add lockin module

This commit is contained in:
Matt Huszagh 2020-11-22 14:34:38 -08:00
parent 9a83d565ae
commit 85adc8b1e1
5 changed files with 550 additions and 0 deletions

7
Cargo.lock generated
View File

@ -189,6 +189,7 @@ dependencies = [
name = "dsp" name = "dsp"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"libm",
"serde", "serde",
] ]
@ -297,6 +298,12 @@ dependencies = [
"hashbrown", "hashbrown",
] ]
[[package]]
name = "libm"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c7d73b3f436185384286bd8098d17ec07c9a7d2388a6599f824d8502b529702a"
[[package]] [[package]]
name = "log" name = "log"
version = "0.4.11" version = "0.4.11"

7
dsp/Cargo.lock generated
View File

@ -4,9 +4,16 @@
name = "dsp" name = "dsp"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"libm",
"serde", "serde",
] ]
[[package]]
name = "libm"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c7d73b3f436185384286bd8098d17ec07c9a7d2388a6599f824d8502b529702a"
[[package]] [[package]]
name = "proc-macro2" name = "proc-macro2"
version = "1.0.24" version = "1.0.24"

View File

@ -5,6 +5,7 @@ authors = ["Robert Jördens <rj@quartiq.de>"]
edition = "2018" edition = "2018"
[dependencies] [dependencies]
libm = "0.2.1"
serde = { version = "1.0", features = ["derive"], default-features = false } serde = { version = "1.0", features = ["derive"], default-features = false }
[features] [features]

View File

@ -2,4 +2,5 @@
#![cfg_attr(feature = "nightly", feature(asm, core_intrinsics))] #![cfg_attr(feature = "nightly", feature(asm, core_intrinsics))]
pub mod iir; pub mod iir;
pub mod lockin;
pub mod pll; pub mod pll;

