;
let pll_frequency = 1i32 << (32 - 3); // 1/8 of the sample rate
// Harmonic index of the LO: -1 to _de_modulate the fundamental
let harmonic: i32 = -1;
// Demodulation LO phase offset
let phase_offset: i32 = (0.7495 * i32::MAX as f32) as i32;
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
let mut sample_phase = phase_offset
.wrapping_add((pll_phase as i32).wrapping_mul(harmonic));
let mut phase = 0i16;
for sample in adc_samples.iter() {
// Convert to signed, MSB align the ADC sample.
let input = (*sample as i16 as i32) << 16;
// Obtain demodulated, filtered IQ sample.
let output = c.resources.lockin.update(input, sample_phase);
// Advance the sample phase.
sample_phase = sample_phase.wrapping_add(sample_frequency);
// Convert from IQ to phase. Scale the phase so that it fits in the DAC range. We do
// this by shifting it down into the 16-bit range.
phase = (output.phase() >> 16) as i16;
}
for value in dac_samples[1].iter_mut() {
*value = phase as u16 ^ 0x8000
}
}
#[idle(resources=[afes])]
fn idle(_: idle::Context) -> ! {
loop {
// TODO: Implement network interface.
cortex_m::asm::wfi();
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC1 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};