Adding WIP
This commit is contained in:
parent
28cb3906ac
commit
8d807fa09b
@ -13,12 +13,10 @@ use embedded_hal::{blocking::delay::DelayMs, digital::v2::OutputPin};
|
||||
///
|
||||
/// The chip supports a number of serial interfaces to improve data throughput, including normal,
|
||||
/// dual, and quad SPI configurations.
|
||||
pub struct Ad9959<INTERFACE, DELAY, UPDATE> {
|
||||
pub struct Ad9959<INTERFACE> {
|
||||
pub interface: INTERFACE,
|
||||
delay: DELAY,
|
||||
reference_clock_frequency: f32,
|
||||
system_clock_multiplier: u8,
|
||||
io_update: UPDATE,
|
||||
communication_mode: Mode,
|
||||
}
|
||||
|
||||
@ -31,8 +29,6 @@ pub trait Interface {
|
||||
fn write(&mut self, addr: u8, data: &[u8]) -> Result<(), Self::Error>;
|
||||
|
||||
fn read(&mut self, addr: u8, dest: &mut [u8]) -> Result<(), Self::Error>;
|
||||
|
||||
fn write_profile(&mut self, data: [u32; 4]) -> Result<(), Self::Error>;
|
||||
}
|
||||
|
||||
/// Indicates various communication modes of the DDS. The value of this enumeration is equivalent to
|
||||
@ -93,12 +89,7 @@ pub enum Error {
|
||||
Frequency,
|
||||
}
|
||||
|
||||
impl<PinE, INTERFACE, DELAY, UPDATE> Ad9959<INTERFACE, DELAY, UPDATE>
|
||||
where
|
||||
INTERFACE: Interface,
|
||||
DELAY: DelayMs<u8>,
|
||||
UPDATE: OutputPin<Error = PinE>,
|
||||
{
|
||||
impl<I: Interface> Ad9959<I> {
|
||||
/// Construct and initialize the DDS.
|
||||
///
|
||||
/// Args:
|
||||
@ -110,36 +101,26 @@ where
|
||||
/// * `clock_frequency` - The clock frequency of the reference clock input.
|
||||
/// * `multiplier` - The desired clock multiplier for the system clock. This multiplies
|
||||
/// `clock_frequency` to generate the system clock.
|
||||
pub fn new<RST>(
|
||||
interface: INTERFACE,
|
||||
reset_pin: &mut RST,
|
||||
io_update: UPDATE,
|
||||
delay: DELAY,
|
||||
pub fn new(
|
||||
interface: I,
|
||||
reset_pin: &mut impl OutputPin,
|
||||
delay: &mut impl DelayMs<u8>,
|
||||
desired_mode: Mode,
|
||||
clock_frequency: f32,
|
||||
multiplier: u8,
|
||||
) -> Result<Self, Error>
|
||||
where
|
||||
RST: OutputPin,
|
||||
{
|
||||
) -> Result<Self, Error> {
|
||||
let mut ad9959 = Ad9959 {
|
||||
interface,
|
||||
io_update,
|
||||
delay,
|
||||
reference_clock_frequency: clock_frequency,
|
||||
system_clock_multiplier: 1,
|
||||
communication_mode: desired_mode,
|
||||
};
|
||||
|
||||
ad9959.io_update.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
|
||||
// Reset the AD9959
|
||||
reset_pin.set_high().or_else(|_| Err(Error::Pin))?;
|
||||
|
||||
// Delay for a clock cycle to allow the device to reset.
|
||||
ad9959
|
||||
.delay
|
||||
.delay_ms((1000.0 / clock_frequency as f32) as u8);
|
||||
delay.delay_ms((1000.0 / clock_frequency as f32) as u8);
|
||||
|
||||
reset_pin.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
|
||||
@ -156,9 +137,6 @@ where
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
|
||||
// Latch the configuration registers to make them active.
|
||||
ad9959.latch_configuration()?;
|
||||
|
||||
ad9959
|
||||
.interface
|
||||
.configure_mode(desired_mode)
|
||||
@ -179,19 +157,6 @@ where
|
||||
Ok(ad9959)
|
||||
}
|
||||
|
||||
/// Latch the DDS configuration to ensure it is active on the output channels.
