Updating internal lockin demo

This commit is contained in:
Ryan Summers 2021-01-29 18:55:54 +01:00
parent b152343aaf
commit 8b46c3c768

View File

@ -7,13 +7,9 @@
const DAC_SEQUENCE: [f32; 8] =
[0.0, 0.707, 1.0, 0.707, 0.0, -0.707, -1.0, -0.707];
use dsp::{iir, iir_int, lockin::Lockin};
use dsp::{iir_int, lockin::Lockin};
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
use stabilizer::{hardware, ADC_SAMPLE_TICKS};
const SCALE: f32 = ((1 << 15) - 1) as f32;
const PHASE_SCALING: f32 = 1e12;
use stabilizer::hardware;
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
@ -22,12 +18,6 @@ const APP: () = {
adc1: Adc1Input,
dacs: (Dac0Output, Dac1Output),
#[init([0.; 5])]
iir_state: iir::IIRState,
#[init(iir::IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE })]
iir: iir::IIR,
lockin: Lockin,
}
@ -36,18 +26,8 @@ const APP: () = {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
// The desired corner frequency is always
let desired_corner_frequency = 10e3;
let gain = 1000.0;
// Calculate the IIR corner freuqency parameter as a function of the sample rate.
let corner_frequency = {
let sample_rate = 1.0 / (10e-9 * ADC_SAMPLE_TICKS as f32);
desired_corner_frequency / sample_rate
};
let lockin = Lockin::new(
&iir_int::IIRState::lowpass(corner_frequency, 0.707, gain), // TODO: expose
&iir_int::IIRState::lowpass(1e-3, 0.707, 2.), // TODO: expose
);
// Enable ADC/DAC events
@ -84,8 +64,8 @@ const APP: () = {
/// the same time bounds, meeting one also means the other is also met.
///
/// TODO: Document
#[task(binds=DMA1_STR4, resources=[adc1, dacs, iir_state, iir, lockin], priority=2)]
fn process(mut c: process::Context) {
#[task(binds=DMA1_STR4, resources=[adc1, dacs, lockin], priority=2)]
fn process(c: process::Context) {
let adc_samples = c.resources.adc1.acquire_buffer();
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
@ -103,19 +83,19 @@ const APP: () = {
dac_samples[0][i] = y as u16 ^ 0x8000;
}
let pll_phase = 0i32;
let pll_phase = 0;
let pll_frequency = 1i32 << (32 - 3); // 1/8 of the sample rate
// Harmonic index of the LO: -1 to _de_modulate the fundamental
let harmonic: i32 = -1;
// Demodulation LO phase offset
let phase_offset: i32 = 0;
let phase_offset: i32 = (0.7495 * i32::MAX as f32) as i32;
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
let mut sample_phase = phase_offset
.wrapping_add((pll_phase as i32).wrapping_mul(harmonic));
let mut phase = 0f32;
let mut phase = 0i16;
for sample in adc_samples.iter() {
// Convert to signed, MSB align the ADC sample.
@ -127,20 +107,17 @@ const APP: () = {
// Advance the sample phase.
sample_phase = sample_phase.wrapping_add(sample_frequency);
// Convert from IQ to phase.
phase = output.phase() as _;
// Convert from IQ to phase. Scale the phase so that it fits in the DAC range. We do
// this by shifting it down into the 16-bit range.
phase = (output.phase() >> 16) as i16;
}
// Filter phase through an IIR.
phase = c.resources.iir.update(&mut c.resources.iir_state, phase)
* PHASE_SCALING;
for value in dac_samples[1].iter_mut() {
*value = phase as u16 ^ 0x8000
}
}
#[idle(resources=[iir_state, iir, afes])]
#[idle(resources=[afes])]
fn idle(_: idle::Context) -> ! {
loop {
// TODO: Implement network interface.