534
dsp/src/lockin.rs Normal file
View File

@ -0,0 +1,534 @@
//! Lock-in amplifier.
//!
//! Lock-in processing is performed through a combination of the
//! following modular processing blocks: demodulation, filtering,
//! decimation and computing the magnitude and phase from the in-phase
//! and quadrature signals. These processing blocks are mutually
//! independent.
//!
//! # Terminology
//!
//! * _demodulation signal_ - A copy of the reference signal that is
//! optionally frequency scaled and phase shifted. There are two
//! copies of this signal. The first copy is in-phase with the
//! reference signal (before any optional phase shifting). The second
//! is 90 degrees out of phase (in quadrature) with the first
//! copy. The demodulation signals are used to demodulate the ADC
//! sampled signal.
//! * _in-phase_ and _quadrature_ - These terms are used to delineate
//! between the two components of the demodulation signal and the
//! resulting two signals at any step downstream of the demodulation
//! step. The in-phase signal is in-phase with the reference signal
//! prior to any phase shifts. The quadrature signal is 90 degrees out
//! of phase with the in-phase signal.
//! * _internal clock_ - A fast internal clock used to increment a
//! counter for determining the 0-phase points of a reference signal.
//! * _reference signal_ - A constant-frequency signal used to derive
//! the demodulation signal.
//! * _timestamp_ - Timestamps record the timing of the reference
//! signal's 0-phase points. For instance, if a reference signal is
//! provided externally, a fast internal clock increments a
//! counter. When the external reference reaches the 0-phase point
//! (e.g., a positive edge), the value of the counter is recorded as a
//! timestamp. These timestamps are used to determine the frequency
//! and phase of the reference signal.
//!
//! # Usage
//!
//! The first step is to initialize a `Lockin` instance with
//! `Lockin::new()`. This provides the lock-in algorithms with
//! necessary information about the demodulation and filtering steps,
//! such as whether to demodulate with a harmonic of the reference
//! signal and the IIR biquad filter to use. There are then 4
//! different processing steps that can be used:
//!
//! * `demodulate` - Computes the phase of the demodulation signal
//! corresponding to each ADC sample, uses this phase to compute the
//! in-phase and quadrature demodulation signals, and multiplies these
//! demodulation signals by the ADC-sampled signal. This is a method
//! of `Lockin` since it requires information about how to modify the
//! reference signal for demodulation.
//! * `filter` - Performs IIR biquad filtering of in-phase and
//! quadrature signals. This is commonly performed on the in-phase and
//! quadrature components provided by the demodulation step, but can
//! be performed at any other point in the processing chain or omitted
//! entirely. `filter` is a method of `Lockin` since it must hold onto
//! the filter configuration and state.
//! * `decimate` - This decimates the in-phase and quadrature signals
//! to reduce the load on the DAC output. It does not require any
//! state information and is therefore a normal function.
//! * `magnitude_phase` - Computes the magnitude and phase of the
//! component of the ADC-sampled signal whose frequency is equal to
//! the demodulation frequency. This does not require any state
//! information and is therefore a normal function.
use super::iir::{IIRState, IIR};
use core::f32::consts::PI;
/// The number of ADC samples in one batch.
pub const ADC_SAMPLE_BUFFER_SIZE: usize = 16;
/// The maximum number of timestamps in the period for one ADC
/// batch. Each timestamp corresponds to the time of an external
/// reference clock edge.
pub const TIMESTAMP_BUFFER_SIZE: usize = ADC_SAMPLE_BUFFER_SIZE / 2;
/// The number of outputs sent to the DAC for each ADC batch.