|
||||
pub fn latch_configuration(&mut self) -> Result<(), Error> {
|
||||
self.delay.delay_ms(2);
|
||||
self.io_update.set_high().or_else(|_| Err(Error::Pin))?;
|
||||
// The SYNC_CLK is 1/4 the system clock frequency. The IO_UPDATE pin must be latched for one
|
||||
// full SYNC_CLK pulse to register. For safety, we latch for 5 here.
|
||||
self.delay
|
||||
.delay_ms((5000.0 / self.system_clock_frequency()) as u8);
|
||||
self.io_update.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Configure the internal system clock of the chip.
|
||||
///
|
||||
/// Arguments:
|
||||
@ -232,8 +197,6 @@ where
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.system_clock_multiplier = multiplier;
|
||||
|
||||
self.latch_configuration()?;
|
||||
|
||||
Ok(self.system_clock_frequency())
|
||||
}
|
||||
|
||||
@ -337,10 +300,6 @@ where
|
||||
.write(register as u8, &data)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
|
||||
// Latch the configuration and restore the previous CSR. Note that the re-enable of the
|
||||
// channel happens immediately, so the CSR update does not need to be latched.
|
||||
self.latch_configuration()?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@ -529,43 +488,55 @@ where
|
||||
let tuning_word = u32::from_be_bytes(tuning_word);
|
||||
|
||||
// Convert the tuning word into a frequency.
|
||||
Ok((tuning_word as f32 * self.system_clock_frequency()) / (1u64 << 32) as f32)
|
||||
Ok((tuning_word as f32 * self.system_clock_frequency())
|
||||
/ (1u64 << 32) as f32)
|
||||
}
|
||||
|
||||
pub fn write_profile(&mut self, channel: Channel, freq: f32, turns: f32, amplitude: f32) -> Result<(), Error> {
|
||||
|
||||
pub fn serialize_profile(
|
||||
&self,
|
||||
channel: Channel,
|
||||
freq: f32,
|
||||
turns: f32,
|
||||
amplitude: f32,
|
||||
) -> Result<[u32; 4], Error> {
|
||||
let csr: u8 = *0x00_u8
|
||||
.set_bits(1..=2, self.communication_mode as u8)
|
||||
.set_bit(4 + channel as usize, true);
|
||||
|
||||
// The function for channel frequency is `f_out = FTW * f_s / 2^32`, where FTW is the
|
||||
// frequency tuning word and f_s is the system clock rate.
|
||||
let tuning_word: u32 = ((freq * (1u64 << 32) as f32) / self.system_clock_frequency()) as u32;
|
||||
let tuning_word: u32 = ((freq * (1u64 << 32) as f32)
|
||||
/ self.system_clock_frequency())
|
||||
as u32;
|
||||
|
||||
let phase_offset: u16 = (turns * (1 << 14) as f32) as u16 & 0x3FFFu16;
|
||||
let pow: u32 = *0u32.set_bits(24..32, Register::CPOW0 as u32)
|
||||
.set_bits(8..24, phase_offset as u32)
|
||||
.set_bits(0..8, Register::CFTW0 as u32);
|
||||
|
||||
let pow: u32 = *0u32
|
||||
.set_bits(24..32, Register::CPOW0 as u32)
|
||||
.set_bits(8..24, phase_offset as u32)
|
||||
.set_bits(0..8, Register::CFTW0 as u32);
|
||||
|
||||
// Enable the amplitude multiplier for the channel if required. The amplitude control has
|
||||
// full-scale at 0x3FF (amplitude of 1), so the multiplier should be disabled whenever
|
||||
// full-scale is used.
|
||||
let amplitude_control: u16 = (amplitude * (1 << 10) as f32) as u16;
|
||||
|
||||
let acr: u32 = *0u32.set_bits(24..32, Register::ACR as u32)
|
||||
let acr: u32 = *0u32
|
||||
.set_bits(24..32, Register::ACR as u32)
|
||||
.set_bits(0..10, amplitude_control as u32 & 0x3FF)
|
||||
.set_bit(12, amplitude_control < (1 << 10));
|
||||
|
||||
let serialized: [u32; 4] = [
|
||||
u32::from_le_bytes([Register::CSR as u8, csr, Register::CSR as u8, csr]),
|
||||
u32::from_le_bytes([
|
||||
Register::CSR as u8,
|
||||
csr,
|
||||
Register::CSR as u8,
|
||||
csr,
|
||||
]),
|
||||
acr.to_be(),
|
||||
pow.to_be(),
|
||||
tuning_word.to_be(),
|
||||
];
|
||||
|
||||
self.interface.write_profile(serialized).map_err(|_| Error::Interface)?;
|
||||
|
||||
Ok(())
|
||||
Ok(serialized)
|
||||
}
|
||||
}
|
||||
|
@ -1,12 +1,12 @@
|
||||
use crate::hal;
|
||||
use hal::rcc::{CoreClocks, ResetEnable, rec};
|
||||
use hal::rcc::{rec, CoreClocks, ResetEnable};
|
||||
|
||||
pub enum Channel {
|
||||
One,
|
||||
Two,
|
||||
}
|
||||
|
||||
struct HighResTimerE {
|
||||
pub struct HighResTimerE {
|
||||
master: hal::stm32::HRTIM_MASTER,
|
||||
timer: hal::stm32::HRTIM_TIME,
|
||||
common: hal::stm32::HRTIM_COMMON,
|
||||
@ -15,15 +15,29 @@ struct HighResTimerE {
|
||||
}
|
||||
|
||||
impl HighResTimerE {
|
||||
pub fn new(timer_regs: hal::stm32::HRTIM_TIME, clocks: CoreClocks, prec: rec::Hrtim) -> Self {
|
||||
let master = unsafe { &*hal::stm32::HRTIM_MASTER::ptr() };
|
||||
let common = unsafe { &*hal::stm32::HRTIM_COMMON::ptr() };
|
||||
pub fn new(
|
||||
timer_regs: hal::stm32::HRTIM_TIME,
|
||||
master_regs: hal::stm32::HRTIM_MASTER,
|
||||
common_regs: hal::stm32::HRTIM_COMMON,
|
||||
clocks: CoreClocks,
|
||||
prec: rec::Hrtim,
|
||||
) -> Self {
|
||||
prec.reset().enable();
|
||||
|
||||
Self { master, timer: timer_regs, common, clocks }
|
||||
Self {
|
||||
master: master_regs,
|
||||
timer: timer_regs,
|
||||
common: common_regs,
|
||||
clocks,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn configure_single_shot(&mut self, channel: Channel, set_duration: f32, set_offset: f32) {
|
||||
pub fn configure_single_shot(
|
||||
&mut self,
|
||||
channel: Channel,
|
||||
set_duration: f32,
|
||||
set_offset: f32,
|
||||
) {
|
||||
// Disable the timer before configuration.
|
||||
self.master.mcr.modify(|_, w| w.tecen().clear_bit());
|
||||
|
||||
@ -32,12 +46,12 @@ impl HighResTimerE {
|
||||
// is the APB bus clock.
|
||||
let minimum_duration = set_duration + set_offset;
|
||||
|
||||
let source_frequency = self.clocks.timy_ker_ck;
|
||||
let source_cycles = minimum_duration * source_frequency;
|
||||
let source_frequency: u32 = self.clocks.timy_ker_ck().0;
|
||||
let source_cycles = (minimum_duration * source_frequency as f32) as u32;
|
||||
|
||||
// Determine the clock divider, which may be 1, 2, or 4. We will choose a clock divider that
|
||||
// allows us the highest resolution per tick, so lower dividers are favored.
|
||||
let divider = if source_cycles < 0xFFDF {
|
||||
let divider: u8 = if source_cycles < 0xFFDF {
|
||||
1
|
||||
} else if (source_cycles / 2) < 0xFFDF {
|
||||
2
|
||||
@ -48,26 +62,32 @@ impl HighResTimerE {
|
||||
};
|
||||
|
||||
// The period register must be greater than or equal to 3 cycles.