pub const DECIMATED_BUFFER_SIZE: usize = 1;
/// Performs lock-in amplifier processing of a signal.
pub struct Lockin {
phase_offset: f32,
sample_period: u32,
harmonic: u32,
timestamps: [Option<i32>; 2],
iir: [IIR; 2],
iirstate: [IIRState; 2],
}
impl Lockin {
/// Initialize a new `Lockin` instance.
///
/// # Arguments
///
/// * `phase_offset` - Phase offset (in radians) applied to the
/// demodulation signal.
/// * `sample_period` - ADC sampling period in terms of the
/// internal clock period.
/// * `harmonic` - Integer scaling factor used to adjust the
/// demodulation frequency. E.g., 2 would demodulate with the
/// first harmonic.
/// * `iir` - IIR biquad filter. Two identical copies of this IIR
/// filter are used: one for the in-phase signal and the other for
/// the quadrature signal.
///
/// # Returns
///
/// New `Lockin` instance.
pub fn new(
phase_offset: f32,
sample_period: u32,
harmonic: u32,
iir: IIR,
) -> Self {
Lockin {
phase_offset: phase_offset,
sample_period: sample_period,
harmonic: harmonic,
timestamps: [None, None],
iir: [iir, iir],
iirstate: [[0.; 5]; 2],
}
}
/// Demodulate an input signal with in-phase and quadrature
/// reference signals.
///
/// # Arguments
///
/// * `adc_samples` - One batch of ADC samples.
/// * `timestamps` - Counter values corresponding to the edges of
/// an external reference signal. The counter is incremented by a
/// fast internal clock.
/// * `valid_timestamps` - The number of valid timestamps in
/// `timestamps`. Only `&timestamps[..valid_timestamps]` are used;
/// every other value in the `timestamps` array is ignored.
///
/// # Returns
///
/// The demodulated in-phase and quadrature signals as an
/// `Option`. When there are an insufficient number of timestamps
/// to perform processing, `None` is returned.
///
/// # Assumptions
///
/// `demodulate` expects that the timestamp counter value is equal
/// to 0 when the ADC samples its first input in a batch. This can
/// be achieved by configuring the timestamp counter to overflow
/// at the end of the ADC batch sampling period.
pub fn demodulate(
&mut self,
adc_samples: [i16; ADC_SAMPLE_BUFFER_SIZE],
timestamps: [u16; TIMESTAMP_BUFFER_SIZE],
valid_timestamps: u16,
) -> Option<([f32; ADC_SAMPLE_BUFFER_SIZE], [f32; ADC_SAMPLE_BUFFER_SIZE])>
{
// update old timestamps for new ADC batch
let sample_period = self.sample_period as i32;
self.timestamps.iter_mut().for_each(|t| match *t {
Some(i) => {
*t = Some(i - ADC_SAMPLE_BUFFER_SIZE as i32 * sample_period);
}
None => (),
});
// record new timestamps
timestamps
.iter()
.take(valid_timestamps as usize)
.rev()
.take(2)
.rev()
.for_each(|t| self.timestamps.push(Some(*t as i32)));
// return prematurely if there aren't enough timestamps for
// processing
if self.timestamps.iter().filter(|t| t.is_some()).count() < 2 {
return None;
}
// compute ADC sample phases, sines/cosines and demodulate
let reference_period =
self.timestamps[0].unwrap() - self.timestamps[1].unwrap();
let mut in_phase = [0f32; ADC_SAMPLE_BUFFER_SIZE];
let mut quadrature = [0f32; ADC_SAMPLE_BUFFER_SIZE];
in_phase
.iter_mut()
.zip(quadrature.iter_mut())
.zip(adc_samples.iter())
.enumerate()
.for_each(|(n, ((i, q), sample))| {
let integer_phase: i32 = (n as i32 * self.sample_period as i32
- self.timestamps[0].unwrap())
* self.harmonic as i32;
let phase = self.phase_offset
+ 2. * PI * integer_phase as f32 / reference_period as f32;
let (sine, cosine) = libm::sincosf(phase);
let sample = *sample as f32;
*i = sine * sample;
*q = cosine * sample;
});
Some((in_phase, quadrature))
}
/// Filter the in-phase and quadrature signals using the supplied
/// biquad IIR. The signal arrays are modified in place.
///
/// # Arguments
///
/// * `in_phase` - In-phase signal.
/// * `quadrature` - Quadrature signal.
pub fn filter(&mut self, in_phase: &mut [f32], quadrature: &mut [f32]) {
in_phase
.iter_mut()
.zip(quadrature.iter_mut())
.for_each(|(i, q)| {