|
||||
assert!((source_cycles / divider) > 2);
|
||||
let period = (source_cycles / divider as u32) as u16;
|
||||
assert!(period > 2);
|
||||
|
||||
// We now have the prescaler and the period registers. Configure the timer.
|
||||
self.timer.timecr.modify(|_, w| unsafe{w.ck_pscx().bits(divider)})
|
||||
self.timer.perer.write(|w| unsafe{w.per().bits(source_cycles / divider)});
|
||||
self.timer
|
||||
.timecr
|
||||
.modify(|_, w| unsafe { w.ck_pscx().bits(divider) });
|
||||
self.timer.perer.write(|w| unsafe { w.perx().bits(period) });
|
||||
|
||||
// Configure the comparator 1 level.
|
||||
self.timer.cmpe1r.write(|w| unsafe{w.cmp1().bits(set_offset * source_frequency)});
|
||||
let offset = (set_offset * source_frequency as f32) as u16;
|
||||
self.timer
|
||||
.cmp1er
|
||||
.write(|w| unsafe { w.cmp1x().bits(offset) });
|
||||
|
||||
// Configure the set/reset signals.
|
||||
// Set on compare with CMP1, reset upon reaching PER
|
||||
match channel {
|
||||
Channel::One => {
|
||||
self.timer.sete1r().write(|w| w.cmp1().set_bit());
|
||||
self.timer.resete1r().write(|w| w.per().set_bit());
|
||||
},
|
||||
self.timer.sete1r.write(|w| w.cmp1().set_bit());
|
||||
self.timer.rste1r.write(|w| w.per().set_bit());
|
||||
}
|
||||
Channel::Two => {
|
||||
self.timer.sete2r().write(|w| w.cmp1().set_bit());
|
||||
self.timer.resete2r().write(|w| w.per().set_bit());
|
||||
},
|
||||
self.timer.sete2r.write(|w| w.cmp1().set_bit());
|
||||
self.timer.rste2r.write(|w| w.per().set_bit());
|
||||
}
|
||||
}
|
||||
|
||||
// Enable the timer now that it is configured.
|
||||
|
123
src/main.rs
123
src/main.rs
@ -45,6 +45,7 @@ static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
|
||||
|
||||
mod afe;
|
||||
mod eeprom;
|
||||
mod hrtimer;
|
||||
mod iir;
|
||||
mod pounder;
|
||||
mod server;
|
||||
@ -187,11 +188,12 @@ const APP: () = {
|
||||
'static,
|
||||
'static,
|
||||
'static,
|
||||
ethernet::EthernetDMA<'static>>,
|
||||
ethernet::EthernetDMA<'static>,
|
||||
>,
|
||||
eth_mac: ethernet::EthernetMAC,
|
||||
mac_addr: net::wire::EthernetAddress,
|
||||
|
||||
pounder: Option<pounder::PounderDevices<asm_delay::AsmDelay>>,
|
||||
pounder: Option<pounder::PounderDevices>,
|
||||
|
||||
#[init([[0.; 5]; 2])]
|
||||
iir_state: [iir::IIRState; 2],
|
||||
@ -439,41 +441,19 @@ const APP: () = {
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let qspi =
|
||||
hal::qspi::Qspi::new(dp.QUADSPI, &mut clocks, 10.mhz())
|
||||
hal::qspi::Qspi::new(dp.QUADSPI, &mut clocks, 50.mhz())
|
||||
.unwrap();
|
||||
pounder::QspiInterface::new(qspi).unwrap()
|
||||
};
|
||||
|
||||
let mut reset_pin = gpioa.pa0.into_push_pull_output();
|
||||
|
||||
// Configure the IO_Update signal for the DDS.
|
||||
let mut hrtimer = HighResTimerE::new(dp.HRTIM_TIME, ccdr.clocks, ccdr.peripheral.HRTIM);
|
||||
|
||||
// IO_Update should be latched for 50ns after the QSPI profile write. Profile writes
|
||||
// are always 16 bytes, with 2 cycles required per byte, coming out to a total of 32
|
||||
// QSPI clock cycles. The QSPI is configured for 10MHz, so this comes out to an
|
||||
// offset of 3.2uS.
|
||||
// TODO: This currently does not meet the 2uS timing that we have for profile
|
||||
// updates, since we want to send a profile update for every DAC update. We should
|
||||
// increase the QSPI clock frequency.
|
||||
hrtimer.configure_single_shot(hrtimer::Channel::Two, 50e-9, 3.2e-6);
|
||||
|
||||
let io_update = gpiog.pg7.into_push_pull_output();
|
||||
|
||||
let asm_delay = {
|
||||
let frequency_hz = clocks.clocks.c_ck().0;
|
||||
asm_delay::AsmDelay::new(asm_delay::bitrate::Hertz(
|
||||
frequency_hz,
|
||||
))
|
||||
};
|
||||
|
||||
ad9959::Ad9959::new(
|
||||
qspi_interface,
|
||||
&mut reset_pin,
|
||||
io_update,
|
||||
asm_delay,
|
||||
&mut delay,
|
||||
ad9959::Mode::FourBitSerial,
|
||||
100_000_000f32,
|
||||
100_000_000_f32,
|
||||
5,
|
||||
)
|
||||
.unwrap()
|
||||
@ -533,10 +513,39 @@ const APP: () = {
|
||||
let adc1_in_p = gpiof.pf11.into_analog();
|
||||
let adc2_in_p = gpiof.pf14.into_analog();
|
||||
|
||||
let io_update_trigger = {
|
||||
let _io_update = gpiog
|
||||
.pg7
|
||||
.into_alternate_af2()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
// Configure the IO_Update signal for the DDS.
|
||||
let mut hrtimer = hrtimer::HighResTimerE::new(
|
||||
dp.HRTIM_TIME,
|
||||
dp.HRTIM_MASTER,
|
||||
dp.HRTIM_COMMON,
|
||||
clocks.clocks,
|
||||
clocks.peripheral.HRTIM,
|
||||
);
|
||||
|
||||
// IO_Update should be latched for 50ns after the QSPI profile write. Profile writes
|
||||
// are always 16 bytes, with 2 cycles required per byte, coming out to a total of 32
|
||||
// QSPI clock cycles. The QSPI is configured for 50MHz, so this comes out to an
|
||||
// offset of 640nS. We use 900ns to be safe.
|
||||
hrtimer.configure_single_shot(
|
||||
hrtimer::Channel::Two,
|
||||
50_e-9,
|
||||
900_e-9,
|
||||
);
|
||||
|
||||
hrtimer
|
||||
};
|
||||
|
||||
Some(
|
||||
pounder::PounderDevices::new(
|
||||
io_expander,
|
||||
ad9959,
|
||||
io_update_trigger,
|
||||
spi,
|
||||
adc1,
|
||||
adc2,
|
||||
@ -759,38 +768,6 @@ const APP: () = {
|
||||
// TODO: Replace with reference to CPU clock from CCDR.
|
||||
next_ms += 400_000.cycles();
|
||||
|
||||
match c.resources.pounder {
|
||||
Some(pounder) => {
|
||||
pounder.ad9959.interface.start_stream();
|
||||
|
||||
let state = pounder::ChannelState {
|
||||
parameters: pounder::DdsChannelState {
|
||||
phase_offset: 0.0,
|
||||
frequency: 100_000_000.0,
|
||||
amplitude: 1.0,
|
||||
enabled: true,
|
||||
},
|
||||
attenuation: 0.0,
|
||||
};
|
||||
|
||||
let state1 = pounder::ChannelState {
|
||||
parameters: pounder::DdsChannelState {
|
||||
phase_offset: 0.5,
|
||||
frequency: 100_000_000.0,
|
||||
amplitude: 1.0,
|
||||
enabled: true,
|
||||
},
|
||||
attenuation: 0.0,
|
||||
};
|
||||
|
||||
pounder.set_channel_state(pounder::Channel::Out0, state).unwrap();
|
||||
pounder.set_channel_state(pounder::Channel::Out1, state1).unwrap();
|
||||
|
||||
pounder.ad9959.latch_configuration().unwrap();
|
||||
},
|
||||
_ => panic!("Failed"),
|
||||
}
|
||||
|
||||
loop {
|
||||
let tick = Instant::now() > next_ms;
|
||||
|
||||
@ -827,34 +804,6 @@ const APP: () = {
|
||||
}),
|
||||
"stabilizer/afe0/gain": (|| c.resources.afe0.get_gain()),
|
||||
"stabilizer/afe1/gain": (|| c.resources.afe1.get_gain()),
|
||||
"pounder/in0": (|| {
|
||||
match c.resources.pounder {
|
||||
Some(pounder) =>
|
||||
pounder.get_input_channel_state(pounder::Channel::In0),