*i = self.iir[0].update(&mut self.iirstate[0], *i);
*q = self.iir[1].update(&mut self.iirstate[1], *q);
});
}
}
/// Decimate the in-phase and quadrature signals to
/// `DECIMATED_BUFFER_SIZE`. The ratio of `ADC_SAMPLE_BUFFER_SIZE` to
/// `DECIMATED_BUFFER_SIZE` must be a power of 2.
///
/// # Arguments
///
/// * `in_phase` - In-phase signal.
/// * `quadrature` - Quadrature signal.
///
/// # Returns
///
/// The decimated in-phase and quadrature signals.
pub fn decimate(
in_phase: [f32; ADC_SAMPLE_BUFFER_SIZE],
quadrature: [f32; ADC_SAMPLE_BUFFER_SIZE],
) -> ([f32; DECIMATED_BUFFER_SIZE], [f32; DECIMATED_BUFFER_SIZE]) {
let n_k = ADC_SAMPLE_BUFFER_SIZE / DECIMATED_BUFFER_SIZE;
debug_assert!(
ADC_SAMPLE_BUFFER_SIZE == DECIMATED_BUFFER_SIZE || n_k % 2 == 0
);
let mut in_phase_decimated = [0f32; DECIMATED_BUFFER_SIZE];
let mut quadrature_decimated = [0f32; DECIMATED_BUFFER_SIZE];
in_phase_decimated
.iter_mut()
.zip(quadrature_decimated.iter_mut())
.zip(in_phase.iter().step_by(n_k))
.zip(quadrature.iter().step_by(n_k))
.for_each(|(((i_decimated, q_decimated), i_original), q_original)| {
*i_decimated = *i_original;
*q_decimated = *q_original;
});
(in_phase_decimated, quadrature_decimated)
}
/// Compute the magnitude and phase from the in-phase and quadrature
/// signals. The in-phase and quadrature arrays are modified in place.
///
/// # Arguments
///
/// * `in_phase` - In-phase signal.
/// * `quadrature` - Quadrature signal.
pub fn magnitude_phase(in_phase: &mut [f32], quadrature: &mut [f32]) {
in_phase
.iter_mut()
.zip(quadrature.iter_mut())
.for_each(|(i, q)| {
let new_i = libm::sqrtf([*i, *q].iter().map(|i| i * i).sum());
let new_q = libm::atan2f(*q, *i);
*i = new_i;
*q = new_q;
});
}
/// Treat the 2-element array as a FIFO. This allows new elements to
/// be pushed into the array, existing elements to shift back in the
/// array, and the last element to fall off the array.
trait Fifo2<T> {
fn push(&mut self, new_element: Option<T>);
}
impl<T: Copy> Fifo2<T> for [Option<T>; 2] {
/// Push a new element into the array. The existing elements move
/// backward in the array by one location, and the current last
/// element is discarded.
///
/// # Arguments
///
/// * `new_element` - New element pushed into the front of the
/// array.
fn push(&mut self, new_element: Option<T>) {
// For array sizes greater than 2 it would be preferable to
// use a rotating index to avoid unnecessary data
// copying. However, this would somewhat complicate the use of
// iterators and for 2 elements, shifting is inexpensive.
self[1] = self[0];
self[0] = new_element;
}
}
#[cfg(test)]
mod tests {
use super::*;
extern crate std;
fn f32_is_close(a: f32, b: f32) -> bool {
(a - b).abs() <= a.abs().max(b.abs()) * f32::EPSILON
}
fn f32_array_is_close(a: &[f32], b: &[f32]) -> bool {
let mut result: bool = true;
a.iter().zip(b.iter()).for_each(|(i, j)| {
result &= f32_is_close(*i, *j);
});
result
}
fn within_tolerance(
a: f32,
b: f32,
relative_tolerance: f32,
fixed_tolerance: f32,
) -> bool {
(a - b).abs()
<= a.abs().max(b.abs()) * relative_tolerance + fixed_tolerance
}
fn array_within_tolerance(
a: &[f32],
b: &[f32],
relative_tolerance: f32,
fixed_tolerance: f32,
) -> bool {
let mut result: bool = true;
a.iter().zip(b.iter()).for_each(|(i, j)| {
result &=
within_tolerance(*i, *j, relative_tolerance, fixed_tolerance);
});
result
}
#[test]
fn array_push() {
let mut arr: [Option<u32>; 2] = [None, None];
arr.push(Some(1));
assert_eq!(arr, [Some(1), None]);
arr.push(Some(2));
assert_eq!(arr, [Some(2), Some(1)]);
arr.push(Some(10));
assert_eq!(arr, [Some(10), Some(2)]);
}
#[test]
fn magnitude_phase_length_1_quadrant_1() {
let mut in_phase: [f32; 1] = [1.];
let mut quadrature: [f32; 1] = [1.];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[2_f32.sqrt()]));
assert!(f32_array_is_close(&quadrature, &[PI / 4.]));
in_phase = [3_f32.sqrt() / 2.];