|
||||
_ => Err(pounder::Error::Access),
|
||||
}
|
||||
}),
|
||||
"pounder/in1": (|| {
|
||||
match c.resources.pounder {
|
||||
Some(pounder) =>
|
||||
pounder.get_input_channel_state(pounder::Channel::In1),
|
||||
_ => Err(pounder::Error::Access),
|
||||
}
|
||||
}),
|
||||
"pounder/out0": (|| {
|
||||
match c.resources.pounder {
|
||||
Some(pounder) =>
|
||||
pounder.get_output_channel_state(pounder::Channel::Out0),
|
||||
_ => Err(pounder::Error::Access),
|
||||
}
|
||||
}),
|
||||
"pounder/out1": (|| {
|
||||
match c.resources.pounder {
|
||||
Some(pounder) =>
|
||||
pounder.get_output_channel_state(pounder::Channel::Out1),
|
||||
_ => Err(pounder::Error::Access),
|
||||
}
|
||||
}),
|
||||
"pounder/dds/clock": (|| {
|
||||
match c.resources.pounder {
|
||||
Some(pounder) => pounder.get_dds_clock_config(),
|
||||
|
@ -4,6 +4,7 @@ mod attenuators;
|
||||
mod rf_power;
|
||||
|
||||
use super::hal;
|
||||
use super::hrtimer::HighResTimerE;
|
||||
|
||||
use attenuators::AttenuatorInterface;
|
||||
use rf_power::PowerMeasurementInterface;
|
||||
@ -111,9 +112,54 @@ impl QspiInterface {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn start_stream(&mut self) {
|
||||
pub fn start_stream(&mut self) -> Result<(), Error> {
|
||||
if self.qspi.is_busy() {
|
||||
return Err(Error::Qspi);
|
||||
}
|
||||
|
||||
// Configure QSPI for infinite transaction mode using only a data phase (no instruction or
|
||||
// address).
|
||||
let qspi_regs = unsafe { &*hal::stm32::QUADSPI::ptr() };
|
||||
qspi_regs.fcr.modify(|_, w| w.ctcf().set_bit());
|
||||
|
||||
unsafe {
|
||||
qspi_regs.dlr.write(|w| w.dl().bits(0xFFFF_FFFF));
|
||||
qspi_regs
|
||||
.ccr
|
||||
.modify(|_, w| w.imode().bits(0).fmode().bits(1));
|
||||
}
|
||||
|
||||
self.streaming = true;
|
||||
self.qspi.enter_write_stream_mode().unwrap();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn write_profile(&mut self, data: [u32; 4]) -> Result<(), Error> {
|
||||
if self.streaming == false {
|
||||
return Err(Error::Qspi);
|
||||
}
|
||||
|
||||
let qspi_regs = unsafe { &*hal::stm32::QUADSPI::ptr() };
|
||||
unsafe {
|
||||
core::ptr::write_volatile(
|
||||
&qspi_regs.dr as *const _ as *mut u32,
|
||||
data[0],
|
||||
);
|
||||
core::ptr::write_volatile(
|
||||
&qspi_regs.dr as *const _ as *mut u32,
|
||||
data[1],
|
||||
);
|
||||
core::ptr::write_volatile(
|
||||
&qspi_regs.dr as *const _ as *mut u32,
|
||||
data[2],
|
||||
);
|
||||
core::ptr::write_volatile(
|
||||
&qspi_regs.dr as *const _ as *mut u32,
|
||||
data[3],
|
||||
);
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@ -223,11 +269,6 @@ impl ad9959::Interface for QspiInterface {
|
||||
}
|
||||
}
|
||||
|
||||
fn write_profile(&mut self, data: [u32; 4]) -> Result<(), Error> {
|
||||
self.qspi.write_profile(data);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn read(&mut self, addr: u8, dest: &mut [u8]) -> Result<(), Error> {
|
||||
if (addr & 0x80) != 0 {
|
||||
return Err(Error::InvalidAddress);
|
||||
@ -238,17 +279,16 @@ impl ad9959::Interface for QspiInterface {
|
||||
return Err(Error::Qspi);
|
||||
}
|
||||
|
||||
self.qspi.read(0x80_u8 | addr, dest).map_err(|_| Error::Qspi)
|
||||
self.qspi
|
||||
.read(0x80_u8 | addr, dest)
|
||||
.map_err(|_| Error::Qspi)
|
||||
}
|
||||
}
|
||||
|
||||
/// A structure containing implementation for Pounder hardware.
|
||||
pub struct PounderDevices<DELAY> {
|
||||
pub ad9959: ad9959::Ad9959<
|
||||
QspiInterface,
|
||||
DELAY,
|
||||
hal::gpio::gpiog::PG7<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
>,
|
||||
pub struct PounderDevices {
|
||||
pub ad9959: ad9959::Ad9959<QspiInterface>,
|
||||
pub io_update_trigger: HighResTimerE,
|
||||
mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
|
||||
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1>,
|
||||
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
|
||||
@ -257,26 +297,21 @@ pub struct PounderDevices<DELAY> {
|
||||
adc2_in_p: hal::gpio::gpiof::PF14<hal::gpio::Analog>,
|
||||
}
|
||||
|
||||
impl<DELAY> PounderDevices<DELAY>
|
||||
where
|
||||
DELAY: embedded_hal::blocking::delay::DelayMs<u8>,
|
||||
{
|
||||
impl PounderDevices {
|
||||
/// Construct and initialize pounder-specific hardware.
|
||||
///
|
||||
/// Args:
|
||||
/// * `ad9959` - The DDS driver for the pounder hardware.
|
||||
/// * `attenuator_spi` - A SPI interface to control digital attenuators.
|
||||
/// * `io_update_timer` - The HRTimer with the IO_update signal connected to the output.
|
||||
/// * `adc1` - The ADC1 peripheral for measuring power.
|
||||
/// * `adc2` - The ADC2 peripheral for measuring power.
|
||||
/// * `adc1_in_p` - The input channel for the RF power measurement on IN0.
|
||||
/// * `adc2_in_p` - The input channel for the RF power measurement on IN1.
|
||||
pub fn new(
|
||||
mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
|
||||
ad9959: ad9959::Ad9959<
|
||||
QspiInterface,
|
||||
DELAY,
|
||||
hal::gpio::gpiog::PG7<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
>,
|
||||
ad9959: ad9959::Ad9959<QspiInterface>,
|
||||
io_update_trigger: HighResTimerE,
|
||||
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1>,
|
||||
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
|
||||
adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>,
|
||||
@ -285,6 +320,7 @@ where
|
||||
) -> Result<Self, Error> {
|
||||
let mut devices = Self {
|
||||
mcp23017,
|
||||
io_update_trigger,
|
||||
ad9959,
|
||||
attenuator_spi,
|
||||
adc1,
|
||||
@ -312,6 +348,9 @@ where
|
||||
// Select the on-board clock with a 4x prescaler (400MHz).
|
||||
devices.select_onboard_clock(4u8)?;
|
||||
|
||||
// Run the DDS in stream-only mode (no read support).
|
||||
devices.ad9959.interface.start_stream();
|
||||
|
||||
Ok(devices)
|
||||
}
|
||||
|
||||
@ -390,91 +429,6 @@ where
|
||||
})
|
||||
}
|
||||
|
||||
/// Get the state of a Pounder input channel.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channel` - The pounder channel to get the state of. Must be an input channel
|
||||
///
|
||||
/// Returns:
|
||||
/// The read-back channel input state.