quadrature = [1. / 2.];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[1_f32]));
assert!(f32_array_is_close(&quadrature, &[PI / 6.]));
}
#[test]
fn magnitude_phase_length_1_quadrant_2() {
let mut in_phase: [f32; 1] = [-1.];
let mut quadrature: [f32; 1] = [1.];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[2_f32.sqrt()]));
assert!(f32_array_is_close(&quadrature, &[3. * PI / 4.]));
in_phase = [-1. / 2.];
quadrature = [3_f32.sqrt() / 2.];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[1_f32]));
assert!(f32_array_is_close(&quadrature, &[2. * PI / 3.]));
}
#[test]
fn magnitude_phase_length_1_quadrant_3() {
let mut in_phase: [f32; 1] = [-1. / 2_f32.sqrt()];
let mut quadrature: [f32; 1] = [-1. / 2_f32.sqrt()];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[1_f32.sqrt()]));
assert!(f32_array_is_close(&quadrature, &[-3. * PI / 4.]));
in_phase = [-1. / 2.];
quadrature = [-2_f32.sqrt()];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[(3. / 2.) as f32]));
assert!(f32_array_is_close(&quadrature, &[-1.91063323625 as f32]));
}
#[test]
fn magnitude_phase_length_1_quadrant_4() {
let mut in_phase: [f32; 1] = [1. / 2_f32.sqrt()];
let mut quadrature: [f32; 1] = [-1. / 2_f32.sqrt()];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[1_f32.sqrt()]));
assert!(f32_array_is_close(&quadrature, &[-1. * PI / 4.]));
in_phase = [3_f32.sqrt() / 2.];
quadrature = [-1. / 2.];
magnitude_phase(&mut in_phase, &mut quadrature);
assert!(f32_array_is_close(&in_phase, &[1_f32]));
assert!(f32_array_is_close(&quadrature, &[-PI / 6.]));
}
#[test]
fn decimate_sample_16_decimated_1() {
let in_phase: [f32; ADC_SAMPLE_BUFFER_SIZE] = [
0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
1.3, 1.4, 1.5,
];
let quadrature: [f32; ADC_SAMPLE_BUFFER_SIZE] = [
1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,
2.9, 3.0, 3.1,
];
assert_eq!(decimate(in_phase, quadrature), ([0.0], [1.6]));
}
#[test]
fn lockin_demodulate_valid_0() {
let mut lockin = Lockin::new(
0.,
200,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
assert_eq!(
lockin.demodulate(
[0; ADC_SAMPLE_BUFFER_SIZE],
[0; TIMESTAMP_BUFFER_SIZE],
0
),
None
);
}
#[test]
fn lockin_demodulate_valid_1() {
let mut lockin = Lockin::new(
0.,
200,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
assert_eq!(
lockin.demodulate(
[0; ADC_SAMPLE_BUFFER_SIZE],
[0; TIMESTAMP_BUFFER_SIZE],
1
),
None
);
}
#[test]
fn lockin_demodulate_valid_2() {
let adc_period: u32 = 200;
let mut lockin = Lockin::new(
0.,
adc_period,
1,
IIR {
ba: [0_f32; 5],
y_offset: 0.,
y_min: -(1 << 15) as f32,
y_max: (1 << 15) as f32 - 1.,
},
);
let adc_samples: [i16; ADC_SAMPLE_BUFFER_SIZE] =
[-8, 7, -7, 6, -6, 5, -5, 4, -4, 3, -3, 2, -2, -1, 1, 0];
let reference_period: u16 = 2800;
let initial_phase_integer: u16 = 200;
let timestamps: [u16; TIMESTAMP_BUFFER_SIZE] = [
initial_phase_integer,
initial_phase_integer + reference_period,
0,
0,
0,
0,
0,
0,
];
let initial_phase: f32 =
-(initial_phase_integer as f32) / reference_period as f32 * 2. * PI;
let phase_increment: f32 =
adc_period as f32 / reference_period as f32 * 2. * PI;
let mut in_phase: [f32; ADC_SAMPLE_BUFFER_SIZE] =
[0.; ADC_SAMPLE_BUFFER_SIZE];
let mut quadrature: [f32; ADC_SAMPLE_BUFFER_SIZE] =
[0.; ADC_SAMPLE_BUFFER_SIZE];
for (n, (i, q)) in
in_phase.iter_mut().zip(quadrature.iter_mut()).enumerate()
{
let adc_phase = initial_phase + n as f32 * phase_increment;
let sine = adc_phase.sin();
let cosine = adc_phase.cos();
*i = sine * adc_samples[n] as f32;
*q = cosine * adc_samples[n] as f32;
}
let (result_in_phase, result_quadrature) =
lockin.demodulate(adc_samples, timestamps, 2).unwrap();
assert!(
array_within_tolerance(&result_in_phase, &in_phase, 0., 1e-5),
"\nin_phase computed: {:?},\nin_phase expected: {:?}",
result_in_phase,
in_phase
);
assert!(
array_within_tolerance(&result_quadrature, &quadrature, 0., 1e-5),
"\nquadrature computed: {:?},\nquadrature expected: {:?}",
result_quadrature,
quadrature
);
}
}