|
||||
pub fn get_input_channel_state(
|
||||
&mut self,
|
||||
channel: Channel,
|
||||
) -> Result<InputChannelState, Error> {
|
||||
match channel {
|
||||
Channel::In0 | Channel::In1 => {
|
||||
let channel_state = self.get_dds_channel_state(channel)?;
|
||||
|
||||
let attenuation = self.get_attenuation(channel)?;
|
||||
let power = self.measure_power(channel)?;
|
||||
|
||||
Ok(InputChannelState {
|
||||
attenuation,
|
||||
power,
|
||||
mixer: channel_state,
|
||||
})
|
||||
}
|
||||
_ => Err(Error::InvalidChannel),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the state of a DDS channel.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channel` - The pounder channel to get the state of.
|
||||
///
|
||||
/// Returns:
|
||||
/// The read-back channel state.
|
||||
fn get_dds_channel_state(
|
||||
&mut self,
|
||||
channel: Channel,
|
||||
) -> Result<DdsChannelState, Error> {
|
||||
let frequency = self
|
||||
.ad9959
|
||||
.get_frequency(channel.into())
|
||||
.map_err(|_| Error::Dds)?;
|
||||
let phase_offset = self
|
||||
.ad9959
|
||||
.get_phase(channel.into())
|
||||
.map_err(|_| Error::Dds)?;
|
||||
let amplitude = self
|
||||
.ad9959
|
||||
.get_amplitude(channel.into())
|
||||
.map_err(|_| Error::Dds)?;
|
||||
|
||||
Ok(DdsChannelState {
|
||||
phase_offset,
|
||||
frequency,
|
||||
amplitude,
|
||||
enabled: true,
|
||||
})
|
||||
}
|
||||
|
||||
/// Get the state of a DDS output channel.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channel` - The pounder channel to get the output state of. Must be an output channel.
|
||||
///
|
||||
/// Returns:
|
||||
/// The read-back output channel state.
|
||||
pub fn get_output_channel_state(
|
||||
&mut self,
|
||||
channel: Channel,
|
||||
) -> Result<OutputChannelState, Error> {
|
||||
match channel {
|
||||
Channel::Out0 | Channel::Out1 => {
|
||||
let channel_state = self.get_dds_channel_state(channel)?;
|
||||
let attenuation = self.get_attenuation(channel)?;
|
||||
|
||||
Ok(OutputChannelState {
|
||||
attenuation,
|
||||
channel: channel_state,
|
||||
})
|
||||
}
|
||||
_ => Err(Error::InvalidChannel),
|
||||
}
|
||||
}
|
||||
|
||||
/// Configure a DDS channel.
|
||||
///
|
||||
/// Args:
|
||||
@ -485,16 +439,25 @@ where
|
||||
channel: Channel,
|
||||
state: ChannelState,
|
||||
) -> Result<(), Error> {
|
||||
self.ad9959.write_profile(channel.into(), state.parameters.frequency,
|
||||
state.parameters.phase_offset, state.parameters.amplitude).map_err(|_| Error::Dds)?;
|
||||
let profile = self
|
||||
.ad9959
|
||||
.serialize_profile(
|
||||
channel.into(),
|
||||
state.parameters.frequency,
|
||||
state.parameters.phase_offset,
|
||||
state.parameters.amplitude,
|
||||
)
|
||||
.map_err(|_| Error::Dds)?;
|
||||
self.ad9959.interface.write_profile(profile).unwrap();
|
||||
self.io_update_trigger.trigger();
|
||||
|
||||
//self.set_attenuation(channel, state.attenuation)?;
|
||||
self.set_attenuation(channel, state.attenuation)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<DELAY> AttenuatorInterface for PounderDevices<DELAY> {
|
||||
impl AttenuatorInterface for PounderDevices {
|
||||
/// Reset all of the attenuators to a power-on default state.
|
||||
fn reset_attenuators(&mut self) -> Result<(), Error> {
|
||||
self.mcp23017
|
||||
@ -566,7 +529,7 @@ impl<DELAY> AttenuatorInterface for PounderDevices<DELAY> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<DELAY> PowerMeasurementInterface for PounderDevices<DELAY> {
|
||||
impl PowerMeasurementInterface for PounderDevices {
|
||||
/// Sample an ADC channel.
|
||||
///
|
||||
/// Args:
|
||||
|
Loading…
Reference in New Issue
Block a user